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One of the most important human faculties is the ability to acquire not just new memories but the capacity to perform entirely
new tasks. However, little is known about the brain mechanisms underlying the learning of novel tasks. Specifically, it is unclear to
what extent learning of different tasks depends on domain-general and/or domain-specific brain mechanisms. Here human subjects
(n = 45) learned to perform 6 new tasks while undergoing functional MRI. The different tasks required the engagement of perceptual,
motor, and various cognitive processes related to attention, expectation, speed-accuracy tradeoff, and metacognition. We found that a
bilateral frontoparietal network was more active during the initial compared with the later stages of task learning, and that this effect
was stronger for task variants requiring more new learning. Critically, the same frontoparietal network was engaged by all 6 tasks,
demonstrating its domain generality. Finally, although task learning decreased the overall activity in the frontoparietal network, it
increased the connectivity strength between the different nodes of that network. These results demonstrate the existence of a domain-
general brain network whose activity and connectivity reflect learning for a variety of new tasks, and thus may underlie the human
capacity for acquiring new abilities.
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Introduction
Humans have the remarkable ability to learn completely new
skills. Learning is most vigorous in childhood when people master
various skills such as reading, writing, arithmetic, sports, and self-
control (Piaget 1970). Yet, neurologically healthy humans never
lose their ability to acquire new skills, and adults routinely learn
new languages, sports, job skills, and social habits. However, it
remains unclear what brain mechanisms underlie our ability
to learn such a diverse range of new skills. Specifically, a cen-
tral problem is the extent to which learning across a variety
of domains relies on common neural mechanisms vs. domain-
specific mechanisms that are different for each task.

Previous research has focused primarily on the neural corre-
lates of learning specific stimuli. For example, studies investi-
gating perceptual learning typically compare brain activity asso-
ciated with highly trained vs. untrained sensory stimuli (Rainer
et al. 2004; Yang and Maunsell 2004; Antzoulatos and Miller 2011),
studies on motor learning compare familiar and novel movements
(Grafton et al. 2002; Houweling et al. 2008; Bassett et al. 2015;
Musall et al. 2019), studies on classical and operant conditioning
compare rewarded and unrewarded stimuli (Shuler and Bear 2006;
Serences 2008; Summerfield and Koechlin 2010; Baeuchl et al.
2020), and studies on repetition suppression compare repeated
and non-repeated stimulus presentations (Henson et al. 2000; Wig
et al. 2005). In all of these cases, what is being investigated is

how a learned stimulus or action differs from a novel stimulus or
action. The same limitation also applies to other common designs,
such as to studies that compare stimulus-evoked brain activity
before and after learning (Serences et al. 2009; Deuker et al. 2013;
Utzerath et al. 2017; Peter et al. 2021; Stauch et al. 2021). However,
despite the tremendous progress made with these approaches,
this line of research tells us very little about the brain mechanisms
that underlie our ability to learn a new task rather than a new
stimulus.

Not surprisingly, previous research focusing on comparing
learned vs. novel stimuli has mostly found that domain-specific
mechanisms underlie each area of learning. After extensive
training, visual stimuli are processed differently in the visual
cortex (Rainer et al. 2004; Shuler and Bear 2006; Serences 2008;
Serences et al. 2009; Deuker et al. 2013; Utzerath et al. 2017), motor
actions are generated differently in the motor cortex (Grafton
et al. 2002; Houweling et al. 2008; Bassett et al. 2015; Musall
et al. 2019), and rewarded stimuli are processed differently in
reward circuits of the brain (Shuler and Bear 2006; Serences 2008;
Summerfield and Koechlin 2010; Baeuchl et al. 2020). Based on
this research, it is perhaps natural to hypothesize that the ability
to learn completely novel tasks that rely on different perceptual,
motor, and cognitive processes would rely on domain-specific
brain areas. However, an alternative possibility is that learning
novel tasks depends on domain-general mechanisms and that
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domain-specific brain areas become important primarily when
learning specific stimuli, but not the structure associated with a
new task.

Several studies have investigated task learning for tasks that
rely on the same underlying processes. For example, one approach
introduced by Cole et al. (2010) involves constructing 64 different
tasks specified using combinations of judging 1 of 4 sensory
properties (green/loud/soft/sweet), applying 1 of 4 logic operations
(same/just one/second/not second), and executing 1of 4 motor
responses (left/right index/middle finger). Thus, the instructions
for 1 of the 64 tasks would be “If the answer to ‘Is it GREEN?’
is the SAME for both words, press your LEFT INDEX finger”. The
task consists of observing 2 words (e.g. “gecko” and “leaf”) and
making an appropriate response. Several other designs for novel
task learning use simpler task structures that consist of learn-
ing different stimulus–response pairings and implementing them
either immediately (Ruge and Wolfensteller 2010; Hartstra et al.
2011) or after a delay (Meiran et al. 2015a, 2015b). These studies
generally found that novel task variants engaged frontal and
parietal regions more strongly than previously practiced variants.
However, in all of these studies, the different tasks are always
specific instances of the same overall task structure that engages
the same set of cognitive processes and is likely to activate the
same brain areas. Indeed, these studies did not include tasks that
are known to depend on different brain areas. As such, it remains
unknown whether learning tasks that engage different cognitive
processes and brain areas relies on a common set of domain-
general regions or different sets of domain-specific regions.

Here we adjudicated between these 2 possibilities. Human
subjects (n = 45) learned to perform 6 new tasks that rely on per-
ception, motor, or various cognitive processes (attention, expec-
tation, speed-accuracy tradeoff (SAT), and metacognition). These
tasks are known to activate dissociable areas in the visual cortex
(Heeger 1999; Grill-Spector and Malach 2004), motor cortex (Laut
Ebbesen and Brecht 2017; Svoboda and Li 2018), intraparietal
sulcus (IPS) (Corbetta and Shulman 2002; Rahnev et al. 2012),
dorsolateral prefrontal cortex (Rahnev et al. 2011a), supplemen-
tary motor area (Forstmann et al. 2008; Spieser et al. 2017),
and anterior prefrontal cortex (Rahnev et al. 2016; Shekhar and
Rahnev 2018; Yeon et al. 2020), respectively. As such, they allow
us to directly test the hypotheses that task learning depends on
a common set of domain-general regions vs. different sets of
domain-specific regions. Subjects were first introduced to each
new task inside an MRI scanner, which allowed us to examine
their brain activity during the process of learning each new task.
Each task had 3 variants that differed in several dimensions,
while remaining within the same task domain. Importantly, each
variant consisted of 2 blocks, and we compared the brain activ-
ity during the first block when substantial new task learning
is necessary to the second block when relatively less new task
learning is taking place. We observed that a domain-general
frontoparietal network subserved learning across all 6 tasks. This
network showed higher activity during the initial stages of learn-
ing and stronger connectivity in the later stages of learning. Little
domain-specific activity was observed. These results demonstrate
the existence of a domain-general network that underlies task
learning.

Methods
Subjects
Forty-eight subjects participated in the study. Data from 3
subjects were excluded due to data saving errors. All analyses

were conducted on the remaining 45 subjects (25 females,
age = 23.2 ± 8.28 years, mean ± SD). All subjects had normal
or corrected-to-normal vision, were right-handed, and had no
history of neurological disorders. The subjects were screened for
MRI safety and provided informed consent. Subjects were paid
$15 per hour for their participation and were not rewarded based
on their task performance. The study was approved by the local
review board.

Tasks
Subjects performed 6 different tasks that required the engage-
ment of perception, various cognitive (attention, expectation, SAT,
and metacognition), or motor processes (Fig. 1). The perception
task was always learned first, followed by the 4 cognitive tasks in a
randomized order, and the motor task that always came last. Each
task had 3 variants that were presented in the same order across
subjects (see below). Each task variant consisted of 2 identical
blocks of 30 trials (for a total of 60 trials per variant for each task).
Subjects encountered each task inside the scanner for the first
time and received brief on-screen instructions at the beginning of
each task, as well as before the start of each new variant. Subjects
were allowed unlimited time to read and process the instructions
and had a 9.5-s break between the 2 blocks of a single task variant.
Subjects gave their responses through an MRI-compatible button
box with their right hand. All 6 tasks were completed in a single
session, and subjects took 61 min on average to complete all 6
tasks (Min = 52.34 min, Max = 75.96 min).

Perception task
The perception task required subjects to engage in challenging
perceptual discrimination without the need to employ higher
cognitive processes. Subjects indicated the orientation of a grating
that could be tilted either counterclockwise (“left”) or clockwise
(“right”) of vertical (Fig. 1a). Each trial started with a blank screen
(500 ms), followed by a white fixation point (500 ms), the grating
(50 ms), and an untimed response period. The grating stimuli
for the 3 task variants differed in their size (2◦, 1.5◦, and 3◦ in
diameter), noise level (50, 10, and 30%), spatial frequency of the
grating (9, 3, and 20 cycles per degree), and offset from verti-
cal (10◦, 45◦, and 25◦). The contrast of the grating was initially
set to 10% in the beginning of each task variant and was then
continuously adjusted using 2-down-1-up staircase method (step
size = 2% contrast) with the lowest possible contrast set to 2%. The
stimuli for the 4 cognitive tasks were identical to the stimulus
in variant 3 of the perception task, but with a fixed contrast
equal to the mean contrast values of all trials in Block 2 of
variant 3.

Attention task
The attention task required subjects to engage in the deployment
of endogenous spatial attention (Carrasco 2011; Chun et al. 2010;
Petersen and Posner 2012; Rahnev et al. 2011b). Subjects saw
between 2 and 4 gratings positioned 5◦ from the center of the
screen and equally spaced from each other. On each trial, one
of the gratings was post-cued and the task was to indicate the
orientation of the post-cued grating (Fig. 1b). A trial consisted of
a blank screen (500 ms), followed by a pre-cue (an arrow) that
pointed to the likely location of the post-cued stimulus (500 ms).
After a fixation screen of variable duration (200–700 ms), the
gratings were presented (50 ms), and finally a post-cue appeared
indicating which grating subjects should respond to. Subjects had
unlimited amount of time to indicate the orientation (left or right)
of the post-cued grating. The 3 variants differed in the number of
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Fig. 1. Tasks. Subjects completed a perception task, followed by 4 cognitive tasks (requiring attention, expectation, speed-accuracy tradeoff, and
metacognition) in a randomized order, and a motor task that always came last. Each task had 3 variants shown on the top-right of each panel.
(a) In the perception task, subjects judged the orientation (left vs. right) of a grating. The 3 variants manipulated the size, noise level, contrast level, and
orientation of the grating. The same parameters of the last variant were used for generating the stimuli in all cognitive tasks (the only exception is that
the attention task used higher contrast). (b) In the attention task, a pre cue indicated the location that subjects should attend to. Subjects reported
the stimulus orientation at a post-cued location. The 3 variants differed in the number of gratings presented and corresponding pre-cue validity.
(c) In the expectation task, a cue indicated the likely orientation of the upcoming stimulus. The 3 variants differed in the predictiveness of the cue.
(d) In the speed-accuracy tradeoff task, a cue indicated the speed with which subjects should make the orientation discrimination response. The
3 variants differed in the number of speed stress levels. (e) In the metacognition task, subjects provided a confidence rating regarding the accuracy of
their decision. The 3 variants differed in the confidence scale used. (f) In the motor task, subjects typed as quickly as possible the digits (chosen among
the digits 1 to 4) presented on the screen using a button box. The 3 variants differed in the number of digits shown.

gratings presented (2, 3, or 4) as well as the predictiveness of the
pre-cue (67, 50, and 40%), which was chosen such that the cued
location was always 2 times more likely to be post-cued than the
remaining locations.

Expectation task
The expectation task required subjects to engage in the integra-
tion of non-perceptual knowledge (in the form of a prior) and per-
ceptual information (Bang and Rahnev 2017;Rahnev et al. 2011a;
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Summerfield and De Lange 2014; Turk-Browne et al. 2010). Sub-
jects made a perceptual decision combining the information of a
predictive cue with the perceptual information from the actual
stimulus (Fig. 1c). Each trial began with a blank screen (500 ms),
followed by the predictive cue consisting of the words “LEFT”
or “RIGHT” shown at the center of the screen (500 ms). After a
blank screen of variable duration (200–700 ms), the grating was
presented (50 ms) and was followed by an untimed response
period. The 3 variants differed in the predictiveness of the cue,
which was set to 83.3, 95, and 76.6%, respectively. Subjects were
fully informed about the cue predictiveness and encouraged to
take the information into account when making their perceptual
decision.

SAT task
The SAT task required subjects to flexibly adjust the speed of
their responses (Giordano et al. 2009; Steinhauser and Yeung
2012; Drugowitsch et al. 2015). Subjects made a perceptual deci-
sion that emphasized speed vs. accuracy to a different degree in
accordance with a preceding cue (Fig. 1d). The 3 variants differed
in the number of possible instructions of the cue (variant 1:
Fast/Accurate; variant 2: Fast/Neutral/Accurate; variant 3: Very
fast/Fast/Neutral/Accurate). Each trial began with a blank screen
(500 ms), followed by a cue that presented an instruction word at
the center of the screen (500 ms). After a blank screen of variable
duration (200–700 ms), the grating was presented and remained
on the screen until subjects provided their response.

Metacognition task
The metacognition task required subjects to engage in evaluat-
ing their confidence level about the previously made perceptual
decision (Fleming and Dolan 2012; Yeon et al. 2020; Rahnev 2021).
After making a perceptual decision, subjects rated how confident
they were about the decision they just made (Fig. 1e). Each trial
began with a blank screen (500 ms), followed by a fixation screen
(500 ms). After a short presentation of a grating stimulus (50 ms),
subjects sequentially indicated their perceptual decision and then
provided their confidence level (both untimed). The 3 variants dif-
fered in the granularity of the rating scale (2, 3, and 4 points) with
later variants requiring increasingly more granular confidence
responses.

Motor task
The motor task required subjects to perform a sequence of sim-
ple button presses that required minimal involvement of higher
cognitive functions (Grafton et al. 2002; Debas et al. 2010; Doyon
et al. 2018). Subjects were asked to press buttons corresponding to
the digits presented on the screen (Fig. 1f). Each trial began with a
blank screen (500 ms), followed by a stimulus presentation screen.
The variants differed the number of digits presented on the screen
(3, 5, and 7 digits). Numbers between 1 and 4 were used to generate
a series of digits. Subjects used the index, middle, ring, and little
fingers of their right hand to press buttons associated with the
numbers 1–4, respectively. Subjects were instructed to perform
the button presses as fast and accurately as possible.

Image acquisition and preprocessing
The MRI data were collected on a 3 T MRI system (Trio Tim,
Siemens) using a 12-channel head coil. Anatomical images
were acquired using T1-weighted magnetization-prepared rapid
acquisition gradient-echo (MPRAGE) sequences (TR = 2300 ms;
TE = 2.98 ms; 160 slices; FoV = 256 mm; flip angle = 9◦; voxel
size = 1.0 × 1.0 × 1.0 mm3). Functional images were acquired
using T2∗-weighted gradient echo-planar imaging (EPI) sequences

(TR = 2000 mm; TE = 24 ms; 37 slices; FoV = 224 mm; flip
angle = 60◦; voxel size = 3.5 × 3.5 × 4.2 mm3). After subjects were
positioned inside the MRI scanner, functional images were
acquired continuously in a single run, during which subjects read
the instructions for and performed all 6 tasks. The anatomical
images were collected at the end of the experiment.

We used SPM12 (Wellcome Department of Imaging Neuro-
science, London, United Kingdom) for data preprocessing and
analysis. Functional images were first converted from DICOM to
NIFTI. Converted images were then de-spiked for the signal above
2.5 SD with an upper bound of 4 SD. De-spiked images then slice-
time corrected in descending order, realigned within individual
subject’s functional images, and coregistered the mean functional
image to the subject’s anatomical T1 image. Individual subject’s
anatomical T1 image was segmented to separate gray matter,
white matter, Cerebrospinal fluid (CSF) and bone, soft tissue,
and air and background. Functional, anatomical, and segmented
images were then all normalized to the Montreal Neurological
Institute space template (MNI152). Finally, functional images were
smoothed with 6-mm full-width-half-maximum (FWHM) Gaus-
sian kernels.

Data analysis
Behavioral analyses
We computed task accuracy and reaction time (RT) for each block
of each task variant. For the perception and the 4 cognitive tasks,
task accuracy was computed based on whether subjects correctly
identified the grating orientation. For the motor task, a response
was only considered correct if all digits were entered correctly.
The RT for the motor task was computed as the time from digit
presentation until the final digit was entered. We excluded outlier
RT values that lie ±3 SD of all RTs for a given task variants. We
examined differences in RT between Blocks 1 and 2 within each
variant using one-sample t-tests, and compared these differences
across task variants using paired-sample t-tests. To investigate the
learning effect in task accuracy, we averaged task performance
block-wise and z-scored the accuracy within each task for indi-
vidual subjects. We then examined differences in task accuracy
between Blocks 1 and 2 within each variant using one-sample
t-tests, as well as compared these differences across the 3 variants
using paired-sample t-tests. We excluded the perception task in
this analysis because the task used a staircase method to con-
tinuously adjust the difficulty of the task (Supplementary Fig. 5).
Additional analyses for the 4 cognitive tasks, intended to confirm
that each task was completed appropriately, are described in
Supplementary Figs. 1–4.

General linear model (GLM) analyses of the fMRI data
To reveal the brain regions that reflect task learning, we compared
the blood-oxygenation level-dependent (BOLD) signal between
Blocks 1 and 2 of each task variant. We first defined GLM regres-
sors for Block 1 (all tasks and variants together), Block 2 (all
tasks and variants together), the rest period between Blocks 1
and 2, and the instructions period that occurred for every new
task and variant. The contrast Block 1 > Block 2 from this GLM
was used to identify the brain areas that reflect task learning. In
addition, we created 2 more GLMs where the periods for Blocks
1 and 2 were defined separately for each task, or separately for
each task variant. The contrast Block 1 > Block 2 from these GLMs
was used to examine how the brain activations differed across
tasks and task variants. All GLMs included 6 regressors related to
head movement (3 translation and 3 rotation regressors), 4 tissue
regressors (white matter, CSF and bone, soft tissues, and air and
background), and a constant term. Unless otherwise specified,
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analyses were performed using familywise error (FWE) corrected
P < 0.05 and a cluster size of at least 150 voxels.

ROI analyses
To examine the domain generality of the brain regions that
reflect task learning, we followed the following procedure. For
a given task, we examined the contrast Block 1 > Block 2 using
the data from the remaining 5 tasks. We then identified each
of the 5 regions-of-interest (ROIs) (bilateral inferior frontal
gyrus (IFG), bilateral IPS, and left cerebellum) based on the
activations obtained using the data from these 5 tasks. This
procedure avoided “double-dipping” where the same data are
used both to define an ROI and examine its associated activations
(Kriegeskorte et al. 2009). Finally, we tested whether activity
in these ROIs was stronger for Block 1 than Block 2 in the
original task, with the same procedure repeated for each of the 6
tasks. We also examined whether we would observe significantly
different activation pattern of the brain outside of the ROIs
for individual tasks. To quantify activated regions in the brain
besides the ROIs, we first set the P-value threshold so that
half of voxels in the ROIs are activated for each task, and then
calculated the proportion of activated voxels outside of the ROIs.
Standard error for proportions is calculated using the following
formula:

SE =
√

p
(
1 − p

)
/n

where p is the proportion of the activated voxels and n is the
number of voxels in the ROIs.

Functional connectivity analyses
Our main analyses revealed that bilateral IFG, bilateral IPS, and
left cerebellum reflect task learning, but could not uncover
whether task learning affected the communication between
these regions. To address this question, we defined these clusters
as ROIs, and then extracted and normalized the time-series
data from the preprocessed functional images for each ROI. We
regressed out the mean gray matter, mean white matter, and
mean CSF signals from the time-series for each ROI (Ciric et al.
2017; Lydon-Staley et al. 2019). We also removed any individual
volumes with framewise displacement greater than 0.3 mm, to
minimize artifacts related to in-scanner head motion (Jenkinson
et al. 2002; Power et al. 2012). Lastly, we filtered the residual signal
with a second-order Butterworth filter between 0.01 and 0.1 Hz.
Finally, we computed the strength of the functional connectivity
between each pair of the 5 ROIs separately for Blocks 1 and 2 by
taking the Pearson correlation between each pair of ROIs’ volume-
by-volume time series. To statistically compare the correlation
values between Blocks 1 and 2, we z-transformed the r-values
and conducted paired-sample t-tests on the z-values. All average
r-values reported in the main text and Fig. 7 were obtained by
averaging the z-values and then transforming the average z-value
back into an r-value.

Data and code
Data and analysis code are available at https://osf.io/knzj6. In
addition, all group-level fMRI T-maps are available at https://
neurovault.org/collections/FYJMWHCU.

Results
We investigated whether the neural substrates underlying the
learning of new tasks is domain-general or domain-specific. Sub-
jects performed 1 perceptual, 4 cognitive, and 1 motor task while

Fig. 2. RT difference between Blocks 1 and 2 for each task variant. We
computed the RT difference between Blocks 1 and 2 for each of the 3
task variants across all 6 tasks. The P-values below the plots show the
results of one-sample t-tests comparing the RT difference for each of
the 3 task variants against zero. The P-values above the plots show the
results of paired t-tests comparing the RT differences between different
task variants. The results suggest that learning was greatest for the first
task variant but remained significant for the second and third variants.
Each dot represents the average RT across all 6 tasks for a single subject.
Error bars indicate standard error of the mean (SEM).

we collected fMRI data (Fig. 1). The perception task was always
performed first, the motor task was always performed last, and
the remaining tasks were performed in randomized order. To avoid
the introduction of new perceptual learning with each task, the
cognitive tasks used the same grating stimuli from the perception
task. Each task consisted of 3 variants to ensure the need for
constant learning of new task features. Each variant included 2
blocks of 30 trials with the first block naturally requiring more
novel learning than the second block.

Behavioral effects
We first confirmed that subjects performed all behavioral tasks
as instructed. We observed adequate performance across all
tasks (accuracy = 70.6, 59.3, 77, 77.7, 69.7, and 85.9% for the
perception, attention, expectation, SAT, metacognition, and
motor tasks, respectively). In addition, we confirmed that
subjects were more accurate for valid cues in the attention
task (Supplementary Fig. 1), preferentially chose the expected
stimulus in the expectation task (Supplementary Fig. 2), followed
the speed/accuracy instructions in the SAT task (Supplemen-
tary Fig. 3), and exhibited higher accuracy for trials with higher
confidence in the metacognition task (Supplementary Fig. 4).

We then examined whether there was behavioral evidence for
a learning effect when comparing Blocks 1 and 2 of each task
variant. We found that subjects exhibited substantially reduced
RTs for Block 2 compared with Block 1. This effect was most
pronounced for the first task variant (RT difference = 220 ms;
t(44) = 9.82, P = 1.16 × 10−12; Fig. 2) but was also present for the
second (RT difference = 124 ms; t(44) = 5.20, P = 4.91 × 10−6) and
third (RT difference = 74 ms; t(44) = 4.09, P = 1.78 × 10−4) task vari-
ants. Moreover, RT difference between Blocks 1 and 2 was larger
for the first variant compared with both the second (t(44) = 3.92,
P = 3.02 × 10−4) and the third (t(44) = 6.92, P = 1.51 × 10−8) variants.
The RT difference between the second and the third variants
was only marginally significant (t(44) = 1.84, P = 0.074). We also
examined task accuracy of the 3 variants. We found a small
but significant difference between Blocks 1 and 2 for variant 1
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Table 1. Localization of activations for the contrast Block 1 > Block 2. Coordinates correspond to the standard MNI brain.

Coordinates Peak level

Side (x, y, z) Voxel size t-value P-value

IPS L −24 −68 32 1083 9.71 8.27 × 10−13

R 32 −68 34 494 8.33 6.72 × 10−11

IFG L −46 4 38 329 8.23 9.33 × 10−11

R 50 8 34 431 8.62 2.63 × 10−11

Cerebellum L −26 −86 −28 198 8.24 9.29 × 10−11

Fig. 3. Task learning is reflected in frontal, parietal, and cerebellar regions. Brain regions with greater activation for Block 1 compared with Block 2
across all 6 tasks. Five clusters emerged in bilateral IFG, bilateral IPS, and left cerebellum (P < 0.05 FWE corrected, cluster size ≥150). Darker shade (red)
in the figure indicates higher t-values.

(t(44) = 2.249, P = 0.029), but not for variant 2 (t(44) = 2.003, P = 0.051)
or variant 3 (t(44) = 0.293, P = 0.771; Supplementary Fig. 5). These
results provide strong evidence for behavioral learning in all 3 task
variants, with the learning being greatest in the first variant.

Task learning is reflected in frontal, parietal, and
cerebellar activation increases
The behavioral analyses confirmed that substantial task learning
took place during Block 1 (as reflected by the faster RTs on Block
2 compared with Block 1). Therefore, we investigated the neural
correlates of task learning by determining the brain areas that
show larger activations for Block 1 than Block 2. We applied FWE
correction at P < 0.05 and searched for clusters of at least 150
voxels (see Supplementary Fig. 6 for a map including clusters of
any size). The results showed bilateral activation in the IFG, bilat-
eral activation in the IPS, and left cerebellum activation (Fig. 3,
Table 1). No voxels survived the same threshold for the opposite
comparison (Block 2 > Block 1).

The behavioral results demonstrated that learning was great-
est for the first variant of each task and then monotonically
decreased for the second and third variants (Fig. 2). Therefore, we
examined whether the difference in activation between Blocks
1 and 2 in these 5 clusters also peaked for the first variant
and decreased for later variants. Qualitatively, the comparison
of Blocks 1 and 2 produced large swaths of activity in the first
variant, less activity in the second variant, and even less activity
in the third variant (Fig. 4a). We quantified this effect by exam-
ining the activations for each task variant specifically for the 5
regions from Fig. 3, which we defined as ROIs. We found that all
4 frontoparietal ROIs showed a monotonic decrease in activation
difference between Blocks 1 and 2 (P < 0.001 for all pairwise
comparisons between variant 1 and variant 3; Fig. 4b). While the
cerebellar ROI also showed a pattern of monotonic decreases,

none of the pairwise comparisons between the 3 variants were
significant (all P’s > 0.1). Thus, even though the bilateral IFG and
IPS ROIs were defined using a contrast that was independent of
variant order, each of them showed a neural effect that mim-
icked the corresponding behavioral learning effect. An exploratory
analysis also revealed a significantly positive correlation for the
first variant only between (i) the RT difference between Blocks
1 and 2 averaged across 6 tasks and (ii) the brain activation
difference between Blocks 1 and 2 averaged across 6 tasks and all
5 ROIs (Supplementary Fig. 7), though such across-subject brain-
behavior correlations should be interpreted with caution (Marek
et al. 2022). Overall, these results strongly suggest that learning of
these tasks is reflected in the activity in bilateral IFG, bilateral IPS,
and, to a lesser extent, in left cerebellum.

Task learning effects in frontal, parietal, and
cerebellar regions are domain-general
The results above clearly demonstrate that the frontal, parietal,
and cerebellar brain regions reflect task learning, but do not
clarify whether these regions are domain-general. Specifically, it
is possible that each task exhibits strong domain-specific effects
that are obscured by examining all tasks together. To explore this
possibility, we examined the contrast between Blocks 1 and 2
separately for each of the 6 tasks. Previous imaging studies have
demonstrated that visual perception tasks activate the visual cor-
tex (Heeger 1999; Grill-Spector and Malach 2004), that top-down
attention tasks activate the dorsal attention network (Corbetta
and Shulman 2002; Rahnev et al. 2012), that expectation tasks
activate the dorsolateral prefrontal cortex, IPS, and medial tempo-
ral cortex (Rahnev et al. 2011a), that speed-accuracy tradeoff tasks
activate the supplementary motor area (Forstmann et al. 2008;
Spieser et al. 2017), that metacognitive tasks activate the ante-
rior prefrontal cortex, dorsolateral prefrontal cortex, and anterior
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Fig. 4. Brain activations for each of the 3 task variants. (a) Brain regions with greater activation for Block 1 compared with Block 2 across all 6 tasks
displayed separately for each of the 3 task variants. For display purposes, the figures are thresholded at P < 0.001 uncorrected, cluster size ≥150. Brain
activations are clearly strongest for the first task variant and weakest for the third. Black borders indicate the 5 regions from Fig. 3, and darker shade
(red) indicates higher t-values. (b) Beta values difference between Blocks 1 and 2 for each of the 5 ROIs from Fig. 3. Each ROI shows a decreasing trend
such that the activation difference between Blocks 1 and 2 is greatest in the first task variant and smallest in the third, but the comparison is only
significant in the 4 frontoparietal regions. Error bars indicate SEM. IFG, inferior frontal gyrus; IPS, intraparietal sulcus.

cingulate (Rahnev et al. 2016; Shekhar and Rahnev 2018; Yeon
et al. 2020), and that motor control tasks activate motor and
premotor cortices (Laut Ebbesen and Brecht 2017; Svoboda and Li
2018). A domain-specific account of task learning would predict
that the same areas involved in the execution of each task would
also be activated when learning the corresponding task.

However, we found that the learning-related activations for
the individual tasks were remarkably similar. First, a standard
analysis where each task activation was thresholded at P < 0.001
uncorrected found that activations for each task overlapped sub-
stantially with the across-task results (i.e. the 5 ROIs defined
above), with the only exception of a prominent visual cortex
activation for the perception task (Supplementary Fig. 8). We
further investigated whether we could find any domain-specific

effects by looking into the activation of each variant of each
task separately. Similar to the group analysis of each variant
(Fig. 4), most tasks showed the strongest activation in the first
variant, except for the metacognition and motor tasks, but no
domain-specific activations emerged for any of the variants in
any of the tasks except for the same visual cortex activation
for the perception task (Supplementary Fig. 9). Meanwhile, we
could not find any distinctive domain-specific activation across
all tasks. However, these analyses led to large differences in the
extent of the observed activations, making it difficult to compare
the selectivity of the activations across tasks. Therefore, in a
separate analysis, we used different thresholds for the activa-
tions for each task so that every task activated about half of
the voxels in the 5 ROIs (Fig. 5a). Our procedure resulted in the
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Fig. 5. Similar brain correlates of task learning for each of the 6 tasks. (a) Brain regions with greater activity for Block 1 compared with Block 2 for each
task. For each task, we used a different P-value threshold so that about half of the voxels within the 5 ROIs from Fig. 3 were activated. Despite notable
variability in the strength of the effects across tasks, a qualitatively similar activity pattern appears across all 6 tasks. No domain-specific activations
were found for any of the tasks, with the exception of a prominent visual cortex activation cluster in the perception task. Black borders indicate the 5
regions from Fig. 3, darker shade (red) indicates higher t-values. (b) Percent activated voxels within (orange, or the lighter shade) and outside (blue, or
the darker shade) the 5 ROIs in (a). The motor and metacognition tasks had the most selective activations such that they produced the smallest percent
of activated voxels outside of the 5 ROIs (1.52 and 1.56%, respectively). Inset shows the percent of activated voxels outside the 5 ROIs for each task with
different scale. Labels on x-axis indicate task names (perceptual: P, expectation: E, SAT: S, metacognition: MC, attention: A, and motor: M). Error bars
represent standard error.
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Fig. 6. Domain generality of the activations in the frontal, parietal, and cerebellar regions. To assess the domain generality of the 5 ROIs (left and
right IFG, left and right IPS, and left cerebellum), we defined each ROI based on the activations in 5 tasks and examined the activations in the left-out
task. Except for the left cerebellum ROI in the expectation task, all ROIs showed a significantly larger activation for Block 1 compared with Block 2 (all
P’s < 0.05). These results establish the domain generality of each of the 5 ROIs by demonstrating that each ROI reflects the learning on all 6 tasks (or 5
tasks in the case of left cerebellum). Error bars indicate SEM.

selection of uncorrected p thresholds of 0.0025, 0.00015, 0.03, 0.06,
0.002, and 0.0008 for the perception, attention, expectation, SAT,
metacognition, and motor tasks, respectively, with the percent of
activated voxels within the 5 ROIs between 48.6 and 51.9% for all
6 tasks. Critically, the percent of activated voxels outside the 5
ROIs was substantially lower (mean = 3.65%, range = 1.52–6.49%;
Fig. 5b). Comparing across tasks, we found that the motor task
produced the most selective activations such that the percent of
activated voxels outside of the 5 ROIs was smallest (P < 2.38 × 10−5

for all pairwise comparisons between motor and other tasks
except for the comparison with the metacognition task where
P = 0.91). Given that the motor task has the most unique structure
(e.g. all of the other tasks used similar stimuli), these results
demonstrate that the finding of domain-general task learning-
related activations is not simply due to superficial similarities
between the tasks.

These results qualitatively support the existence of a domain-
general mechanism for task learning, but do not establish that all
5 ROIs are involved in each of the 6 tasks. To explore this issue, we
performed a more direct test of whether each of the 5 areas above
(bilateral IFG, bilateral IPS, and left cerebellum) were activated for
all or just for a subset of the tasks investigated here. For each
task, we defined the 5 regions as ROIs based exclusively on the
data from the remaining 5 tasks. For example, the ROIs used for
the perceptual task were defined solely based on the attention,
expectation, SAT, metacognition, and motor tasks. This procedure

avoided “double-dipping” where the same data are used both to
define and test an ROI (Kriegeskorte et al. 2009). We then tested
whether activity in these ROIs was stronger for Block 1 than Block
2 in the left-out task. We found that this was the case for 29
of the 30 tests (all P’s < 0.05), with the only exception being the
left cerebellum ROI in the expectation task (Fig. 6). These results
confirm that the activity found within the frontal, parietal, and
cerebellar ROIs associated with task learning are indeed domain-
general and not driven by only a subset of tasks.

Learning increases functional connectivity
between frontoparietal regions
The results above establish that task learning is subserved by
domain-general activations in bilateral IFG, bilateral IPS, and
left cerebellum. Yet, it is unclear whether these 5 regions form
a single network, and whether learning changes the way they
communicate with each other. Here we examined these questions
by investigating the functional connectivity between all 5 regions
separately for Blocks 1 and 2. We found strong functional con-
nectivity within the bilateral frontoparietal regions (all r-values
between 0.453 and 0.777; Fig. 7a, b) but much weaker functional
connectivity between the left cerebellar region and the frontopari-
etal areas (all r-values between 0.107 and 0.234). In fact, each
of the 6 within-frontoparietal network r-values was significantly
higher than each of the 4 cerebellum-to-frontoparietal r-values
for both Blocks 1 and 2 (P < 0.00001 for all 48 tests). Thus, it
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Fig. 7. Functional connectivity for Blocks 1 and 2 between the 5 ROIs. (a) Average region-to-region functional connectivity for Block 1. (b) Average
region-to-region functional connectivity for Block 2. (c) Change in functional connectivity strength between the 2 blocks. Warm colors (or the darker
shades) indicate increased connectivity in Block 2 compared with Block 1. Both the thickness of the edges and the numerical values represent the change
in connectivity from Block 1 to Block 2. ∗∗P < 0.01.

appears that the 4 bilateral frontoparietal regions form a single
network that the left cerebellar region is not a part of.

Critically, we examined the changes of functional connectivity
between Blocks 1 and 2. We found that functional connectivity
between the 4 frontoparietal regions was significantly higher
in Block 2 (average r = 0.618) than Block 1 (average r = 0.582;
t(44) = 3.92, P = 3.01 × 10−3). Furthermore, this difference appeared
for all 6 pairs of regions and was significant for 4 of them
(Fig. 7c). The only nonsignificant increases between individual
regions were right IFG to right IPS (difference in r values = 0.036,
t(44) = 1.98, P = 0.054) and right IFG to left IFG (difference in
r values = 0.037, t(44) = 1.70, P = 0.096). Conversely, the connectivity
between left cerebellum to the frontoparietal regions showed
no change from Block 1 to Block 2 (average difference in
r values = 0.002, t(44) = 0.117, P = 0.907). Thus, task learning
specifically increased the connectivity within the 4 frontoparietal
regions, but not between the frontoparietal regions and the
cerebellum.

Discussion
We investigated the extent to which task learning is subserved
by domain-general vs. domain-specific neural mechanisms. We
found strong evidence for the domain-general account: the same
5 frontal, parietal, and cerebellar regions subserved the learning
of 6 tasks that on their own engage different cognitive processes
and have different brain substrates. At the same time, virtually no
domain-specific regions were found to be involved. Furthermore,
task learning increased the functional connectivity between the
frontal and parietal areas, suggesting altered communication
between these areas. These results demonstrate that unlike the
learning of specific stimuli, movements, or rewards, the learning
of an entirely new task is domain-general and thus may underlie
the human ability for acquiring new abilities.

Most previous research on how humans learn has focused on
specific sensory stimuli (Rainer et al. 2004; Yang and Maunsell
2004; Antzoulatos and Miller 2011), motor movements (Grafton
et al. 2002; Houweling et al. 2008; Bassett et al. 2015; Musall
et al. 2019), and rewards (Shuler and Bear 2006; Serences
2008; Summerfield and Koechlin 2010; Baeuchl et al. 2020).
These studies found that each area of learning is subserved by

domain-specific brain areas, making it seem like all learning—
including for entirely new tasks—depends on domain-specific
regions.

A growing literature has examined the neural correlates of task
learning (for reviews, see Cole et al. 2013, 2017 and Meiran et al.
2017). Thus far, this literature has focused on studying different
task instances that rely on the same underlying processes. In
some studies, each new task involves a different type of stimulus–
response mapping (Cohen-Kdoshay and Meiran 2009; Ruge and
Wolfensteller 2010; Dumontheil et al. 2011; Hartstra et al. 2011;
Meiran et al. 2015a, 2015b; Muhle-Karbe et al. 2017). In other
studies, subjects first learn several elementary rules and then
perform a variety of tasks where the elementary rules are com-
bined in novel ways (Cocuzza et al. 2020; Cole et al. 2010; Cole
et al. 2013b; Stocco et al. 2012). For example, in the classic study
by Cole et al. (2010), the tasks that subjects completed differed
in the specific instructions but engaged the same underlying
cognitive functions (e.g. 2 different tasks may be “If the answer
to ‘Is it LOUD?’ is true for the SECOND of two words, press your
RIGHT MIDDLE finger” vs. “If the answer to ‘Is it GREEN?’ is the
SAME for both words, press your LEFT INDEX finger”). This line of
research has identified different frontoparietal areas as critical for
implementing a new task instruction. However, the fact that these
tasks activate the same brain areas cannot be used to adjudicate
whether task learning is domain-general vs. domain-specific. In
fact, the differences between the various tasks in prior research
are similar to the differences between the 3 variants within each
task in the current study.

The current study investigated learning for tasks that are
known to rely on different underlying processes. Our 6 tasks
required the involvement of perceptual, motor, or various
cognitive (attention, expectation, SAT, and metacognition)
processes that each depend on different brain areas (Corbetta and
Shulman 2002; Forstmann et al. 2008; Grill-Spector and Malach
2004; Heeger 1999; Laut Ebbesen and Brecht 2017; Rahnev et al.
2012, 2016; Rahnev et al. 2011a; Shekhar and Rahnev 2018; Spieser
et al. 2017; Svoboda and Li 2018; Yeon et al. 2020). Yet, we found
that learning on each of these tasks depends on the same set
of regions. It may be argued that our results were driven by
the fact that the perceptual and the 4 cognitive tasks were not
that different from each other because they all used the same
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stimulus. This view would predict that the neural correlates of
task learning for those 5 tasks should be relatively similar but
the neural correlates of learning the motor task should differ
substantially from the rest. However, this is not what we found.
In fact, as demonstrated in Fig. 5, out of the 6 tasks, the neural
correlates of motor task learning were the most similar to the
average across all tasks. Therefore, our results are not driven by
the similarity in stimulus or task structure in the first 5 tasks.
Thus, by providing strong evidence for domain-general substrates
among these 6 tasks, our results suggest that learning novel
task structures is subserved by a domain-general frontoparietal
network consisting of bilateral IFG and bilateral IPS. Future
research should expand the current set of tasks to additional
domains such as language, theory of mind, working memory,
etc. Based on the current results, we would predict that such
tasks, when learned inside the scanner, would produce greater
activations in the same 5 ROIs during the initial stages of learning.

One open question is what exactly happens in the brain when
people learn a new task. We speculate that there are 2 main
components of task learning. The first component is the explicit
encoding of the task instructions. In the current study, this process
likely occurred during the instruction period and the current
study was not designed to investigate it. The second component is
the fine-tuning of the neural pathways as to be able to perform a
new task in the most efficient way possible. What is learned over
time by the brain is how to optimize the transformation of the
specific input into appropriate output based on the task rules. It
is likely that this transformation starts off slow and inefficient,
but over the course of several trials, the brain optimizes the rel-
evant pathways for efficiency, accuracy, and speed. For example,
a previous study showed several neural effects of practice in a
working memory task, with some changes not being captured by
behavioral metrics like accuracy or RT (Landau et al. 2004). Our
findings suggest that while what is actually learned is specific to
the task, a domain-general network becomes active to make such
task learning possible.

The frontoparietal areas identified here have partial overlap
with several intrinsic brain networks that have been identified
with resting fMRI data (Menon and D’Esposito 2021), including the
frontoparietal, ventral attention, and dorsal attention networks
(Power and Petersen 2013; Vossel et al. 2014; Chand et al. 2017;
Ptak et al. 2017). These networks are generally important for goal-
oriented, cognitively demanding tasks, as well as for both main-
taining and manipulating information (Naghavi and Nyberg 2005;
Asplund et al. 2010; Dixon et al. 2018; Causse et al. 2022). Similarly,
the areas identified here also have some overlap with the nodes
of a network labeled “the multiple demand network” associated
with the execution of diverse cognitive operations, which include
IPS, inferior frontal sulcus (IFS), pre-SMA, anterior cingulate cortex
(ACC), anterior insula, and rostral prefrontal cortex (PFC) (Duncan
2010). Note that the activations here did not include many of the
nodes of the multiple demand network (e.g. pre-SMA, ACC, insula,
and rostral PFC), that our frontal site (IFG) was posterior and
superior to the IFS cluster in Duncan (2010), and that we found a
cerebellar activation not present in the multiple demand network
in Duncan (2010). Thus, despite the partial overlap with previously
identified networks, the task-learning regions we uncovered do
not map onto a single known network. Future work should deter-
mine if the task-learning network reflects a reconfiguration of
known intrinsic networks or constitutes a unique task network.

The current study has several limitations. While our results
constitute a critical step in establishing the domain generality of
task learning, they reveal little about the functions of the specific

brain areas identified here (bilateral IFG, bilateral IPS, and left
cerebellum). For example, we found that the left cerebellum has
weak connectivity to the remaining 4 frontoparietal areas, and is
thus likely to have a different function than the remaining regions.
It is possible that the cerebellum is involved in learning how to
transform internal variables into motor commands, but it is also
possible that it engages in other high-level cognitive functions
that are not specifically motor-related (Strick et al. 2009; Buckner
2013). Similarly, both the bilateral parietal and frontal areas iden-
tified here have been associated with a large array of high-level
functions from attention, to working memory, to cognitive control
(Corbetta and Shulman 2002; Power and Petersen 2013; Vossel
et al. 2014; Ptak et al. 2017), and therefore it is difficult at this
point to isolate the cognitive processes that these areas are likely
to subserve in the context of task learning. Follow-up studies
should therefore specifically focus on determining the precise
function that each area is performing. In addition, as already
mentioned, although our 6 tasks rely on different domain-specific
brain regions, they do not capture the wide variety of tasks that
exist in the literature. We chose our design to gain maximum
power for each task while keeping the testing session under 2 h.
However, future work is needed to test whether our results gener-
alize to the wide array of tasks used in cognitive neuroscience.
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