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Significance

 Humans can judge decision 
accuracy using confidence 
ratings, but the underlying 
computations remain debated. 
One of the most prominent 
theories of confidence, the 
Bayesian confidence hypothesis 
(BCH), posits that confidence 
reflects the probability of being 
correct. We tested BCH in three 
perceptual tasks that are 
assumed to induce Gaussian 
evidence distributions. 
Specifically, we examined 
whether humans correctly use 
knowledge of task structure 
when rating confidence. We 
found that, when informed about 
task difficulty, humans barely 
shift their confidence criteria. 
Extensive model comparisons 
revealed that the data were fit 
best by models which assume 
that confidence in perceptual 
tasks is given in sensory evidence 
space. Our findings thus 
challenge one of the most 
prominent theories of confidence 
in perceptual decision-making.
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The Bayesian confidence hypothesis (BCH), which postulates that confidence reflects 
the posterior probability that a decision is correct, is currently the most prominent 
theory of confidence. Although several recent studies have found evidence against it in 
the context of relatively complex tasks, BCH remains dominant for simpler tasks. The 
major alternative to BCH is the confidence in raw evidence space (CRES) hypothesis, 
according to which confidence is based directly on the raw sensory evidence without 
explicit probability computations. Here, we tested these competing hypotheses in the 
context of perceptual tasks that are assumed to induce Gaussian evidence distributions. 
We show that providing information about task difficulty gives rise to a basic behavioral 
signature that distinguishes BCH from CRES models even for simple 2-choice tasks. We 
examined this signature in three experiments and found that all experiments exhibited 
behavioral signatures in line with CRES computations but contrary to BCH ones. 
We further performed an extensive comparison of 16 models that implemented either 
BCH or CRES confidence computations and systematically differed in their auxiliary 
assumptions. These model comparisons provided overwhelming support for the CRES 
models over their BCH counterparts across all model variants and across all three exper-
iments. These observations challenge BCH and instead suggest that humans may make 
confidence judgments by placing criteria directly in the space of the sensory evidence.

visual metacognition | perceptual decision-making | confidence computation |  
signal detection theory

 Humans have the metacognitive ability to evaluate the quality of their own decisions using 
confidence ratings ( 1 ). However, the computations behind confidence continue to be a matter 
of debate ( 2   – 4 ). Perhaps the most prominent theory of how people rate confidence is the 
Bayesian Confidence Hypothesis (BCH), according to which confidence reflects the probability 
of being correct ( 5 ). More formally, BCH is defined as a model according to which people 
give confidence judgments that reflect the probability of being correct by accurately combining 
the correct statistical structure of the task and the present sensory evidence ( 4 ,  6         – 11 ). We note 
that this definition includes three underlying assumptions: 1) people are aware of the statistical 
structure of the task, 2) people estimate the probability of being correct, and 3) people perform 
this computation correctly. This formal definition is usually simplified to just “confidence 
reflects the probability of being correct,” which implicitly includes the assumptions of knowing 
the structure of the task and performing correct computations.

 The popularity of BCH is due to at least three factors. First, BCH is intuitive. Researchers 
typically implicitly or explicitly instruct subjects to use confidence ratings as indices of 
the probability that their decisions are correct, so it only makes sense to assume that 
subjects are reporting exactly what the experimenters are asking them to. Second, BCH 
is general. For every decision that humans make, it is possible, at least in principle, to 
estimate the probability that that decision is correct and report confidence accordingly. 
This fact means that BCH is applicable to virtually all tasks. Third, the hypothesis has 
been promoted by several high-profile opinion articles ( 5 ,  10 ,  11 ) that go as far as to define 
confidence in terms of BCH. Together, these considerations have propelled BCH into the 
status of, in the words of a recent article, the “leading theory of confidence” ( 6 ).

 Given the prominence of BCH, it is perhaps surprising that empirical support for the 
hypothesis is rather limited. Most prominently, Sanders et al. ( 12 ) formulated and found 
empirical support for several signatures of “statistical” confidence (defined equivalently 
to BCH). However, it should be noted that none of the signatures constitute sufficient 
conditions for BCH ( 8 ,  13 ) and some signatures have since been shown not to always 
hold in the empirical data ( 14 ,  15 ). Several other papers examined qualitative predictions 
of BCH and typically found support for these predictions only for some subjects ( 14 ) or 
conditions ( 16 ). Only a single paper found support for BCH, which came in the context 
of a simple 2-choice perceptual decision-making task ( 7 ). The authors fit three different 
models to two datasets and found that the BCH model provided the best fit in one of the D
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experiments and tied with another model in the second experi-
ment. Contrary to these results with a simple perceptual task, 
several papers have rejected BCH in the context of more complex 
manipulations or tasks ( 4 ,  6 ,  8 ).

 At this point, it is important to make a distinction between BCH 
and the broader Bayesian decision-making framework. The Bayesian 
framework is a conceptual and philosophical approach, according 
to which decision-making is conceptualized as probabilistic reason-
ing that normatively integrates prior knowledge with new evidence. 
As has been argued in the philosophy of science literature ( 17 ), the 
core of a scientific framework is often not directly falsifiable and 
instead should be judged based on its usefulness for generating novel 
insights. A similar argument has been explicitly made in the case of 
the neuroconnectionist framework ( 18 ). In this view, the Bayesian 
framework is a way of thinking that can be used to generate specific 
explanations and hypotheses, but the core of the framework is not 
subject to falsification. In contrast to the broader Bayesian frame-
work, BCH is a specific, testable, and falsifiable model that has been 
extensively investigated in numerous empirical studies ( 4 ,  6   – 8 ,  11 , 
 12 ,  16 ,  19 ). This is because, unlike the broader Bayesian framework, 
BCH assumes both accurate knowledge of the statistical structure 
of the task and correct computations. In fact, as noted above, BCH 
could be formulated outside of the Bayesian framework as a “statis-
tical confidence” model ( 12 ). As such, falsifying BCH would not 
falsify the broader Bayesian framework, and supporting BCH does 
not support the broader Bayesian framework (though either result 
may have implications about the usefulness of the framework in the 
context of confidence judgments). Critically, here we focus narrowly 
on BCH and examine the implications for the broader Bayesian 
framework in the Discussion .

 The brief review above demonstrates that, the status of BCH 
remains uncertain despite the prominence of this hypothesis. It is 
thus of no surprise that comparing BCH to alternatives was voted 
as one of the central medium-term goals in the field of visual 
metacognition ( 20 ). Critically, given that BCH computations 
become computationally expensive—and sometimes intractable—
for complex tasks and manipulations ( 21 ), BCH should first be 
tested in the context of the simplest possible 2-choice tasks.

 The main alternative to the idea that confidence reflects the prob-
ability of being correct is that confidence instead reflects the strength 
of the raw sensory evidence ( 22       – 26 ). We refer to this alternative as 
the confidence in raw evidence space (CRES) model. The idea 
behind CRES is that humans give confidence by placing criteria 
directly on the sensory output from perceptual areas of the brain. To 
illustrate the distinction between CRES and BCH, consider a left/
right motion direction discrimination and imagine that this task is 
performed by comparing the outputs of two sets of neurons selective 
to left and right motion direction. CRES postulates that the confi-
dence criteria are placed directly on the difference in activation 
between these two sets of neurons. In contrast, BCH postulates that 
the raw evidence (i.e., the difference in activation between the two 
sets of neurons) is used to first compute the likelihood of each choice 
and then the probability that a specific choice is correct. In practice, 
it is difficult to determine what “raw evidence” is and where to find 
that in the brain. Nevertheless, in the context of simple 2-choice 
perceptual tasks used here, we follow the long tradition of modeling 
sensory evidence as Gaussian distributions on an abstract internal 
evidence axis ( 27 ). Unlike CRES, which does not require that the 
decision-maker has knowledge of the statistical structure of the task, 
BCH necessitates that the decision-maker has an accurate representa-
tion of the distributions of activations in these two sets of neurons 
given each stimulus category and uses them correctly to compute 
likelihoods. Thus, CRES and BCH make vastly different assump-
tions about the computations performed by the decision-maker 

when making a confidence judgment. Nevertheless, while these two 
hypotheses propose very different computations, it has remained 
challenging to distinguish between them empirically.

 Importantly, a previously unappreciated fact about 2-choice 
tasks is that they can provide a decisive qualitative signature that 
can be used to test the validity of BCH. If confidence indeed 
reflects the probability of being correct and subjects know the task 
difficulty on each trial, then confidence criteria in conditions of 
varying difficulty should have constant log odds but vary in evi-
dence space ( Fig. 1 A  and B  ). Alternatively, if confidence is given 
by setting criteria directly in the sensory evidence space ( 22       – 26 ), 
then confidence criteria in conditions of varying difficulty should 
be fixed in evidence space but have different log-likelihood ratio 
(i.e., log odds). The reason for the dissociation between the crite-
rion patterns in evidence space vs. log-likelihood ratio space is 
that the same criterion location in evidence space maps onto dif-
ferent log odds depending on the distance between the distribu-
tions of internal evidence ( Fig. 1A  ). Because easier tasks are 
associated with larger separations of the internal evidence distri-
butions, simple manipulations of difficulty allow us to examine 
this straightforward qualitative signature of criterion location to 
distinguish between the BCH and CRES hypotheses.        

 Here, we examine the qualitative signature of criterion loca-
tion in three experiments. Experiment 1 is a previously published 
dataset with simple 2-choice tasks that feature several uncued, 
interleaved difficulty levels ( 26 ). Experiment 2 is a new experi-
ment where different difficulty levels are explicitly cued but 
remain interleaved across trials. Finally, Experiment 3 is also a 
new experiment where stimulus difficulty remained constant 
throughout each run of 120 trials, providing subjects with an 
extended period to adjust their confidence criteria. All three 
experiments involved perceptual tasks where sensory evidence is 
assumed to follow Gaussian distributions. We find that the cri-
teria in log-likelihood ratio space (LO ) change substantially 
across conditions for all three experiments, whereas the criteria 
in evidence space (c ) stay comparatively more constant, thus 
contradicting the prediction of the BCH model. In addition to 
these qualitative results, we fit both BCH and CRES models 
with varying auxiliary model assumptions, resulting in 16 dif-
ferent model fits for each experiment. In line with the qualitative 
pattern, we find decisive support for the CRES over the BCH 
models. These results challenge BCH even in the context of the 
simplest 2-choice tasks where the BCH computations are most 
straightforward. Our results suggest that despite its many advan-
tages, BCH does not describe human confidence ratings, which 
appear to be the product of setting confidence criteria directly 
in the space of raw sensory evidence. 

Results

 We compared CRES and BCH computations by examining qual-
itative patterns in the data and fitting 16 models with varying 
auxiliary assumptions to three experiments. 

Experiment 1. We reanalyzed the data from Shekhar and Rahnev 
(26). Twenty subjects completed 2,800 trials each from a simple 
left/right orientation discrimination task and provided confidence 
ratings (Fig.  2A). The experiment included stimuli from three 
different contrast levels (easy, medium, and hard). The confidence 
ratings were originally given on a continuous scale but were rescaled 
to a 6-point confidence scale before analyses as in the original 
publication. This process resulted in five confidence criteria for a 
“left” choice and five confidence criteria for a “right” choice. Note 
that this experiment did not explicitly inform subjects about the D
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difficulty of each trial, but subjects could still guess the difficulty 
as they could observe the changing contrast of the stimulus (24).

 We first tested the qualitative predictions made by the BCH 
and CRES hypotheses. Namely, BCH predicts that confidence 
criteria should have stable log-likelihood ratio values but vary in 
evidence space, whereas CRES predicts that confidence criteria 
should be stable in evidence space but vary in log-likelihood ratio 
space ( Fig. 1B  ). We quantified the confidence criterion location 
in evidence and log-likelihood ratio space as the signal detection 
measure c  and log odds (LO ), respectively. We then computed the 
absolute values of the change in each quantity from the hard to 

the easy condition using the formulas  cchange =
|
|
|
|

chard−ceasy

chard+ceasy

|
|
|
|

    and 

﻿LOchange =
|
|
|
|

LOhard−LOeasy

LOhard+LOeasy

|
|
|
|

 . We found that while the criteria in evi-

dence space (measured by c ) had an average change score of 0.09 
across all 10 confidence criteria ( cL5, … , cL1, cR1, … , cR5 ), the 
criteria in log-likelihood ratio space (measured by LO ) had an 
average change score of 0.44. Critically, the change in LO  was 
significantly larger than the change in c  for all 10 criteria (all P ’s 
< 7.9 × 10−5 ). These results match better the signature of the CRES 
computation (which predicts that c  should stay constant across 
conditions, whereas LO  should change;  Fig. 1B  ) but diverge 
strongly from the signature of BCH computation (which predicts 
that LO  should stay constant across conditions, whereas c  should 
change;  Fig. 1B  ).

 The qualitative patterns of results in  Fig. 2  strongly suggest that 
confidence in Experiment 1 follows CRES rather than BCH com-
putations. However, our results showed that confidence criteria 
defined in internal evidence space (i.e., measure c ) move slightly 

toward zero from the hard to the easy condition, which may be 
interpreted as reflecting a partial BCH computation. Nevertheless, 
another possibility is that this pattern emerges from CRES com-
putations in the presence of other factors such as lapses or 
metacognitive noise. Therefore, to formally compare the two types 
of computation, we formulated and fit several CRES and BCH 
models to the empirical data.

 To ensure our conclusions do not depend on auxiliary assump-
tions made in the fitting process, we formulated eight CRES and 
eight BCH models by systematically varying three sets of assump-
tions related to 1) the symmetry in confidence criteria, 2) the 
presence of lapse rate, and 3) the presence of metacognitive noise. 
First, half of the models included the assumption of symmetric 
confidence criteria, whereas the other half were more flexible and 
fit the confidence criteria for “left” and “right” choices separately. 
Second, half of the models included lapses (where a proportion 
of trial subjects give a random choice and a random confidence 
rating), whereas the other half did not. Third, half of the models 
included Gaussian metacognitive noise, whereas the other half did 
not. We fit each model to the empirical data using maximum 
likelihood estimation and compared the model fits based on their 
Akaike Information Criterion (AIC) values. Note that correspond-
ing CRES and BCH models always have the same number of free 
parameters, and therefore the exact measure used for model com-
parison would not affect the comparison between the correspond-
ing models of each type (e.g., using the Bayesian Information 
Criterion would lead to the same relative fits between correspond-
ing CRES and BCH models).

 We found that every one of the eight CRES models fit signifi-
cantly better than their corresponding BCH models ( Fig. 3A  ). 
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Fig. 1.   A graphical depiction of the predictions of CRES and BCH computations. (A) Confidence criterion placement for CRES and BCH computations in a 2-choice 
task that involves discriminating between left and right stimuli (SL and SR). Each of the two stimulus categories produces a Gaussian distribution of internal 
evidence (plotted in gray) with easier conditions characterized by greater separation between the Gaussian distributions. The CRES hypothesis predicts that the 
confidence criterion, c, defined in internal evidence space stays constant across conditions (e.g., c = 1 in the figure), which leads to large differences in log odds, 
LO, defined in log-likelihood ratio space (odds = 1.6, 2.7, and 7.4 in the figure). On the other hand, BCH predicts that LO should stay constant (e.g., odds = 2.7 
in the figure), which leads to large differences in c (e.g., c = 2, 1, and 0.5 in the figure). Note that the prediction for BCH holds only if subjects know the difficulty 
level on each trial. The orange and blue vertical lines indicate the confidence criteria for left and right decisions, respectively. (B) The change of the location of 
criterion in internal evidence space (measured by c) and in log-likelihood ratio space (measured by LO) across contrasts for the CRES and BCH models from the 
example in (A). Note that these model predictions would slightly change in the presence of metacognitive noise or lapse rate. Note that the odds (1.6, 2.7, and 
7.4) from the example in (A) are converted to log odds (0.5, 1, and 2) here.
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Indeed, the CRES models had summed AIC scores that were lower 
(indicating better fit) than their corresponding BCH models by an 
average of 2,122 points (range: 1,747 to 2,524). Further, even the 
worst CRES model slightly outperformed the best BCH model 
(summed AIC difference = 1,071), demonstrating the robust advan-
tage of the CRES models over their BCH counterparts. Finally, we 
compared the best CRES and the best BCH models (both models 
had the same auxiliary assumptions of confidence criteria not being 
symmetric, and included both lapses and metacognitive noise). We 
found that the best CRES model outperformed the best BCH model 
for all 20 subjects ( Fig. 3B  ), demonstrating that the advantage of the 
CRES models is robust across individual subjects too.        

 To obtain better intuition about the best fitting CRES and BCH 
models, we assessed how well each model could capture the observed 
criterion signature from the empirical data ( Fig. 2 B  and C  ). We 
found that the best CRES model correctly reproduced the pattern 
of criterion values across the three difficulty conditions ( Fig. 3C  ), as 
﻿c  stayed relatively constant (average change score of 0.06; empirical 
value = 0.09) whereas LO  changed substantially (average change score 
of 0.45; empirical value = 0.44). The change in c  across conditions 
in the model is driven by the inclusion of metacognitive noise and 
lapse rate (note that the lack of this effect in the predictions shown 
in  Fig. 1B   comes from not including either of these assumptions). 
Indeed, both of these parameters introduce randomness in the 
responses and thus bring the measured criteria closer to zero, with 
the effect being larger for easier conditions.

 Contrary to the good qualitative reproduction of the criterion 
data by the best CRES model, the best BCH model performed 
more poorly ( Fig. 3C  ). According to that model’s fits, confidence 
criteria in evidence space, c , moved further toward zero from the 
difficult to the easy conditions compared to the empirical data 
(average change score of 0.17 compared to 0.09 in the empirical 
data), whereas the confidence criteria in log-likelihood ratio space, 
﻿LO , moved less than in the empirical data (average change score 
of 0.03 compared to 0.44 in the empirical data).

 Beyond the central comparison between CRES and BCH mod-
els, the model fits also allowed us to determine the validity of the 

three auxiliary assumptions. We found strong evidence against the 
assumption of symmetric confidence criteria, with each model 
assuming symmetric confidence criteria performing worse than its 
corresponding model that did not make that assumption (average 
summed AIC difference = 792). In addition, we found that all 
models assuming both metacognitive noise and lapse rate performed 
better than their corresponding models that did not include these 
parameters (average summed AIC advantage for models with 
metacognitive noise = 165; average summed AIC advantage for 
models with lapse rate = 198).  

Experiment 2. Experiment 1 provided strong evidence for the 
notion that confidence is based on CRES rather than BCH 
computations. However, one issue in that experiment is that 
subjects were not informed about the difficulty level on each 
trial. Because BCH computations assumed here require that 
subjects are aware of the expected sensitivity for each condition, 
not explicitly providing this information may have prevented 
people from performing BCH computations. Therefore, we 
conducted a new, preregistered experiment (Experiment 2) 
where we informed subjects about the difficulty level on each 
trial. We also provided subjects with practice that included trial-
by-trial feedback to enable them to build an internal model of 
their performance for each difficulty level (Fig. 4A). Beyond 
these features, Experiment 2 had the same design as Experiment 
1 and included a total of 20 subjects each completing 750 trials.

 We repeated all the analyses we performed on Experiment 1, and 
again found robust evidence that subjects performed CRES rather 
than BCH computations. The empirical data exhibited the signature 
of CRES computation where confidence criteria in evidence space, 
﻿c , shifted less than the confidence criteria in log-likelihood ratio 
space, LO  (average change score for c : 0.17; average change score for 
﻿LO : 0.46;  Fig. 4 B  , Left ). The change score for LO  was larger than 
for c  for all 10 criteria (all P ’s < 0.04). Examining the best fitting 
CRES and BCH models ( Fig. 4 B  , Middle  and Right ) showed that 
they both reproduced the c  values relatively well (change scores: 
CRES model = 0.06, BCH model = 0.14), but only the CRES model 

A

B C

Fig. 2.   Experiment design and 
behavioral results for Experiment 
1. (A) Task. Each trial included the 
presentation of a noisy Gabor 
patch tilted 45° either to the left 
or right of the vertical. Subjects in-
dicated the tilt of the Gabor patch 
while simultaneously rating their 
confidence on a continuous scale 
from 50 to 100 (transformed into 
a six-point scale for analysis). The 
Gabor patches had three differ-
ent contrast levels resulting in 
easy, medium, and difficult condi-
tions. (B and C) Empirical criterion 
values in internal evidence space 
(c) and log-likelihood ratio space 
(LO). Each colored line represents 
a confidence criterion, and the 
central black line represents the 
decision criterion. The variables 
c
Lk

 and c
Rk

 (as well as LO
Lk

 and 
LO

Rk
 ) represent the confidence 

criteria for response SL and SR 
separating confidence ratings k 
and k + 1. Horizontal error bars 
depict SEM.
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reproduced the LO  values well (change scores: CRES model = 0.43, 
BCH model = 0.12).

 Critically, we found that all eight CRES models had a lower 
summed AIC value compared to the corresponding BCH models 
(average summed AIC difference = 591.18, range: 244.95 to 
906.46;  Fig. 4C  ). We also replicated the previous findings regard-
ing the auxiliary assumptions. Namely, our results supported 
models that confidence criteria are not symmetric (average 
summed AIC difference = 165.16), and that included both 
metacognitive noise (average summed AIC difference = 30.95) 
and lapse rate (average summed AIC difference = 143.59,  Fig. 4C  ).  

Experiment 3. Experiments 1 and 2 provided strong evidence for 
the notion that confidence is based on CRES rather than BCH 
computations. However, the difficulty levels were interleaved 
in both experiments. This design choice may have made it 

difficult for subjects to correctly compute the probability of 
being correct because this computation must be updated on 
trial-by-trial basis depending on the expected sensitivity. Thus, 
we conducted another preregistered experiment (Experiment 3) 
where the difficulty level was fixed within each run of 120 trials. 
In addition, we provided subjects with trial-by-trial feedback 
and trained them with long blocks of trials with fixed difficulty. 
These design features were chosen to make it as easy as possible 
for subjects to implement the computations required by BCH. 
Experiment 3 was otherwise identical to Experiments 1 and 2 
and included a total of 20 subjects each completing 720 trials 
(Fig. 5A).

 We repeated all the analyses from Experiments 1 and 2 and 
found consistent evidence favoring CRES rather than BCH 
computations. As in the previous experiments, the confidence 
criteria in evidence space, c , changed less than the confidence 

A

C

B

Fig. 3.   Model fitting results for Experiment 1. (A) The CRES models significantly outperformed the corresponding BCH models regardless of auxiliary assumptions. 
The figure shows the summed differences in AIC values between each model and the best fitting model. The type of computation (CRES vs. BCH) is indicated by 
the color of the dots. The auxiliary assumptions are indicated at the Top. The order of the models is determined by the rank (from the best to the worst-fitting) 
of CRES models, and then each of the CRES models is paired up with BCH model that has the same sets of auxiliary assumptions. (B) The AIC difference between 
the best CRES and the best BCH model for individual subjects. A positive value indicates that the CRES model is preferred. The CRES model outperformed BCH 
model for all 20 subjects. The brown diamond shows the mean value of the AIC differences across subjects. (C) Fits of the best CRES and BCH models. Colored 
lines show model fits, whereas circles depict the empirical c and LO values from Fig. 2 B and C.
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criteria in log-likelihood ratio space, LO , (average change score 
for c : 0.19; average change score for LO : 0.51;  Fig. 5 B  , Left ). 
The change score for LO  was larger than for c  for all 10 criteria 
(all P ’s < 0.02). Examining the best fitting CRES and BCH 
models ( Fig. 5 B  , Middle  and Right ) showed that they both 
reproduced the c  values relatively well (change scores: CRES 
model = 0.10, BCH model = 0.18), but only the CRES model 
reproduced the LO  values well (change scores: CRES model = 
0.60, BCH model = 0.06).

 Critically, we found that all eight CRES models had a lower 
summed AIC value compared to the corresponding BCH models 
(average summed AIC difference = 361.32, range: 68.43 to 
651.02;  Fig. 5C  ). We also replicated the previous findings regard-
ing the auxiliary assumptions. Namely, our results supported 
models that confidence criteria are not symmetric (average 
summed AIC difference = 229.56), and that included both 
metacognitive noise (average summed AIC difference = 10.65) 
and lapse rate (average summed AIC difference = 40.19,  Fig. 5C  ).

 Finally, as preregistered, we examined whether the results change 
based on the length of exposure to a given difficulty level. Specifically, 

we repeated these analyses on the first vs. second of the data within 
each run. We found that on average CRES models outperformed 
their BCH counterparts for both the first and second half of each 
run (average summed AIC differences: first half of each run: 178.97, 
second half of each run: 90.46; SI Appendix, Fig. S1 ). However, the 
summed AIC difference decreased from the first half to the second 
half of each run for all eight pairs of models, indicating that the 
computations used by our subjects did shift toward BCH compu-
tation over the course of a run of 120 trials with a difficulty level.

 To further investigate potential training effects, we performed an 
exploratory analysis where we separately examined the data from the 
first and second half of the entire experiment (i.e., the first three and 
the last three runs). We then analyzed the qualitative patterns of the 
measures c  and log odds (LO ) for each half. Compared to the first 
half, the change score of measure c  increased while the change score 
of LO  decreased in the second half of the experiment (First half: 
change score of c  = 0.24, LO  = 0.77; Second half: change score of c  
= 0.47, LO  = 0.52; SI Appendix, Fig. S2 ). This trend suggests a shift 
toward a more BCH-like computation over the course of the exper-
iment. However, even in the latter half of the experiment, the 

A

B

C

Fig. 4.   Design and results for Experiment 2. (A) Experimental design. We used the same design as in Experiment 1 with one critical change: each trial began 
with a cue that indicated the difficulty level on that trial (easy, medium, or difficult). (B) Empirical and fitted criterion values in internal evidence space (c) and 
log-likelihood ratio space (LO). Colored lines represent confidence criteria, and the central black line represents the decision criterion. (C) Summed AIC difference 
scores between each model and the best fitting model. The CRES models provided better fits compared to the corresponding BCH models across all sets of 
auxiliary assumptions.
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qualitative patterns of measures c  and LO  still exhibited characteris-
tics indicative of CRES computation.  

Similar Results When Response Time Is Used as a Proxy for 
Confidence. Our analyses focus on self-reported confidence. 
However, in a control analysis, we considered reaction time (RT) as a 
proxy for confidence and examined whether it showed the signatures 
of BCH or CRES computations. Specifically, we converted raw RT 
values into a measure we call “RT-derived confidence” by coding 
the faster 25% of RTs as RT-derived confidence of 4, the next 
25% of RTs as RT-derived confidence of 3, the next 25% of RTs 

as RT-derived confidence of 2, and the slowest 25% of RTs as RT-
derived confidence of 1. Then, we repeated the analysis we conducted 
on confidence ratings to determine whether these RT-derived 
confidence ratings followed the signature consistent with CRES or 
BCH models. We found that these RT-based analyses produced 
similar results to confidence (SI Appendix, Fig. S3), such that as the 
RT-derived confidence criteria remained stable in internal evidence 
space (average change score for c: 0.10, 0.13, 0.23 for Experiments 
1, 2, and 3) but shifted substantially in log-likelihood ratio space 
(average change score for LO: 0.55, 0.51, 0.63 for Experiments 1, 
2, and 3), with the change score for LO larger than for c for all 

A

B

C

Fig. 5.   Design and results for Experiment 3. (A) Experimental design. We used a similar design as in Experiments 1 and 2, but each difficulty level was fixed within 
each run of 120 trials and subjects were given trial-by-trial feedback. (B) Empirical and fitted criterion values in internal evidence space (c) and log-likelihood ratio 
space (LO). Colored lines represent confidence criteria, and the central black line represents the decision criterion. (C) Summed AIC difference scores between 
each model and the best fitting model. The CRES models provided better fits compared to the corresponding BCH models across all sets of auxiliary assumptions.
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10 criteria in all three experiments (all P’s < 0.03). Therefore, the 
CRES computations describe well not only the explicitly provided 
confidence ratings but also the implicit, RT-based proxy for one’s 
level of certainty.

Discussion

 The BCH is often considered the most prominent theory of con-
fidence. Here, we show that there is a behavioral signature that 
distinguishes BCH from CRES computations in simple 2-choice 
tasks, namely whether confidence criteria are relatively more stable 
in log-likelihood ratio vs. internal evidence space. Contrary to 
BCH, reanalyses of one published experiment, as well as two new 
experiments that informed subjects about the difficulty of each 
trial, showed that confidence criteria were much more stable in 
internal evidence than log-likelihood ratio space. Further, by var-
ying three sets of auxiliary assumptions, we compared eight BCH 
and corresponding eight CRES models, finding that the CRES 
models performed better in every pair of models in all three exper-
iments. These results strongly challenge BCH and suggest that 
human subjects may make confidence judgments by placing cri-
teria directly on the sensory evidence. 

The Status of BCH. Our results add to previous work that found 
evidence against BCH in relatively complex tasks (4, 6, 8). These 
studies used a combination of external and internal noise (8), a 
3-choice task (6), or varied both information quantity (presenting 
between 2 and 5 dots) and quality (manipulating the variability 
of the dots’ locations) (4). In each case, BCH was outperformed 
by alternative models. However, one potential issue with these 
studies is that their relatively complex designs can make BCH 
computations too computationally demanding. By providing 
evidence against BCH even in simple 2-choice tasks, the current 
study goes well beyond previous work in challenging the viability 
of BCH.

 Could our results be explained by BCH-adjacent models that 
differ minimally from BCH? As noted earlier, BCH involves three 
distinct assumptions: 1) people are aware of the statistical structure 
of the task, 2) people estimate the probability of being correct, 
and 3) people perform this computation correctly. However, for 
a theory to be Bayesian, only Assumption 2 is required. Thus, 
BCH is a specific model that makes stronger assumptions than 
Bayesian models in general. Below, we examine three possible 
BCH-adjacent models that drop each one of these assumptions.

 First, one can consider models that remove Assumption 1, 
which states that people are aware of the statistical structure of 
the task. Without any knowledge, it becomes impossible to com-
pute the probability of being correct. However, knowledge of the 
statistical structure of the task can exist but be partly inaccurate 
or incomplete. Exploring all possible beliefs regarding the structure 
of the task can lead to overly flexible and ultimately unfalsifiable 
models ( 28       – 32 ). That said, for the current experiments, it appears 
that the only way to change Assumption 1 to fit the behavioral 
data would be to consider the possibilities that subjects are not 
aware of the difficulty level on each trial or that they do not realize 
how different their performance is across difficulty levels. However, 
Experiments 2 and 3 make these possibilities extremely unlikely 
given that in these experiments, we explicitly cued the difficulty 
level and provided very long training periods with feedback.

 Second, one can consider models that remove Assumption 2, 
which states that subjects estimate the probability of being correct. 
People may instead give confidence directly on the sensory evi-
dence (as CRES does) or compute some other quantity altogether 
such as entropy ( 6 ). However, the assumption that people 

compute the probability of being correct is so central to BCH, 
that any model that drops it can no longer be meaningfully 
described even as Bayesian or “BCH-adjacent.”

 Finally, one can consider models that remove Assumption 3, 
which states that people perform the required computation cor-
rectly. Decision-makers may make errors in the computation, 
employ shortcuts, or have internal priors or payoffs that diverge 
from the experimenter-defined ones. Similar to relaxing Assumption 
1, this approach can also lead to overly flexible and ultimately 
unfalsifiable models ( 28       – 32 ). In the context of the current exper-
iments, to fit the data by changing Assumption 3, one could pos-
tulate that subjects are motivated to avoid giving overly high 
confidence ratings in the easy conditions and that this internal cost 
function is calibrated just so that criteria stay roughly stable in 
evidence space. Alternatively, one could postulate that subjects 
choose to ignore the information about difficulty despite this infor-
mation being prominently featured in the experiment. Nevertheless, 
both explanations appear unlikely.

 As the discussion above shows, our results could have several com-
peting explanations based on which BCH assumption is most likely 
to be violated. We speculate that the assumption most likely to be 
false is Assumption 2 regarding people estimating the probability of 
being correct. This is because the CRES model—which does not 
make Assumption 2—parsimoniously fits the data without needing 
any additional parameters or mechanisms. In fact, given our quali-
tative results, any BCH-adjacent model would need to behave sim-
ilarly to a CRES model to fit the data. Further, making BCH-adjacent 
models that relax Assumptions 1 or 3 requires postulating additional 
mechanisms that appear unlikely. Nevertheless, our results cannot 
definitively establish which BCH assumption is violated. What our 
results do show, however, is that BCH – defined as the combination 
of the three assumptions—is challenged.  

Implications for Bayesian Framework for Decision-Making. 
While our findings strongly challenge BCH, they should not be 
interpreted as challenging the broader decision-making Bayesian 
framework. The Bayesian framework is a framework; that is, it 
provides a core set of assumptions but is not falsifiable itself (17, 
18). Further, challenging BCH does not necessarily question the 
usefulness of the Bayesian framework, which is fundamentally 
about a careful consideration of how people can make the best 
possible decisions given the many constraints they face (33). From 
that perspective, CRES can be seen as a Bayesian model that 
incorporates heavy constraints on subjects’ ability or willingness 
to shift their confidence criteria (defined in sensory evidence space) 
even when explicitly informed about the difficulty of the stimulus. 
Nevertheless, even a pure CRES model where criteria remain fully 
fixed in evidence space still allows confidence ratings to serve as 
proxies for the subjective probability of being correct. Therefore, 
the current results can be interpreted from a Bayesian perspective 
without having the abandon the perspective itself.

CRES Models. Our results show that CRES models provide a good 
explanation to the data, suggesting that confidence may be given by 
setting criteria directly on the raw evidence. This conclusion opens 
the question about which decision axes can be considered as “raw 
evidence” and which cannot. At present, it is unclear where in the 
brain this evidence may be on what form it might take. That said, 
we believe that “raw evidence” should be reserved for the output 
of the sensory cortex in perceptual tasks (and, similarly, the output 
of memory-related areas in memory tasks). For example, in the 
context of modern deep neural networks, raw evidence would be 
the output of the network in its last layer. In contrast, transformations 
of this output that represent the likelihood or log odds should not D
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be considered raw evidence. Similarly, setting confidence criteria in 
stimulus space (19, 34, 35) is also not equivalent to setting them 
in raw evidence space, because the internal evidence space does not 
always correspond to the stimulus space (36, 37). Nevertheless, 
outside of standard 2-choice perceptual decision-making tasks where 
sensory evidence can be assumed to be Gaussian, more work needs 
to be done to precisely define in an a priori fashion what the raw 
evidence space is.

 Our results show that CRES models provide a better description 
of the data than BCH models. However, the fits were still some-
times imperfect, suggesting that the current models may not fully 
capture the confidence computations. Many other models have 
been examined in the literature. For example, Rausch et al. ( 38 ) 
and Shekhar and Rahnev ( 39 ) compared the fits of eight and 15 
different models, respectively, finding that different models per-
form differently on different datasets. The present CRES models 
were chosen to be as simple as possible and therefore do not reflect 
many proposals from the literature, such as that confidence com-
putations may reflect stimulus visibility ( 38 ,  40 ,  41 ), exhibit log-
normal rather than Gaussian noise ( 42 ,  43 ), and be influenced by 
a host of other factors ( 2 ,  42 ). Therefore, we believe that a full 
description of the computations underlying confidence would 
involve mechanisms beyond the ones assumed by the current 
CRES models.

 The CRES models examined here assume that the decision and 
confidence criteria are fixed in internal evidence space. It has some-
times been argued that when different conditions are interleaved, 
subjects are unable to use different criteria due to working memory 
constraints ( 25 ,  44 ,  45 ). However, other work has demonstrated 
that subjects are in fact able to use different criteria for different 
conditions, at least when measured in the space of external stim-
ulus features ( 8 ,  19 ,  34 ,  35 ,  46 ). In our three experiments, the 
criterion measured in internal evidence space, c , had a change 
score of 0.09, 0.17, and 0.19, respectively. While this change is 
relatively subtle, the fact that these values are consistently positive 
suggests that subjects can shift their criteria in the right direction 
when given the right conditions to do so (that said, the shift was 
always much smaller than what BCH predicts).

 Finally, it is also worth noting that some researchers have pro-
posed models where the decision evidence is first normalized by 
the estimated sensory noise ( 2 ,  4 ). However, here we modeled the 
difficulty manipulation as shifting the means of the internal dis-
tributions while keeping their SD fixed. In other words, in our 
modeling framework, the sensory noise was identical across all 
conditions, and thus models that do or do not assume normali-
zation based on sensory noise cannot be distinguished using the 
data from the current experiments.  

Implications for Asymmetric Confidence Criteria, Metacognitive 
Noise, and Lapse Rate. Fitting eight different versions of the BCH 
and CRES models allowed us to make conclusions about the 
confidence computations that go beyond the distinction between 
BCH and CRES models. First, we showed that confidence criteria 
tend to be asymmetric around the decision criterion. It is possible 
that this asymmetry stems from the fact that subjects reported their 
confidence on a continuous scale that was then converted into 
discrete categories for analysis. Nevertheless, we note that similar 
results were obtained in a previous study that analyzed confidence 
data given on a 4-point scale (2). The reason for this asymmetry 
is unclear and should be clarified by future research. Additionally, 
future research should explore how the use of different confidence 
scales might impact results in metacognitive studies. Previous 
research has reported inconsistent findings regarding the effect of 

scale granularity on confidence calibration, highlighting the need 
for continued examination in this area (47–49).

 Second, we also found evidence that the inclusion of both 
metacognitive noise and lapse rate improves fits. It should be noted 
that we followed the standard practice of assuming that lapses lead 
to a random choice and  a random confidence rating ( 2 ,  7 ,  8 ,  19 ). 
This assumption is potentially problematic because if a person 
experiences an attentional lapse during the stimulus presentation, 
they are likely to give a random choice followed by the lowest 
possible confidence (rather than a random confidence). In fact, 
modeling lapses as producing random confidence responses makes 
them mimic the inclusion of metacognitive noise. Due to the 
difficulty of a priori determining how subjects would give confi-
dence during potential lapses and the fact that such lapses may 
not be all that common in human subjects ( 50 ), we suggest that 
adding lapse parameters should not be treated as a default in 
models of confidence and that more work needs to be done to 
provide evidence for the plausibility of assuming that subjects 
provide random confidence ratings during attentional lapses. On 
the other hand, the existence of metacognitive noise is both the-
oretically motivated and empirically established ( 26 ,  51 ,  52 ), and 
therefore should be included as a common feature in models of 
confidence.  

RT and Confidence. Our implementations of BCH and CRES 
are static models that do not account for RT. In contrast, a 
substantial body of research has examined dynamic models that 
can jointly explain RT, choice, and confidence (53–60). These 
dynamic models can account for many important psychological 
phenomena, such as the speed-accuracy tradeoff, that static 
models cannot explain and also allow for decision-making 
strategies to potentially change adaptively over the course 
of a trial. However, dynamic models can make it difficult to 
formulate specific BCH or CRES model variants. This makes 
it challenging to compare between BCH and CRES when RT is 
taken into account in the modeling. Instead, we took a different 
approach and created RT-derived proxies for confidence and 
examined whether they showed the signatures of BCH or CRES 
computation. We found that RT-derived confidence is also 
better described by CRES computations, suggesting that the 
timing of decision-making is also more consistent with CRES 
than BCH computations.

Conclusion

 In conclusion, we show that confidence computations deviate 
substantially from the predictions of BCH even in simple 2-choice 
tasks. These results strongly challenge BCH and suggest that con-
fidence may involve placing criteria directly in the sensory evi-
dence space.  

Methods

Subjects. Experiment 1 was taken from Shekhar and Rahnev (26) and featured 
20 subjects each completing a total of 2,800 trials over three sessions held on 
separate days. Experiment 2 was a new experiment where 21 subjects completed 
750 trials each. One subject was excluded from Experiment 2 due to performance 
lower than 55%, which resulted in 20 subjects in total. The age range was 18 to 
24, with an average age of 20.0. In Experiment 3, 23 subjects completed 720 
trials each. Three subjects were excluded from Experiment 3 due to performance 
lower than 55%, which resulted in 20 subjects in total for Experiment 3. The age 
range was 18 to 21, with an average age of 19.3. All subjects had normal or cor-
rected to normal vision and signed informed consent. Experimental procedures 
were approved by the Georgia Institute of Technology Institutional Review Board.
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Experimental Design.
Experiment 1. The complete details of this experiment are available in the original 
publication (26). Briefly, each trial began with a fixation point at the center of the 
screen for a duration of 500 ms, followed by presentation of the stimulus for 100 
ms. The stimulus consisted of a Gabor patch with a diameter of 3°, oriented either 
to the left (counterclockwise) or right (clockwise) of the vertical by 45°. These grat-
ings were overlaid on a background containing random noise. Subsequent to the 
disappearance of the stimulus, a response screen became visible and was presented 
until the subjects provided a response. Subjects’ task was to indicate the tilt direction 
(left/right) of the stimulus, while simultaneously rating their confidence using a con-
tinuous confidence scale. This scale ranged from 50 to 100% accuracy for each type 
of response, and subjects were required to indicate their confidence level through 
a single click of the mouse. The experiment included three different contrast levels 
(4.5%, 6%, and 8%) that were presented in an interleaved manner. Each subject 
completed a total of 350 training trials and 2,800 trials of the main experiment.

To encourage accurate confidence ratings, we used a method developed by ref. 
61. For each trial, a random number l1 (ranging from one to 100), was generated 
by the computer. If the reported confidence level P exceeded l1, the participant 
gained a point for a correct response and lost a point for an incorrect one. In this 
way, the approach penalized overconfidence. Conversely, if P was less than or 
equal to l1, the computer selected another random number, l2, which ranged 
from one to 100 as well. One point was awarded if l2 was greater than l1 and 
subtracted otherwise, and thus deincentivized underreporting of confidence. 
Subjects were informed of the scoring rules and were presented with simulations 
of different strategies. They were also scored during their practice round to ensure 
that they were familiar with the scoring system. Furthermore, at the end of each 
main experiment block, participants were informed of their scores. After finishing 
three sessions, subjects were given a bonus based on their cumulative scores.
Experiment 2. We preregistered Experiment 2 (https://osf.io/df5ch) before the data 
collection and followed all the preregistered analyses. Experiment 2 followed the 
procedure of Experiment 1, except that it also included a cue that indicated the 
difficulty of the upcoming trial. Including a cue about the difficulty of the upcoming 
trial made subjects aware of the expected sensitivity and gave them the information 
needed to perform BCH computations outlined here. Subjects again gained points 
for reporting confidence based on the expected probability of being correct, but 
this time did not receive a monetary bonus. During the training blocks, subjects 
received both trial-by-trial and end-of-block feedback regarding their accuracy for 
each level of difficulty to ensure they are aware of their performance under different 
conditions. The cue was presented before the onset of the stimulus presentation 
for 500 ms. Before the beginning of the experiment, each subject went through 
five 30-trial blocks of training. In the first block of training, subjects experienced a 
fixed contrast level of 8% to familiarize themselves with the task and did not have 
to indicate confidence. Then, blocks 2-4 successively introduced the three contrasts 
(8%, 6%, 4.5%) while also introducing the confidence rating. In the fifth training 
block, subjects were familiarized with the design of the actual experiment in which 
contrast levels were interleaved. The main experiment was organized in three runs 
each consisting of five 50-trial blocks. Overall, each subject completed 150 trials 
of training and 750 trials of the main experiment.
Experiment 3. We preregistered Experiment 3 (https://osf.io/enrbc/) before the 
data collection and followed all the preregistered analyses. Experiment 3 fol-
lowed most of the procedures of Experiments 1 and 2 with several exceptions. 
Experiment 3 was organized in six runs each containing four 30-trial blocks. There 
was only a single difficulty level in each run, meaning that the same difficulty 
level was presented for 120 consecutive trials. Each difficulty level was randomly 
repeated twice throughout the experiment, once in the first three runs and once in 
the last three runs. At the beginning of each block, subjects were informed about 
the level of difficulty in each block. As in Experiment 1, subjects again received 
a monetary bonus based on how closely their confidence ratings matched their 
accuracy. Unlike either of the previous two experiments, subjects also received 
trial-by-trial feedback during the entire experiment.

Before the beginning of the experiment, each subject first went through seven 
blocks of training. In the first block, subjects completed 15 trials with a fixed con-
trast level of 8% and without indicating confidence. Blocks 2 to 4 each included 
60 trials each and successively introduced the three contrasts (8%, 6%, 4.5%). 
Feedback regarding the accuracy of the response was given both right after the 
response and at the end of each block. Cues regarding the difficulty level were 
given at the beginning of each block. Finally, blocks 5 to 7 included 15 trials each 

(one contrast level per block) and introduced the confidence ratings. Overall, each 
subject completed 240 trials of training and 720 trials of the main experiment.

CRES vs. BCH Computations. Following the signal detection theory (27), we assume 
that each stimulus presentation generates a sensory response, r, which is corrupted by 
Gaussian sensory noise, such that rsens = N

(

−�, �2
sens

)

  , when the stimulus belongs 
to the first category, S1, and rsens = N

(

�, �2
sens

)

 , when the stimulus belongs to the 
second category, S2. The parameter �sens represents the distance between the two evi-
dence distributions, whereas �sens is the SD of each sensory distribution. For simplicity, 
and without the loss of generality, we set the �sens to always equal to one.

The CRES models assume that both decision and confidence 
are generated by placing a set of confidence and decision criteria, 
[c
−n, c−n+1, … , c

−1, c0, c1, … , cn−1, cn]  on the evidence axis, where n  is the 
number of ratings on the confidence scale. The criteria ci  are monotonically 
increasing with c

−n = −∞  and cn = ∞  . When the primary response is “S2 ,” 
confidence is generated using the criteria 

[

c0, c1, … , cn
]

  such that rsens  falling 
within the interval [ci , ci+1)  results in a confidence of i + 1  . When the primary 
response is “S1 ,” confidence is generated using the criteria [ c

−n, c−n+1, … , c0 ] 
such that rsens falling within the interval [ci , ci+1) results in a confidence of −i.

In contrast, BCH models assume that confidence ratings reflect the probabil-
ity one’s decision is correct. In other words, confidence rating are based on the 
value of P

(

S2
|
|x) where x represents the amount of sensory evidence. Similar to 

CRES model, confidence is computed by placing a set of confidence and decision 
thresholds, [t

−n, t−n+1, … , t
−1, t0, t1, … , tn−1, tn] . However, instead of placing 

the confidence thresholds on evidence axis like what CRES models assume, 
BCH models define confidence thresholds in the posterior probability space. 
Following the BCH principle, we obtain the following for the posterior proba-
bility of correctly choosing “S2” given sensory evidence x (using that the prior 
probabilities of S1 and S2 are equal to 0.5):

P
�

S2
�
�x)=

P
�

x�S2

�

∗ P
�

S2

�

P(x)
=

P
�

x�S2

�

∗ P
�

S2

�

P
�

x�S1

�

∗ P
�

S1

�

+P
�

x�S2

�

∗ P
�

S2

�

=

1
√

2�
e
−

(x−�)2

2

1
√

2�
e
−

(x−(−�))2

2 +
1

√

2�
e
−

(x−�)2

2

=
1

e−2x�+1

.

Critically, the posterior probability P
(

S2
|
|x) has a one-to-one mapping with the 

likelihood ratio, 
P(x|S1)

P(x|S2)
 , such that

P
(

S2|x
)

=

P
(

x|S2

)

×P
(

S2

)

P
(

x|S1

)

×P
(

S1

)

+P
(

x|S2

)

×P
(

S2

)

=

P
(

x|S2

)

P
(

x|S1

)

+P
(

x|S2

) =
1

1+
P(x|S1)

P(x|S2)

=
1

1+ LR
,

where LR is the likelihood ratio. Thus, we have the formula for LR as

LR =
1

P
(

S2|x
) − 1.

By taking the logarithm of the two sides of the formula, we obtain the formula for 
log odds, LO, which is simply the logarithm of the likelihood ratio:

LO = ln(LR) = ln

(

1

P
(

S2|x
) −1

)

.

Therefore, placing confidence thresholds on the log odds is equivalent to placing 
them on the probability of being correct. Similarly, placing confidence thresholds 
on the log odds is also equivalent to placing them on the odds. So, placing one’s 
criteria in any of these spaces (log odds, odds, or probability of being correct) 
results in the same decision behavior.

Qualitatively Different Predictions of BCH and CRES Models. While the BCH 
models define confidence thresholds ti in the log-likelihood ratio space, CRES D
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models define confidence criteria ci in the evidence space. Therefore, it is helpful 
to translate the confidence thresholds ti from the log-likelihood ratio space to the 
evidence space. There is such straightforward correspondence: each threshold ti 
in the log-likelihood ratio space corresponds to a ci in evidence space, such that

ti = ln

�

1

P
�

S2�ci
� −1

�

= ln
⎛

⎜

⎜
⎝

1
1

e−2ci�+1

−1
⎞

⎟

⎟
⎠

= ln
�

e−2ci�+1−1
�

= ln
�

e−2ci�
�

= −2�ci = −d�ci .

Thus, for the same confidence criterion ci across conditions of increasing difficulty 
(i.e., lower d′), the absolute value of the confidence thresholds ti decrease linearly 
with d′. Similarly, for the same confidence threshold ti across conditions of increas-
ing difficulty (i.e., lower d′), the absolute value of the confidence criteria ci increase 
linearly with d′. Therefore, CRES models assume that the confidence criteria ci 
stay constant across conditions of increasing difficulty, and lead to confidence 
thresholds ti that decrease linearly with d′. On the contrary, BCH models assume 
that the confidence threshold ti stay constant across conditions of increasing dif-
ficulty, and lead to confidence criteria ci that increase linearly with d′. The CRES 
and BCH models thus predict the opposite pattern, providing a very strong test 
for adjudicating between the two classes of models (Fig. 1B).

It is important to note that the divergent predictions made by BCH and CRES 
models depend on variations in d′ across experimental conditions. This difference 
in model predictions can only be observed in studies with multiple difficulty 
levels. Conversely, in experiments with a single difficulty level, BCH and CRES 
models become indistinguishable.

Computing Empirical Criterion Locations. We computed all confidence and 
decision criteria, ci , following the equation from the signal detection theory:

ci = − 0.5 ∗ (�−1
(

HRi
)

+ �−1
(

FARi
)

),

where i  goes from −(n − 1) to n − 1 for confidence ratings collected on a n-point 
scale,

�−1
(

HRi
)

 represents the z-score of the hit rate associated with the criterion ci , 
and �−1

(

FARi
)

 represents the z-score of the false alarm rate associated with the 
criterion ci . Again, following signal detection theory, we computed log odds ( LOi ) as

LOi = d� ∗ ci ,

where d′ is the stimulus sensitivity measure using the formula:

d� = �−1
(

HR0
)

− �−1
(

FAR0
)

,

where HR0 and FAR0 are the hit and false alarm rates associated with the decision 
criterion.

We compared how much the criteria measured in internal evidence and log-
likelihood ratio space moved between conditions. To do so, we first calculated 
a change score between the criteria in the hardest and the easiest conditions 

using the formulas cchange =
|
|
|
|

chard−ceasy

chard+ceasy

|
|
|
|

 and LOchange =
|
|
|
|

LOhard−LOeasy

LOhard+LOeasy

|
|
|
|

 . To compare 

whether the percent change of confidence criteria in the log-likelihood ratio space 
is statistically larger than that in the internal evidence space, we performed two-
tailed t tests for the change of each confidence criterion.

Auxiliary Model Assumptions. We tested three auxiliary assumptions: the sym-
metry of confidence criteria, the existence of metacognitive noise, and the existence 
of lapses. Varying these three auxiliary assumptions led to eight CRES and eight BCH 
models where each of those three assumptions was present or absent.

Symmetry of confidence criteria. We fit half of the models with the assump-
tion that the confidence criteria for each choice are symmetric around the decision 
criterion (the assumption made in (7)), whereas in the other half of models we fit 
the confidence criteria for each choice separately. For CRES models with the sym-
metric confidence criteria assumption, confidence criteria [ c

−n, c−n+1, … , c
−1 ] 

are computed by flipping confidence criteria [c1, … , cn−1, cn] across the decision 
criterion c0 such that c

−k = c0 − ck . In this way, the confidence criteria for “S1” is 
symmetrical to the confidence criteria for “S2” around the decision criterion c0 . 
Thus, given that confidence was given on a 6-point scale in all both experiments, 

the models that assume symmetric confidence criteria include six free parame-
ters for the criteria (for c0, c1, … , c5 ), whereas the models that do not assume 
symmetry include 11 free parameters (for c

−5, c−4, … , c5).
Presence vs. absence of metacognitive noise. We fit half of the models with the 
assumption of the presence of metacognitive noise [an assumption made in a lot of 
previous research, including (24, 26, 62, 63), whereas in the other half of the models 
we fit models without metacognitive noise. Here, we conceptualized the metacogni-
tive noise as the variability in the confidence criteria, such that the confidence criteria 
ci follow a Gaussian distribution, N

(

ci , �
2
meta

)

 , centered on the location of the confi-
dence criterion and having constant variability �meta . Models with the assumption 
of the presence of metacognitive noise include one extra free parameter ( �meta).
Presence vs. absence of lapse rate. We fit half of the models with the assumption 
of the presence of lapse rate [an assumption made in a lot of previous research (2, 
7, 8, 19), whereas in the other half of the models we fit models without lapse rate. 
The inclusion of lapse rate is meant to account for trials in which subjects make 
errors unrelated to the tasks. We made the standard assumption that a lapse led 
to subjects giving both the perceptual decision and confidence rating randomly. 
Models that assume the presence of lapse rate include one extra free parameter.

Model Fitting and Model Comparison. Model fitting was based on a maxi-
mum likelihood estimation procedure that searches for the set of parameters 
that maximize the log-likelihood associated with the full probability distribution 
of responses, using established procedures from our lab (25, 26, 64). The log-
likelihood, logL , was computed using the following formula:

logL =
∑

i,j,k

log(pijk) ∗ nijk,

where pijk and nijk are the response probability and number of trials, respec-
tively, associated with the stimulus class i = {1, 2} , confidence response 
j = {−6, −5… −1, 1, … 6} (where negative confidence responses corre-
spond to S1 responses), and stimulus contrast level, k = {1, 2, 3} . The parameter 
search was conducted using the Bayesian Adaptive Direct Search (BADS) toolbox, 
version 1.0.5 (65). To ensure good model fits, we ran the fitting procedure for 
each model two times and selected the fitted parameters associated with the 
highest log-likelihood values.

We evaluated how closely the model fits the observed data using the Akaike 
Information Criterion (AIC). AIC measure the goodness-of-fit of data generated by 
a certain model, while penalizing the use of additional free parameters. AIC was 
computed using the standard formula: AIC = − 2logL + 2k , where k indicates the 
total number of free parameters of a model and n refers to the number of trials in 
the data. A lower value of AIC indicates better quality of fits. To access whether AIC 
differences between models are significant, we obtained bootstrapped 95% CI on 
the AIC differences between models, summed across all subjects. The bootstrapped 
intervals were computed from 100,000 data samples. CI that do not contain zero are 
indicative of a significant difference in the AIC values of the models being compared.

To further assess model fit, we computed G2 (likelihood ratio chi-square) 
statistics for all three experiments (SI Appendix, Table S1). G2 allows for an 
assessment of the absolute fit of our models by providing a true zero for the 
log-likelihood and thus allows the fit to be interpreted as Kullback–Leibler 
divergence between the model and data. The results of the G2 statistics are 
consistent with those obtained using AIC, as all CRES models showed lower 
G2 values, indicating a better fit.

Model and Parameter Recovery. Finally, to rule out the possibility that the lack of 
good fit for the BCH model is primarily due to model recoverability issues, we performed 
model and parameter recovery analyses for all three experiments. We found that CRES 
and BCH models have high recoverability in all experiments (SI Appendix, Fig. S4) and 
that the model parameters could be recovered with high fidelity (SI Appendix, Fig. S5). 
These results validate our fitting procedure and the conclusions based on it.

Data, Materials, and Software Availability. Data and code for analysis and 
model fitting for both experiments are available at https://osf.io/xqgyz/. Previously 
published data were used for this work (26). All other data are included in the 
manuscript and/or SI Appendix.
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