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Humans have the metacognitive ability to judge the accuracy of their own decisions via confidence
ratings. A substantial body of research has demonstrated that human metacognition is fallible but it
remains unclear how metacognitive inefficiency should be incorporated into a mechanistic model of
confidence generation. Here we show that, contrary to what is typically assumed, metacognitive
inefficiency depends on the level of confidence. We found that, across 5 different data sets and 4 different
measures of metacognition, metacognitive ability decreased with higher confidence ratings. To under-
stand the nature of this effect, we collected a large dataset of 20 subjects completing 2,800 trials each and
providing confidence ratings on a continuous scale. The results demonstrated a robustly nonlinear ZROC
curve with downward curvature, despite a decades-old assumption of linearity. This pattern of results was
reproduced by a new mechanistic model of confidence generation, which assumes the existence of
lognormally distributed metacognitive noise. The model outperformed competing models either lacking
metacognitive noise altogether or featuring Gaussian metacognitive noise. Further, the model could
generate a measure of metacognitive ability which was independent of confidence levels. These findings
establish an empirically validated model of confidence generation, have significant implications about
measures of metacognitive ability, and begin to reveal the underlying nature of metacognitive

inefficiency.
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Humans have the metacognitive ability to use confidence ratings
to judge the accuracy of their own decisions (Metcalfe & Shima-
mura, 1994). By signaling the quality of a decision, metacognitive
evaluations of confidence can guide our learning and subsequent
actions (Desender, Boldt, & Yeung, 2018; Fleming, Dolan, &
Frith, 2012; Koriat, 2006; Nelson & Narens, 1990; Shimamura,
2000; Yeung & Summerfield, 2012).

However, a wealth of studies have shown that confidence rat-
ings are imperfect (Lau & Passingham, 2006; Rahnev, Maniscalco,
et al., 2011; Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012;
Vlassova, Donkin, & Pearson, 2014; Wilimzig, Tsuchiya, Fahle,
Einhéuser, & Koch, 2008). For example, confidence ratings are
often found to carry less information than the perceptual decision
itself (Lau & Passingham, 2006; Pleskac & Busemeyer, 2010;
Rahnev, Maniscalco, et al., 2011; Rahnev et al., 2012; Rahnev et
al., 2016; Rounis, Maniscalco, Rothwell, Passingham, & Lau,
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2010; Shekhar & Rahnev, 2018; Vlassova et al., 2014; Wilimzig et
al., 2008). Further, a number of psychiatric symptoms are associ-
ated with impaired metacognitive ability (Klein, Ullsperger, &
Danielmeier, 2013; Moritz et al., 2014; Rouault, Seow, Gillan, &
Fleming, 2018; Stephan, Friston, & Frith, 2009; Wells et al,,
2012). Understanding the nature of metacognitive inefficiency is
thus needed for improving people’s decisions and for treating a
number of disorders associated with it.

Two types of metacognitive imperfection can be identified.
First, confidence ratings could be too high or too low on average.
This type of imperfection has been called metacognitive bias
(Fleming & Lau, 2014) or a failure of confidence calibration
(Baranski & Petrusic, 1994). Second, confidence ratings could be
uninformative regarding the accuracy of the primary decision. The
informativeness of the confidence ratings is referred to as meta-
cognitive sensitivity (Fleming & Lau, 2014) or confidence resolu-
tion (Baranski & Petrusic, 1994). Note that metacognitive sensi-
tivity varies with task difficulty such that easier tasks produce
confidence ratings that better predict accuracy. Therefore, Fleming
and Lau (2014) coined the term metacognitive efficiency to refer to
metacognitive ability that is independent of the accuracy on the
task.

Here we investigate specifically the properties of failures in
metacognitive efficiency. Metacognitive inefficiency can occur for
a number of reasons including confidence ratings neglecting
decision-incongruent evidence (Maniscalco, Peters, & Lau, 2016;
Peters et al., 2017; Zylberberg, Barttfeld, & Sigman, 2012), serial
dependence in confidence (Rahnev et al., 2015), arousal (Allen et
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al., 2016), fatigue (Maniscalco, McCurdy, Odegaard, & Lau,
2017), and so forth. Rather than exploring its different sources,
here we focus on describing the general properties of metacogni-
tive inefficiency. Further, although we investigate these properties
in the context of perceptual decision making, the underlying prin-
ciples are expected to generalize to other domains of metacogni-
tion.

Current Process Models of Metacognitive Inefficiency

In order to understand the properties of metacognitive ineffi-
ciency, we need a mechanistic explanation that takes the form of
a process model. The process model should describe computation-
ally how the sensory signal is transformed into both a perceptual
decision and a confidence rating. Unfortunately, current process
models fall short of providing a satisfactory account of the nature
of metacognitive inefficiency.

A number of models based on signal detection theory (SDT),
accumulation to bound, or Bayesian decision theory, have postu-
lated that the perceptual and confidence judgments are based on
the exact same underlying sensory information (Fetsch, Kiani,
Newsome, & Shadlen, 2014; Hangya, Sanders, & Kepecs, 2016;
Pouget, Drugowitsch, & Kepecs, 2016; Rahnev, Bahdo, de Lange,
& Lau, 2012; Ratcliff & Starns, 2013; Sanders, Hangya, & Kepecs,
2016; Vickers, 1979). For example, the standard SDT model,
which is a popular example of this class of models, posits that
confidence generation occurs by placing stable confidence criteria
on the same internal decision axis that is used for the perceptual
decision (Green & Swets, 1966). In essence, all of these models
assume a noiseless confidence generation process that cannot
provide insight into subjects’ metacognitive inefficiency.

To account for the fallibility in confidence generation, models
have begun to incorporate additional noise into the confidence
process (Bang, Shekhar, & Rahnev, 2019; De Martino, Fleming,
Garrett, & Dolan, 2013; Jang, Wallsten, & Huber, 2012; Manis-
calco & Lau, 2016; Mueller et al., 2008; Rahnev et al., 2016;
Shekhar & Rahnev, 2018). However, these models have generally
not received in-depth empirical confirmation besides verifying
their ability to generate imperfect metacognition. Their purpose
has mostly been confined to simulating metacognitive inefficien-
cies, without necessarily committing to the plausibility of the
mechanisms that generated these inefficiencies. For example, these
models are built on the assumption that confidence criteria follow
a Gaussian distribution but have generally not addressed in a
satisfactory way the issue that Gaussian distributions extend to
infinity in both directions, whereas confidence criteria are bound
by the decision criterion. Thus, current process models of meta-
cognition either assume a noiseless process of confidence gener-
ation or make potentially implausible assumptions that have not
been explored in depth.

Creating a Process Model of
Metacognitive Inefficiency

What Makes for a Good Model of
Metacognitive Inefficiency?

There are many characteristics that one could desire in any
model: plausibility, simplicity, ability to make new predictions,

and so forth. Here we highlight several characteristics that are
particularly important for models of metacognitive inefficiency.

First and foremost, models should be evaluated on their ability
to fit the raw empirical data. This ability can be tested by using any
one of a number of measures that evaluate model fits in the context
of model flexibility. Nevertheless, despite the centrality of this
criterion, model comparison typically does not reveal why one
model fits better than another and provides little guidance on how
to construct new models. Therefore, to gain intuition about desir-
able model characteristics, it is often helpful to test how model
predictions compare with basic patterns in the empirical data.

Perhaps the most basic pattern that a model should be able to
account for is the shape of the empirical z-transformed receiver
operating characteristic (ZROC) curve. ZROC curves are predicted
to be linear by the standard SDT model but a number of studies
have demonstrated nonlinearities in the context of memory judg-
ments (Ratcliff, McKoon, & Tindall, 1994; Ratcliff & Starns,
2013; Voskuilen & Ratcliff, 2016; Yonelinas, 1999; Yonelinas &
Parks, 2007). Surprisingly, the shape of zZROC curves have not
been investigated in the context of perceptual decision making.
Therefore, it is important to establish both the empirical shape of
zROC curves in perceptual tasks and compare this shape with
model predictions.

Finally, a process model of metacognitive inefficiency should
result in a principled measure of metacognitive ability. Appropri-
ate psychometric measures should be sensitive only to changes in
the process that they purport to measure but not to changes in other
variables (Barrett, Dienes, & Seth, 2013; Fleming & Lau, 2014;
Macmillan & Creelman, 2005; Maniscalco & Lau, 2012). Conse-
quently, one way to evaluate the plausibility of process models is
to carry out selectivity tests of their associated measures.

The Intimate Relationship Between Process Models
and Psychometric Measures

Process models of decision making specify explicitly how in-
formation is represented internally and how decisions emerge from
this information. The parameters of such process models can then
serve as theoretically inspired psychometric measures. Conversely,
any psychometric measure implies a set of process models for
which the measure is a parameter of the model. Therefore, the
success of a specific measure is equivalent to the success of its
implied set of models, and, similarly, the success of a specific
model is equivalent to the success of its implied measure.

This intimate relationship can be observed, for example, in
signal detection theory (Green & Swets, 1966). SDT is a process
model that specifies how a sensory stimulus is represented inter-
nally by the observer, as well as how the observer makes decisions
based on the internal representation. Using this process model, one
can extract two psychometric measures—one of stimulus sensi-
tivity (d') and another one of decision bias (c). SDT has received
strong support from studies showing that the measures d’ and ¢ are
selectively influenced by task difficulty and bias manipulations,
respectively (Macmillan & Creelman, 2005). Conversely, an alter-
native set of measures that are popular in the literature are percent
correct and percent yes, though the process models implied by
these measures are typically not explicitly derived. Nevertheless,
both measures are known to be influenced by the “wrong” manip-
ulation. For example, percent correct is affected by expectation
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cues, whereas percent yes can be affected by task difficulty (de
Lange, Rahnev, Donner, & Lau, 2013; Rahnev, Lau, & de Lange,
2011). Thus, within the context of primary task performance, it is
clear that there is a strong relationship between process models of
information processing and corresponding measures of perfor-
mance (Swets, 1986).

The strong relationship between process models and psycho-
metric measures suggests an avenue for the development of pro-
cess models of metacognitive inefficiency. Specifically, one can
start by testing how existing measures of metacognitive ability
interact with “nuisance” variables that should be independent of
metacognitive ability. The most critical such variables are task
difficulty, decision bias, and confidence bias (Barrett et al., 2013;
Fleming & Lau, 2014; Maniscalco & Lau, 2012). Then, based on
the observed dependencies, new models can be developed that
ensure that their implied measures of metacognitive ability are
independent of these nuisance variables. Finally, these models can
be further validated by testing their ability to predict empirical
zROC shapes and to outperform competing models in their ability
to fit the raw data. We adopt this approach here.

The Known Properties of Current Measures of
Metacognitive Ability

Current Measures of Metacognitive Ability

A number of measures of metacognitive ability have been
developed and used in the literature. Traditional measures include
Phi, the trial-by-trial Pearson’s correlation between accuracy and
confidence (Nelson, 1984), and Type-2 AUC, the area under the
Type-2 ROC curve constructed from the subject’s Type-2 hit rate
(proportion of high confidence on correct trials) and Type-2 false
alarm rate (proportion of high confidence on incorrect trials).

More recently, Maniscalco and Lau (2012) developed a new
measure, meta-d’, which quantifies the expected Type-1 sensitivity
of an observer given his or her pattern of Type-2 hit and false
alarm rates. The measure meta-d' is commonly normalized via
division by d’ to obtain a measure of metacognitive efficiency
called meta-d'/d'. Because of the normalization of metacognitive
sensitivity by stimulus sensitivity, meta-d'/d’ is thought to be
independent of stimulus sensitivity.

Each of these measures of metacognitive ability carries implicit,
built-in assumptions about the nature of metacognitive ineffi-
ciency. Nevertheless, it should be noted that none of these mea-
sures has been associated with an explicit process model of meta-
cognitive inefficiency. This is true not only for traditional
measures such as Phi and Type-2 AUC but also for meta-d’' and
meta-d'/d’'. Indeed, these latter measures are derived based on SDT
principles but have not been accompanied by an explicit process
model that incorporates a corrupting influence on metacognition
that can be quantified using these measures. Instead, these mea-
sures have often been tested using data generated from a model
with Gaussian metacognitive noise (Maniscalco & Lau, 2014)
even though this model implies a measure of metacognition (the
standard deviations of the Gaussian distributions of metacognitive
noise) that is different from either mera-d' or meta-d'/d’.

Psychometric Properties of Current Measures of
Metacognitive Ability

Despite the clear importance of establishing the dependence of
current measures of metacognitive ability on nuisance variables,
very little research has addressed this problem empirically. Here
we briefly review the previous work that investigated the depen-
dence of metacognitive ability measures on task difficulty, crite-
rion bias, and confidence bias.

It is generally appreciated that most existing measures of meta-
cognitive ability increase as the task becomes easier (Fleming &
Lau, 2014). However, few empirical studies have explicitly exam-
ined this issue. One exception is a study by Higham, Perfect, and
Bruno (2009), which found that Type-2 AUC increases for easier
tasks. It is commonly believed that this effect is not present for
meta-d'/d’ but we are not aware of published empirical tests of this
assumption.

There is even less clarity regarding the dependence of measures
of metacognitive ability on response bias. Only two studies appear
to have investigated the issue by manipulating subjects’ propensity
of choosing each stimulus category. Evans and Azzopardi (2007)
experimentally manipulated response bias by varying the base
rates of their stimuli and demonstrated that Type-2 d'—a measure
of metacognition known to make incorrect distributional assump-
tions (Fleming & Lau, 2014; Galvin, Podd, Drga, & Whitmore,
2003)—increases with greater response bias. Higham et al. (2009)
manipulated response bias by varying the number of response
categories for old versus new words and found that Type-2 AUC
also depends on response bias.

Finally, only a single study has empirically investigated how
measures of metacognitive ability depend on confidence bias.
Evans and Azzopardi (2007) studied the influence of shifts in
confidence bias on Type-2 d' by varying the ratio of allowed high
to low confidence responses and found that Type-2 d' increased
with confidence. Likewise, Barrett, Dienes, and Seth (2013) tested
the stability of the measures meta-d'/d’, Type-2 d', and Type-2
AUC for variations in confidence criteria. However, their results
were based on simulation of the SDT model rather than empirical
data and therefore it is possible that the true empirical relationships
differ from what can be obtained by simulation of standard SDT.
Therefore, virtually nothing is known about the empirical depen-
dence of any measures of metacognitive ability besides Type-2 d’
on confidence bias.

This brief overview demonstrates that all previous investiga-
tions of the empirical properties of metacognitive measures have
focused on only one or two of the existing measures, and that
particularly little is known about the influence of confidence bias.
Therefore, it is difficult to derive general principles that can serve
as the foundation for new process models of metacognitive inef-
ficiency without first describing these empirical dependencies.

Toward the Creation of a New Process Model of
Metacognitive Inefficiency

As highlighted above, understanding the nature of metacogni-
tive inefficiency would be greatly facilitated by a clearer picture of
how existing measures of metacognitive ability depend on various
nuisance variables. Therefore, here we tested how four measures
of metacognition—meta-d'/d', meta-d', Type-2 AUC, and Phi—
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depend on confidence bias and task difficulty. We were particu-
larly interested in discovering systematic relationships between the
four measures and confidence bias because so little is known about
the topic and because such relationships can be especially helpful
in understanding the nature of metacognitive inefficiency.

Across five different existing data sets in which confidence was
given on a 4-point scale and a new experiment in which confidence
was given on a continuous scale, we observed that the use of
higher confidence criteria led to lower estimated metacognitive
scores for all four measures. These findings suggest that confi-
dence judgments become less reliable for signals that deviate more
from the decision criterion. We modeled this empirical observation
as metacognitive noise that increases for higher confidence criteria
using a lognormal distribution. The model is inspired by prior
work on signal-dependent multiplicative noise (Dosher & Lu,
1999; 2017; Lu & Dosher, 2008; Lu, Lesmes, & Dosher, 2002)
where the noise level increases for higher values of the sensory
evidence.

The resulting “lognormal meta noise model” produced signifi-
cantly better fits to the data than either the standard SDT model or
a model assuming Gaussian metacognitive noise. Further, the
model naturally explains an additional property of our data,
namely that the observed zROC curves have a robustly nonlinear
shape with downward curvature. Finally, we confirmed that our
new lognormal meta noise model produces a measure of metacog-
nition that is independent of both confidence bias and task diffi-
culty.

Method

We analyzed data from four experiments (consisting of six
separate tasks) involving perceptual discrimination and confidence
ratings. For the first three experiments, confidence was given on a
4-point scale. All three experiments have been previously reported:
Experiment 1 was reported in Shekhar and Rahnev (2018), Exper-
iment 2 has been reported as Experiment 2 in Bang et al. (2019),
and Experiment 3 has been reported as Experiment 1 in Rahnev et
al. (2015). All study details for these three experiments can be
found in the original publications; below we briefly discuss the
basic experimental design. The fourth experiment collected confi-
dence on a continuous scale ranging from 50 to 100. This exper-
iment has not been previously reported. Each subject participated
in only one of the experiments. Subjects reported normal or
corrected-to-normal vision and received monetary compensation
for their participation in the studies. All procedures were approved
by the local Institutional Review Board.

Experiment 1

Experiment 1 was originally reported in Shekhar and Rahnev
(2018). A total of 21 subjects (13 females, average age = 22 years)
performed an orientation discrimination task and provided confi-
dence ratings on each trial.

The stimulus was a Gabor patch (diameter = 3°) tilted either to
the left or right of the vertical by 45° and superimposed on a noisy
background. Each trial started with a fixation period (500 ms)
followed by rapid presentation of the stimulus (for 100 ms). The
orientation of the stimulus was randomly selected on each trial.
After stimulus presentation, subjects had to indicate the perceived

direction of the tilt (left/right) while simultaneously rating their
confidence on a scale from 1 to 4 (1 = low confidence and 4 =
high confidence) via a single key press. Subjects used both hands
to make their responses. The four fingers of their left hand were
mapped onto the four confidence responses for the left-tilted
stimulus, whereas the four fingers of their right hand were mapped
onto the confidence responses for the right-titled stimulus.

Data collection was spread over two separate days. Subjects
completed a total of 816 trials. The original publication excluded
three subjects. Two of them were excluded due to poor perfor-
mance and excessive interruptions during the main experiment.
Both these subjects were also excluded from the current analyses.
The third subject was originally excluded because of imprecise
transcranial magnetic stimulation target localization and was there-
fore included in the current analyses.

Experiments 2a and 2b

Experiment 2 was originally reported in Bang et al. (2019) as
Experiment 2. A total of 201 subjects performed two separate
perceptual tasks—coarse orientation discrimination (referred here
as Experiment 2a) and fine orientation discrimination (referred
here as Experiment 2b). In the coarse discrimination task, the
stimulus was a Gabor patch with a large tilt (+45°) from the
vertical and was overlaid on a noisy background. In the fine
discrimination task, the stimulus was a Gabor patch of high con-
trast (without any noise overlay) tilted slightly (<1°) to the left or
right of the vertical.

Subjects completed a total of 100 trials for each task (97 task
trials and three easier trials used as an attention check). The order
of tasks was randomized across subjects. The Gabor patch (circular
diameter = 1.91°) was presented for 500 ms. After the offset of the
stimulus, subjects indicated the tilt (left/right) of the Gabor patch
with a key press. Following this response, subjects rated their
confidence in their response on a scale from 1 to 4, with a second
key press.

In the original publication, 15 subjects were excluded for poor
performance in the catch trials and eight additional subjects were
excluded for very low performance in the task trials (accu-
racy <55%). The same subjects were excluded in the current
analyses as well. The main analyses were carried out on the 97 task
trials in each task.

Experiments 3a and 3b

Experiment 3 was originally reported as Experiment 1 in Rah-
nev et al. (2015). Twenty-six subjects completed two separate
perceptual tasks—color discrimination (referred here as Experi-
ment 3a) and letter identity discrimination (referred here as Ex-
periment 3b). The stimulus consisted of a display of 40 characters
(X’s and O’s) colored in red or blue. The letter and color identities
were independent of each other. The stimuli were displayed for
one second. Subjects first indicated which letter (X or O) they
perceived as dominant and rated their confidence on a scale from
1 to 4 via two separate button presses. Subjects then indicated
which color (red/blue) they perceived as dominant in the display
and rated their confidence on a scale from 1 to 4 via two new
button presses. All four button presses were made in the same
order in response to a single stimulus display. For each of the four
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responses, subjects were allowed to take as much time as they
needed to respond. Subjects completed a total of 400 trials.

Experiment 4

Procedure. We collected data from 20 subjects over the
course of three sessions, held on separate days. Day 1 started with
a five-block training. Subjects then completed four runs, each
consisting of four 50-trial blocks for a total of 800 experimental
trials on Day 1. Days 2 and 3 began with a shorter, two-block
training. Subjects then completed four runs, each consisting of five
50-trial blocks for a total of 1,000 experimental trials on both Days
2 and 3. Over the course of the 3 days, subjects thus completed a
total of 2,800 trials. Subjects were given 15-s breaks after every
block and were allowed to take self-paced breaks after every run.

Task. Each trial began with subjects fixating on a small white
dot at the center of the screen for 500 ms followed by presentation
of the stimulus for 100 ms. The stimulus was a Gabor patch
(diameter = 3°) oriented either to the left (counterclockwise) or
right (clockwise) of the vertical by 45°. The gratings were super-
imposed on a noisy background. The response screen appeared
after the stimulus offset and remained till the subjects made a
response. Subjects’ task was to indicate the direction of the tilt
(left/right) and simultaneously rate their confidence using a con-
tinuous confidence scale (ranging from 50% correct to 100%
correct for each type of response) via a single mouse click. We
used three interleaved contrast values (chosen based on pilot data
from our laboratory) of 4.5%, 6%, and 8%. The contrasts were
chosen such that performance would increase monotonically
across the three contrasts while avoiding ceiling and floor perfor-
mance. The three levels of contrast indeed yielded three increasing
levels of accuracy (contrast 1: M = 67.03%, SD = 2.71%; contrast
2: M = 77.04%, SD = 3.67%; and contrast 3: M = 89.15%, SD =
3.61%).

Incentivizing reliable confidence reporting. To incentivize
veridical use of the confidence scale, we adopted a method used by
Fleming, Massoni, Gajdos, and Vergnaud (2016). On each trial,
the computer chose a random number, /, (between 1 and 100). If
the reported confidence p was greater than /,, the subject gained a
point if her response was correct, and lost a point if her response
was incorrect. On the other hand, if the reported confidence p was
smaller than or equal to /,, the computer chose a new random
number /, between 1 and 100. The subject won a point if [, = /,,
and lost a point otherwise. Intuitively, one can understand this rule
as follows. When subjects rate their confidence highly, p is likely
to exceed /,. In this case, the scoring rule ensures that subjects will
gain points only as long as they are correct and will lose points
when their confidence exceeds their probability of success, thus
penalizing overconfidence. On the other hand, when subjects give
low ratings of confidence, p is less likely to exceed /. In this case,
the subjects’ scores are more likely to be left to chance (by
drawing of the second random variable, /,). In this way, the scoring
rule de-incentivizes underreporting of confidence. This rule en-
sures that subjects’ gains are maximized when their reported
confidence matches the objective probability of success. Indeed,
the expected reward using this system for a subjective confidence,
p, and objective probability of success, s, is:

expected reward = 2ps — p*.

The maximum expected reward is thus achieved for p = s, that
is when the reported confidence is equal to the objective proba-
bility of success.

Before the start of the experiment, we explained the scoring rule
to the subjects and showed them simulations of different strategies
to give them an intuitive understanding of the strategy that would
maximize their earnings. In order to accustom them to the scoring
system and to allow them time to adjust their strategies before the
main experiment, we scored their practice trials and provided them
feedback about the points they had earned in each practice block.
Additionally, at the end of every block of the main experiment,
subjects were informed of their scores. At the end of the three
sessions, we computed their cumulative scores and rewarded them
with a bonus based on their performance.

Apparatus. Stimuli were generated using Psychophysics
Toolbox (Brainard, 1997) in MATLAB (MathWorks) and pre-
sented on a computer monitor (21.5-in. display, 1920 X 1080 pixel
resolution, 60 Hz refresh rate). Subjects were seated in a dim room
and positioned 60 cm away from the screen.

Analyses

Relationship between metacognitive measures and confi-
dence criteria. In each of the six data sets (Experiments 1, 2a,
2b, 3a, 3b, and 4), the main goal of our analyses was to evaluate
the dependence between metacognitive measures and confidence
criterion location. We investigated four commonly used measures
of metacognition: meta-d'/d', meta-d', Type-2 AUC, and Phi.

The first measure, meta-d'/d’ (Maniscalco & Lau, 2012, 2014),
is the ratio of two measures—meta-d' (metacognitive sensitivity)
and d' (stimulus sensitivity). The second measure, meta-d’, is
derived as the value of stimulus sensitivity which best describes
the observed pattern of confidence responses given SDT assump-
tions. The third measure, Type-2 AUC, is the area under the ROC
curve constructed from the observer’s Type-2 (confidence) re-
sponses (Fleming, Weil, Nagy, Dolan, & Rees, 2010). The last
measure, Phi, is the trial-by-trial Pearson’s correlation between
accuracy and confidence (Nelson, 1984).

In order to test the dependence of these metacognitive measures
on confidence criterion location, we analyzed each confidence
criterion in isolation. To do so, for each confidence criterion
location, we transformed the confidence ratings, x, into a 2-point
scale based on whether or not each rating exceeded the value of the
criterion:

1, x=i

confidence(x) = {2 >

where i is the number of the confidence criterion. For Experiments
1-3, we were able to sample 3 criterion locations (i = 1, 2, 3) from
the 4-point scale that was used to collect confidence. For the
continuous confidence experiment, we sampled 49 criterion loca-
tions by varying the position of the criterion from 51 to 99 in steps
of one (i = 51,52, ...,99).

For each confidence criterion, we computed all four measures of
metacognition. In Experiment 4, which used three stimulus con-
trast levels, we performed these analyses separately for each level
of contrast. In Experiments 1-3, the resulting metacognitive scores
were compared via one-way repeated measures ANOVAs with the
confidence criterion (with three levels) as a factor. We also per-
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formed direct comparisons between the three criterion locations
using paired ¢ tests. In Experiment 4, we first plotted the resulting
metacognitive scores as a function of confidence criterion location.
Based on visual inspection of the relationship between each mea-
sure and the confidence criterion location, we fit linear or quadratic
functions to quantify their relationships. These functions were fit
to individual subject data and the estimated coefficients of the
quadratic and linear terms were tested for significance using one-
sample 7 tests.

For all the experiments, and for all the four measures of meta-
cognitive ability, we checked our data for outliers, defined as
points deviating more than 3 standard deviations from the mean,
and excluded them from our analyses. Exclusion of outliers was
necessary because some subjects showed extreme values (e.g.,
meta-d'/d’ > 20 was observed for a subject in Experiments 2a and
b) that could potentially bias our analyses. For Experiments 2a and
2b, these analyses resulted in the exclusion of three out of 178
subjects for the analyses of meta-d'/d’, meta-d', and Type-2 AUC.
For analyses on Phi in these experiments, we excluded 14 addi-
tional subjects because their confidence ratings were either all 1°s
(low confidence) or all 2’s (high confidence) for at least one of the
three criterion locations, resulting in an inability to estimate the
correlation coefficient. For Experiment 3a, one subject was ex-
cluded for the analysis of meta-d'/d". No subjects were excluded
based on outlier analysis for Experiments 1, 3b, and 4.

zROC analyses. zROC curves plot the relationship between
an observer’s z-transformed hit rate (zHR) and z-transformed false
alarm rate (zFAR) for different locations of the classification
criterion. The z transformation refers to finding the inverse of the
cumulative density function of the standard normal distribution.
Standard SDT predicts that for Gaussian signal distributions of
equal variance, zZHR and zFAR are linearly related (Macmillan &
Creelman, 2005). Indeed, according to SDT:

d' = zHR — zFAR
where d' is the observer’s sensitivity. From here it follows that:

zHR = d' + zFAR

thus, indicating a linear relationship between zHR and zFAR.

For the analyses in Experiment 4, we constructed zROC curves
by sweeping the confidence criterion from 99% confidence for left
tilt to 99% confidence for right tilt in steps of one for a total of 98
confidence criteria. ZROC curves were constructed separately for
each level of stimulus contrast.

In order to quantify any observed curvature of the zZROC func-
tions about the unit line, we first rotated them clockwise by 45° to
define the vertical axis as their axis of symmetry. This transfor-
mation was done by expressing the zHRs and zFARs as polar
coordinates and adding 45° to their resulting angular coordinates
(Supplementary Figure 1 of the online supplemental materials).
These new polar coordinates (now rotated by 45°) were then
converted back to Cartesian coordinates and modeled using qua-
dratic functions of the form:

W=axX@ZV)V?+bX(EZV)+c¢

where zU and zV are the transformed hit and false alarm rates after
the 45° rotation. Value of the quadratic coefficient @ < 0 indicate
downward (concave) curvature.

Accounting for biases in estimation. Both the ZROC curves
and the curves for the dependence of meta-d'/d' and meta-d’ on the
confidence criterion location are not bias-free. High confidence
criteria on the right of the decision criterion are accompanied by
very low number of false alarms, whereas high confidence criteria
on the left of the decision criterion are accompanied by very low
number of misses (these problems are equivalent in left/right
discrimination experiments; therefore below we focus on the cri-
teria to the right of the decision criterion but all considerations
apply to the criteria to the left of the decision criterion). The very
low numbers of false alarms and misses lead to unstable and noisy
estimates. However, more problematic is that they also lead to
directional biases, which we explain below.

Imagine that we are trying to estimate the location of a high
confidence criterion, which produces false alarms at a rate of .005.
If we only have 100 trials where the nontarget was presented, then
on average we expect to obtain .5 trials that are false alarms. For
this criterion, in a group of 20 subjects, we may observe 10
subjects with zero false alarms and 10 subjects with one false
alarm. However, because we cannot estimate meta-d' or plot
zROC functions for subjects with zero false alarms, we only end
up considering the subjects with at least one false alarm. This leads
to the false alarm rate being overestimated and resulting in lower
estimates for meta-d' and downward curvature in the zZROC func-
tions. Therefore, the problem of directional bias arises specifically
for situations where there is a substantial probability of obtaining
zero false alarms because analyzing only subjects who produced at
least one false alarm leads to overestimation of the false alarm rate
in the group. On the other hand, even in situations of generally low
trial counts, we would not expect a directional bias as long as a
given criterion has a very small probability of producing no trials
that are false alarms.

To remove this directional bias, one needs to ensure that all
confidence criteria analyzed have a very small chance of produc-
ing O false alarms. Therefore, we performed control analyses
where for each location of our 50—100 scale, given a value of d’
for each subject, estimated the expected distribution of false alarms
for a given number of trials making standard SDT assumptions
(i.e., in the absence of metacognitive noise). We discarded all
confidence criteria for which the possibility of observing 0 false
alarms across all the trials was >5% (see Supplementary Analysis
1 for a detailed description of the procedure). Simulations with
both the standard SDT model and Gaussian meta noise model
confirmed that this procedure virtually eliminated directional bi-
ases in estimation (Supplementary Analysis 2). Nevertheless, in
further control analyses we also removed criteria with >1%
chance of producing 0 false alarms and also reproduced our main
results.

Model Development

We developed and tested three competing models—the standard
SDT model, the Gaussian meta noise model, and the lognormal
meta noise model. All three models were identical in how they
generated the stimulus decisions but differed in how they modeled
the process of confidence generation.

Standard SDT model. The standard SDT model posits that
each stimulus presentation generates a sensory response, r, which
is corrupted by Gaussian sensory noise with a standard deviation
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o] Stimuli from the first category, S,, thus produce a sensory

sens*

_ Msens 2

response, r = N( 5 Usm), whereas stimuli from the second

W
category, S,, produce a response, r = N(ﬂ, 02,5, where .,

is the distance between the distributions corresponding to the two
stimulus categories.

To generate the stimulus and confidence decisions, we specified
a decision criterion, ¢, and confidence criteria, ¢_,, c_,;,...,C_1,
Cly -+ Cp—1s Gy, Where n is the number of ratings on the confidence
scale. The criteria ¢; were monotonically increasing with c¢_,, = —®
and ¢, = . The stimulus decisions were based on comparisons of r
with the decision criterion, ¢, such that r < ¢, leads to a response “S,”
and r = 0 leads to a response ““S,.” When r = ¢, (and thus, the Type-1
response was “S,”), confidence responses were generated using the
criteria ¢y, ¢y, . . . , ¢, such that r falling within the interval [c;, ¢;, )
resulted in a confidence of i + 1; when r < ¢, (and thus the Type-1
response was “S,”), confidence responses were generated using the
criteria ¢_,,, ¢_,, 41, - - - » Co such that r falling within the interval [c,,
¢; ) resulted in a confidence of —i.

Models with metacognitive noise. A number of models of
metacognition assume confidence ratings undergo further degra-
dation compared to the initial decision due to additional metacog-
nitive noise (De Martino et al., 2013; Jang et al., 2012; Mueller et
al., 2008; Rahneyv et al., 2016; Shekhar & Rahnev, 2018; van den
Berg, Yoo, & Ma, 2017). Metacognitive noise can be conceptual-
ized as either noise in sensory signal or the confidence criteria. In
fact, adding noise in the sensory signal is the most common
approach in the literature, including our own previous work (Bang
et al., 2019; Fleming & Daw, 2017; Jang et al., 2012; Shekhar &
Rahnev, 2018). However, here we conceptualize metacognitive
noise as variability in the confidence criteria (rather than the
sensory signal). The reason for this is that we introduce a new
model based on a lognormal distribution that has a hard lower-
bound. In our model, confidence criteria are variable but are
bounded by the decision criterion. The alternative conceptualiza-
tion where variability occurs in the sensory signal would involve a
less intuitive assumption that the variability in the sensory signal
be such that it does not cross a boundary (the decision criterion)
that is not inherent in the sensory signal itself. Nevertheless, we
additionally explored models where the variability is added to the
sensory signal and found that these models are either mathemati-
cally equivalent or produce very similar results to the models
developed here (Supplementary Analysis 6).

Models with metacognitive noise make identical assumptions to the
standard SDT regarding the internal sensory response, r. This re-
sponse is assumed to be corrupted by Gaussian noise and the stimulus
decisions are generated from comparisons of r with the decision
criterion, c¢,. However, unlike standard SDT, the confidence criteria
C_psvesC_1sCqy ..., C,are not stationary but vary from trial to trial
(except c_,, and c,,, which are fixed to —o0 and %, respectively).

Critically, if each confidence criterion varies from trial to trial
independent from every other criterion, this will lead to different
criteria crossing each other on individual trials. Thus, for example,
on a specific trial the criterion for confidence of 4 may end up
closer to the decision criterion than the criterion for confidence of
2, which is arguably nonsensical (Cabrera, Lu, & Dosher, 2015;
Mueller & Weidemann, 2008). Therefore, to avoid such criterion
crossover, we instantiated our models with metacognitive noise by
generating confidence criteria as perfectly correlated random vari-

ables, which ensured that the confidence criteria never crossed
each other.

The Gaussian meta noise model assumes that confidence crite-
ria, c;, follow a Gaussian probability distribution, g¢ ...

1 (=)’

—— 3 2
\/2—2 20 neta
Tro-meta

where w, and o2, are the mean and variance of the Gaussian
distribution controlling criterion variability andi = —n + 1,..., —1,
I, ..., n — 1. Thus, the Gaussian meta noise model implies that all
confidence criteria have equal variance 02, Note that in order to
maintain the order of the criteria, the parameters ; were constrained
sothat o,y = ... =P == =... = W, and that the
confidence criteria, ¢; were generated as perfectly correlated random
variables drawn from a Gaussian distribution. Similar to the standard
SDT model, when r = ¢, (and thus the Type-1 response was “S,”),
confidence responses were generated using the criteriacy, . . ., ¢, such
that r falling within the interval [c,, ¢, ,) resulted in a confidence of
i + 1 and r < ¢, resulted in confidence of 1; when r < ¢, (and thus
the Type-1 response was “S,”), confidence responses were generated
using the criteriac_,, ¢_,,,,, ..., c_, such that r falling within the
interval [c;, ¢, ) resulted in a confidence of —i and r > ¢_, resulted
in confidence of 1.

It is important to note that the Gaussian meta noise can result in
apparently nonsensical scenarios where, for example, r < ¢, (and
thus the Type-1 response is “S,”) and simultaneously ¢, < r <c,, ,
for i > 1 (which normally corresponds to high confidence in the
Type-1 response “S,”). This situation occurs when the confidence
criteria on the opposite side of the Type-1 response cross over the
decision criterion c,. The Gaussian meta noise model does not
consider these criteria when determining the final confidence rat-
ing, so this situation would simply result in confidence of 1.
Nevertheless, it may appear possible that such situations would
allow the Gaussian meta noise model to explain changes of mind
or error detection. However, empirically, changes of mind improve
performance such that subjects are likely to change an incorrect
response to a correct response (Resulaj, Kiani, Wolpert, &
Shadlen, 2009). In the case of the Gaussian meta noise model, the
situation described above arises from the addition of random noise
and thus changes of mind in this model would worsen performance
such that subjects are likely to change a correct response to an
incorrect response. Therefore, the Gaussian meta noise model
cannot provide a meaningful model of changes of mind or error
detection. Finally, we also note that it is possible for some confi-
dence criteria on the same side as the Type-1 response to cross
over the decision criterion c; this situation simply results in a high
confidence rating for the chosen response.

The lognormal meta noise model assumes that the confidence
criteria, ¢;, follow a lognormal probability distribution, g;,¢,.0/maz*

2 —
¢~ gGauss(xl Wi O-meta) - , XE (=%, )

2
¢~ glognormul(xl Wi O-meta)
B (In(x — "0)7%‘)2 .
,XE (cp, @) ifi>0

1
e 202
(X_Co) V 2170r2neta e
1 7(ln(cofx)+p.i)2
Y e E—
2
(C() —X) V 2770metu

2w, XE (—%,¢p) ifi <0
where w, and o2, are the mean and variance of the Gaussian
random variable obtained by taking log of ¢; and i = —n + 1,
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....—1,1,...,n — 1. The parameters p, were constrained so that
My 41 =...=p_;and p, = ... = m,_,. The confidence
criteria, c;, were generated as perfectly correlated random variables
ensuring that, as in the Gaussian meta noise model, there were no
cross-overs between them. Note that all confidence criteria, c;, are
bounded by ¢, such that, unlike for the Gaussian meta noise model,
there were no cross-overs of the decision criterion. Therefore,
confidence responses were given in the same way as in the stan-
dard SDT model. Further, the variance of each confidence crite-
rion, ¢,, is given by (e"fnem -1 X i+ %ea when i > 0 and given
by (e"sm - 1) X ¢ 2+ % when i < 0. This means that more
extreme confidence criteria have higher variability.

Model Fitting

Clearly adjudicating between the three confidence generation
models—standard SDT, Gaussian meta noise, and lognormal meta
noise—requires large amounts of data for each subject. Therefore,
we focused our model fitting analysis mainly on the data from
Experiment 4. Nevertheless, in order to demonstrate that our
model fitting procedure can be generalized to other data, we also
fit the models to data from Experiments 1 and 3a, and 3b. Exper-
iments 2a and 2b contained only 97 trials per subject and because
the model fitting procedure tends to yield noisy estimates when
trial counts are low, the data from these experiments were ex-
cluded from model fitting.

For the purposes of model fitting the data from Experiment 4,
we transformed the continuous confidence scale into six bins,
using five equidistant criteria placed between the lowest (50) and
highest (100) possible ratings, such that confidence ratings were on
a 1-6 scale. We further verified that our results were not affected
by the method we chose for binning the continuous confidence
data. We repeated our analyses after dividing the confidence
ratings into six quantiles and found virtually the same results.
Thus, our results do not depend on the method of binning confi-
dence ratings.

General model fitting procedure. For each level of contrast,
our models had 12 basic parameters: w (the strength of the sensory
signal), ¢, (the decision criterion), and p_s, . . ., by Mys - - - 5 Mg
(the parameters determining the locations of confidence criteria).
The Gaussian and lognormal meta noise models had an additional
parameter, o,,,,,, controlling the level of metacognitive noise. For
each model, the strength of the sensory signal and the confidence
criteria were fitted separately for each contrast. In all cases, the
sensory noise, o,,,, was set to 1.

For all three models, the parameters . and ¢, were analytically
computed using the formulas w = z(HR) — z(FAR) and ¢, =
- %[z(HR) + z(FAR)]. The parameter p was computed sepa-
rately for each of the three stimulus contrasts, whereas ¢, was
computed by pooling all the trials from the three contrast condi-
tions. The main reason we chose to fix the decision criterion across
the three levels of stimulus contrasts was because our manipulation
of stimulus contrast is expected to only cause variation in task
performance (d") but not lead to any changes in response bias.
We verified that this is true by comparing the values of ¢,
computed independently for each of the three contrast levels. A
one-way repeated measures ANOVA on ¢, with stimulus con-
trast as a factor revealed that there were no group-wise mean

differences in ¢, between the three contrast conditions, F(2,
19) = 0.06, p = .94.

Another issue with estimating ¢, by pooling trials from different
Gaussian stimulus distributions (we call this Method 1) is that this
procedure may lead to biases in estimation (see Supplementary
Figure 6). Therefore, we also checked whether using different
methods of estimating ¢, would lead to significant differences in
the values we obtain. We estimated ¢, in two additional ways—by
averaging the estimates of ¢, computed separately for each con-
trast level (Method 2) and by running a fitting procedure which
provided ML estimates of the SDT parameters w and ¢, (Method
3). We then compared the estimated ¢, with estimates obtained
from our original method. We found that because there were
negligible amounts of bias in our data, the three methods resulted
in very similar values of c¢,. A one-way repeated measures
ANOVA found no significant mean differences in the estimates of
¢, obtained from the three methods, F(2, 19) = 0.24, p = .79, and
pairwise ¢ tests further confirmed that there were no significant
mean differences between any pair of groups (Method 1
vs. 2: mean difference = 0.0013, #(19) = 0.35, p = .73; Method
1 vs. 3: mean difference = 0.0018, #(19) = 0.70, p = .49; Method
2 versus 3: mean difference = 0.0005, #(19) = 0.34, p = .74).
These results suggest that, for our data, using different methods to
estimate ¢, does not lead to significant biases in estimation. In
addition, because we keep our estimates of ¢, fixed across the three
models, it is unlikely that using a different estimate would signif-
icantly impact our model comparisons.

To compare the model fits, we computed the log-likelihood
value associated with the full distribution of probabilities of each
response type, as done previously (Rahnev et al., 2013; Rahnev,
Maniscalco, et al., 2011, Rahnev et al., 2012):

Log likelihood = Ei’j,klog(pijk) X Ny

where p,;; and n;, are the response probability and number of
trials, respectively, associated with the stimulus class, i, confi-
dence response, j, and contrast level, k.

Model fitting for the standard SDT model. We designed an
optimization algorithm to match, for each confidence criterion c;,
the expected proportion of high confidence responses with the
observed frequency of high confidence responses in the data
(proportion of confidence responses greater than or equal to the
value of the criterion). The algorithm continuously adjusted the
value of ¢; till the difference between the expected and observed
proportions was less than 0.0001. We used the same algorithm to
independently adjust the locations of the 10 confidence criteria, for
each condition of the experiment. This procedure yielded estimates
of the best fitting confidence criterion locations along with the
response probabilities associated with each type of confidence
response.

Model fitting for models with metacognitive noise. To fit
the Gaussian and lognormal meta noise models, we searched the
parameter space of o, and, for any chosen value of o
estimated the best fitting set of confidence criteria.

The reason we implemented model fitting in this nested manner
is because none of the existing MLE procedures (based on simu-
lated annealing or Bayesian adaptive direct search) were able to
consistently find the global minimum. We observed that the log
likelihood function plotted as a function of ¢,,,,, contained a large
number of local minima. Therefore, once the starting values of

meta’®
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confidence criteria were chosen, they strongly constrained o,,,,,,
which made it hard for the standard fitting procedures to simulta-
neously change metacognitive noise and confidence criteria and
often resulted in these fitting procedures getting stuck in a local
minimum. In order to prevent this, we designed a nested fitting
procedure in which we first searched the space of the parameter
0,01 and, for each value of o,,,,,, fitted the confidence criteria.

The fitting of o,,,,, was performed by successively running a
coarse search followed by a fine search. The coarse search sampled
0,..: alOng its entire plausible range, starting from a value of .05
and increasing in steps of .2, till it reached a maximum value of
2.85. Subsequently, we performed a fine search on the parameter
space surrounding the value of o,,,,, that produced the highest log
likelihood during the coarse search. The fine search was con-
strained within *.15 of this value and was conducted via the
Golden section search method (Kiefer, 1953), which is an efficient
search algorithm for locating the extremum of a unimodal func-
tion. The algorithm searched for the maximum of the log likeli-
hood function by successively narrowing the range of o,,,,,, inside
which the maximum was known to exist up to a prespecified
precision of 0.001.

For each value of o,,,,, we ran a nested fitting procedure for
determining the optimal location of each confidence criterion.
According to the Gaussian and lognormal meta noise models, the
confidence criteria themselves arise from probability distributions.
Therefore, to estimate the proportion of high confidence responses
associated with each criterion, we need to take into account both
the likelihood of observing that internal response x and the prob-
ability that this internal response will result in a rating of high
confidence. The proportion of high confidence responses associ-
ated with each confidence criterion, c;, is therefore given by the
following double integrals (separate equations are needed depend-
ing on whether the perceptual decision was for the second stimulus
category S,, in cases where x = ¢, or the first stimulus category
S,, in cases where x < ¢):

p(high conf|resp = §2)
_ 23 f: J‘Z f(x | }LS’ 038)15) g(y | }L('i’ U%zeta)dy dx
25 f:c f(x I Mss O-,%ens)dx

,i1>0

and

p(high conf| resp = S1)
3 G 02 83 e )y d
. S [ Al 02

where ., is the mean of the sensory distribution for stimulus
category s, . and o2, are the parameters of the confidence
criterion distribution, f is the Gaussian probability distribution of

2
sensory evidence, f(x|w,o?) = — ef%, and g is the
probability distribution of confidence Criteria described above sep-
arately for the Gaussian (g,,,,) and lognormal (g;,4,,0,mq) CASES.
We note that, as the equations suggest, when the Type-1 response
is S5, only the confidence criteria ¢, through c,_, are considered,
whereas when the Type-1 response is S,, only the confidence

criteria ¢_,,,, through c¢_, are considered. The limits of the

,1<0

integral for the confidence criterion distribution (/, and /,) depend
on the type of distribution. For lognormal distributions, which are
bounded at c,, both [, and [, = ¢,. For Gaussian distributions,
which are unbounded on both sides, /;, = —o and [, = . It should
be noted that these equations produce the toral proportion of high
confidence responses associated with a given confidence criterion
and a given Type-1 (decision) response.

The double integrals were computed numerically using
MATLAB'’s function integral2. For values of o,,.,, < 0.05, the
integrand sometimes assumed values that were too small (of the
order 1072%) for the integral function to work with. Therefore,
due to constraints imposed by the numerical integration method on
the maximum allowed precision, we limited the lower range of
O prera 10 0.05.

We note that there are two features of our model fitting proce-
dure that can be seen as nonstandard. First, although our current
model fitting procedure arrives at fits for the metacognitive noise
parameter based on values that maximize likelihood, the procedure
nested under this that estimates the locations of the confidence
criteria was based on matching the expected proportion of high
confidence to the observed proportion for each criterion. There-
fore, this procedure does not maximize likelihood with respect to
confidence criteria. Second, we chose to fit a distinct set of
confidence criteria for each stimulus contrast level. This decision
was based on a desire to make minimal assumptions about how
different contrasts are represented internally (Denison, Adler, Car-
rasco, & Ma, 2018). However, a more standard approach is to
instead implement a model in which all criteria (both the decision
and the confidence criteria) remain invariant across the three task
conditions. Therefore, to ensure that these modeling decisions did
not impact our results, we repeated the model fitting procedure by
(a) modifying our nested optimization algorithm for estimating
confidence criteria to generate fits that maximize the log-
likelihood associated with each criterion and (b) fitting a single set
of confidence criteria across the three task conditions. This model
fitting procedure reproduced our original results. We describe
these analyses in detail in Supplementary Analysis 3 and show the
results of the fitting in Supplementary Table 2. In addition, we
further validated that our original fitting procedure provides good
parameter recovery (Supplementary Analysis 4 and Supplemen-
tary Figure 6) and our model comparison procedure results in good
model recovery (Supplementary Analysis 5 and Supplementary
Table 6).

Finally, we note that our two-step model fitting procedure does
not simultaneously maximize likelihood for all model parameters
(since w and ¢, were fixed based on analytical formulas). Hence,
our parameter estimates are not, strictly speaking, maximum like-
lihood estimates (MLEs). Nevertheless, it is extremely unlikely
that the true MLEs would have values for w and ¢, that are
substantially different from the values that we obtained from our
analytical formulas, and therefore our estimates are likely to be as
close of an approximation of the MLEs as can be achieved using
numerical estimation. Therefore, we derive our measure for model
comparisons from the formula used to compute Akaike informa-
tion criterion (AIC). However, since our estimates are not, strictly
speaking, MLEs (as required for computing AIC), we refer to this
measure as AIC™.
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Model Predictions

We tested each of our models’ predictions about the relationship
between metacognitive performance and confidence criteria, as
well as their predicted zROC functions, against the data from our
experiments. We first calculated the observed proportions of high
confidence for 98 different locations of the confidence criterion
(confidence values from 51 to 99 in steps of one for each stimulus
category). We then estimated the optimal locations of these 98
confidence criteria by matching their expected proportions of high
confidence to the observed proportions. While estimating confi-
dence criteria in this manner, we fixed the values of o,,,,, to the
best estimates we obtained previously from our main fitting pro-
cedure.

To generate the model predictions for the fitted values, we
simulated 100,000 trials for each model and recorded the stimulus,
decision, and confidence responses. From these responses, we
computed the four measures of metacognition (meta-d'/d’, meta-
d', Type-2 AUC, and Phi). As with the empirical analyses, we
computed all the measures of metacognition separately for the
three stimulus contrast levels used in the experiment. Finally, we
also computed the HR and FAR associated with each criterion and
z-scored them to plot the predicted zZROC functions.

Evaluating o, as a Bias-Free Measure of

Metacognition

Our empirical results demonstrated that metacognitive sensi-
tivity decreases with increasing confidence criteria. However,
an ideal measure of metacognition should be free from such
dependence. The properties of a lognormal distribution of con-
fidence criteria naturally allow the variance of these distribu-
tions to scale with their mean—thereby potentially removing
the dependence between confidence criteria and o,,,,,. There-
fore, we investigated the possibility of using o,,,,, from the
lognormal meta noise model as a potential bias-free measure of
metacognition.

In the main fitting procedure, we estimated a single value of
0,1 DY simultaneously fitting the data to all six confidence levels
(produced by five criteria). For the current procedure, we ran the
model fitting procedure separately for each of the five criterion
locations. We performed the fitting procedure in this way for both
the Gaussian and lognormal meta noise models and obtained five
independent estimates of o,,,,, per subject per model per contrast.
Finally, we performed two-way repeated measures ANOVA on the
0,01 Values produced by each model with confidence criterion
location and stimulus contrast as factors, to assess the main effects
of confidence criterion location and task performance on the meta
noise estimates. Direct comparisons between criterion locations
were made using paired 7 tests.

Data and Code
All data, as well as code for analysis and model fitting can be
downloaded from https://ost.io/s8fnb/.
Results

We sought to develop a process model of confidence generation
that provides an explicit link between measures of metacognitive

ability and the underlying structure of confidence judgments. To
do so, we first tested the dependence of four popular measures of
metacognition—meta-d'ld', meta-d', Type-2 AUC, and Phi—on
the confidence criterion and analyzed the form of empirical ZROC
functions. Based on our findings, we developed a new process
model of metacognition that postulated the existence of lognor-
mally distributed metacognitive noise. We compared our new
model against alternative models using formal model comparison
techniques. Finally, we evaluated the possibility of using our
proposed model to generate a measure of metacognition that is
stable across varying confidence levels.

Metacognitive Ability Decreases for Higher Confidence
Criteria in Five Prior Experiments

We investigated whether metacognitive scores were affected by
the location of the confidence criterion. We reanalyzed data from
five prior experiments that varied on a large number of dimensions
including stimulus (Gabor orientation, color, or letter discrimina-
tion), context of the experiment (in a traditional lab setting or
online), number of trials and subjects, and so forth (see Methods).
The inclusion of such a wide set of perception experiments ensured
that any results would not depend on the specifics of any one
experiment.

In each of the five experiments, subjects gave confidence ratings
on a 4-point scale. We transformed the 4-point confidence scale
into three different 2-point confidence scales using three different
cutoffs (such that low confidence on the 2-point scales consisted of
all ratings of 1, 1-2, and 1-3 for each cutoff, respectively). We
then checked whether the metacognitive scores for four popular
measures of metacognition—meta-d'/d’', meta-d', Type-2 AUC,
and Phi—were affected by the location of the confidence criterion.
Specifically, for each experiment, we performed a one-way re-
peated measures ANOVA on each of the 4 measures of metacog-
nition with confidence criterion location (with three levels) as the
factor and followed up with paired ¢ tests. The results are displayed
in Figure 1 and are discussed in more detail below.

Dependence of meta-d'/d’ on confidence criterion location.
We found that the confidence criterion location had a significant
effect on meta-d'/d’ in four out of the five experiments (Experi-
ment 1: F(2, 18) = 10.23, p = .0003; Experiment 2a: F(2, 174) =
3.40, p = .035; Experiment 2b: F(2, 174) = 6.00, p = .002;
Experiment 3a: F(2, 24) = 3.154, p = .051; Experiment 3b: F(2,
25) = 4.8, p = .012). Pairwise comparisons indicated that there
was a significant decrease in meta-d'/d’ from the first to the third
criterion location for all five experiments (all p’s < .05). A similar
decrease from the second to the third criterion location was ob-
served for four out of five experiments (Experiments 1, 2a, 2b, and
3b; all p’s < .012) but not for the online-based Experiment 2a (p =
.055). Finally, the first two criterion locations did not produce
significantly different meta-d'/d’" values in any of the five exper-
iments (all p’s > .1).

Dependence of meta-d’ on confidence criterion location.
We found a significant effect of confidence criterion location on
meta-d' in all five experiments (Experiment 1: F(2, 18) = 11.09,
p = .0002; Experiment 2a: F(2, 174) = 32,99, p = 7.6 X 10~ '%;
Experiment 2b: F(2, 174) = 48.38,p = 2.8 X 10719 Experiment
3a: F(2,25) = 3.8, p = .029; Experiment 3b: F(2,25) =5.75,p =
.0056). Pairwise comparisons indicated that there was a significant
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Figure 1.

Metacognitive scores decrease for increasing levels of the confidence criterion. We analyzed data

from five different experiments where we computed metacognitive scores for different locations of the
confidence criterion. Metacognitive scores, as computed by meta-d'/d’, meta-d’, Type-2 AUC, and Phi measures,
showed a tendency to decrease with increasing confidence locations. The rows correspond to the different
experiments and the columns correspond to the different measures of metacognition. The dashed lines indicate
the measures computed using all the ratings of the original 4-point confidence scales. The red circles indicate
predictions of the lognormal meta noise model (described in detail later in the article) for Experiments 1, 3a, and

color version of this figure.

decrease in meta-d' from the first to the third criterion location for
all five experiments (all p’s < .05). A similar decrease from the
second to the third criterion location was observed for four out of
five experiments (all p’s < .001) but not for Experiment 3b (p =
0.13). Finally, similar to meta-d'/d’, the first two criterion loca-
tions did not produce significantly different mera-d’ values in any
of the experiments (all p’s > .06) except Experiment 3a (p =
.00008).

Dependence of Type-2 AUC on confidence criterion location.
There was a significant effect of confidence criterion location
on Type-2 AUC in four out of the five experiments (Experiment
1: F(2, 18) = 2.59, p = .09; Experiment 2a: F(2, 174) = 24.37,

p = 1.3 X107 ' Experiment 2b: F(2, 174) = 28.27,p = 4.1 X
1072 Experiment 3a: F(2, 24) = 9.91, p = .0003; Experiment
3b: F(2,25) = 9.91, p = .0002). Unlike meta-d'/d" and meta-d’
which appear to continuously decrease with increasing criteria,
Type-2 AUC showed a tendency to first increase from the first
to the second criterion and then decrease from the second to the
third criterion. Pairwise comparisons indicated that there was a
significant decrease in Type-2 AUC from the second to the third
criterion location for all five experiments (all p’s < .015).
However, Type-2 AUC increased from the first to the second
criterion location for two out of the five experiment (both p’s <
.002). Finally, pairwise comparisons also indicated a significant
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decrease in Type-2 AUC from the first to the third criterion for
two out of the five experiments (both p’s < .0002).

Dependence of Phi on confidence -criterion location.
Confidence criterion location had a significant effect on Phi in all
five experiments (Experiment 1: F(2, 18) = 4.85, p = .014;
Experiment 2a: F(2, 160) = 11.65, p = .00001; Experiment 2b:
F(2, 160) = 25.65, p = 4.4 X 10~ '"; Experiment 3a: F(2, 25) =
6.93, p = .002; Experiment 3b: F(2, 25) = 11.43, p = .00008).
Similar to what was observed for Type-2 AUC, Phi also tended to
first increase from the first to the second criterion and then de-
crease from the second to the third criterion. Pairwise comparisons
indicated that there was a significant decrease in Phi from the
second to the third criterion location for all five experiments (all
p’s < .02). Phi appeared to increase from the first to the second
criterion location in three experiments but this increase reached
significance only for Experiment 3a (p = .01). Finally, pairwise
comparisons also indicated a significant decrease in Phi from the
first to the third criterion for four out of the five experiments (all
p’s < .04).

Commonalities and differences between the four measures.
Several findings were common to all four measures of metacog-
nition. First, criterion location had a significant effect—as assessed
by the one-way ANOVA—on all measures of metacognition (18
out of the 20 comparisons were significant). Second, metacogni-
tive scores consistently decreased from the middle to the highest
confidence criterion (occurred for all 20 comparisons). A similar
decrease could be seen from the lowest to the highest confidence
criterion but it was less consistent (occurring in 14 out of the 20
comparisons). The reliability of these findings across four very
different measures of metacognition with different in-built as-
sumptions suggests that metacognition may be less reliable for
high confidence criteria.

One area where the different measures appear to diverge is in
the pattern of metacognitive scores for the first two confidence

A

Fixation
(1000 ms)

What was the
orientation of the
grating?

criteria. In particular, meta-d'/d" and meta-d' tended to only de-
crease with higher confidence criteria, but Phi and Type-2 AUC
showed a pattern of first increasing from the first to second
confidence criterion and then decreasing from the second to third
confidence criterion.

Because all of these previous experiments collected confidence
ratings on a discrete, 4-point scale, we were only able to sample
three distinct criterion locations. As a result, we could only infer a
coarse relationship between these measures and the confidence
criterion. The relationship between the metacognitive scores and
confidence criteria was likely further obscured by the possibility
that different subjects interpreted the discrete, 4-point scale differ-
ently and had a bias toward either low or high confidence criteria.
Therefore, in order to understand this relationship in finer detail,
we conducted a new experiment in which confidence ratings were
collected on a continuous scale and a much higher number of trials
was obtained from each subject.

A Detailed View of the Relationship Between
Confidence Criteria and Metacognitive Scores

We conducted a new experiment (Experiment 4) in order to
describe in detail the relationship between confidence criteria and
metacognitive scores. Twenty subjects completed 2,800 trials of a
perceptual discrimination task. Subjects indicated the tilt (left/
right) of a Gabor patch masked by noise (oriented 45° to the left or
right of the vertical) and simultaneously rated their confidence on
a continuous scale ranging from 50 to 100 (Figure 2). We used
three different levels of contrast for the Gabor patch. Obtaining
confidence ratings as continuous values allowed us to finely vary
the placement of the confidence criterion from 51 to 99 in steps of
one, resulting in 49 samplings of the criterion location. We com-
puted all four measures of metacognition for each of the 49
criterion locations.

Stimulus presentation

(100 ms)

Discrimination + confidence
response

Time

Left Left Left Left  Left

Right Right Right Right Right Response

100% 90% 80% 70% 60% 50/50 60% 70% 80% 90% 100% Confidence

Figure 2.

Schematic of the task in Experiment 4. (A) Each trial began with fixation for 1 s and was followed

by the presentation of a noisy Gabor patch tilted 45° either to the left or right of the vertical. Subjects had to
indicate the tilt of the Gabor patch while simultaneously rating their confidence on a continuous scale from 50
to 100. (B) The continuous confidence scale used for collecting the responses.
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We plotted each measure of metacognition as a function of the
confidence criterion location (Figure 3) separately for each of the
three contrast levels used in the experiment. The plots showed that
each measure was affected by the location of the confidence
criterion. Specifically, meta-d'/d" and meta-d' displayed a contin-
uously decreasing trend for increasing confidence criteria. On the
other hand, Type-2 AUC and Phi exhibited an inverted-U shaped
response where the highest values were obtained for intermediate
confidence criteria.

To quantify the observed relationships between each of the four
measures and the confidence criterion, we fit polynomial functions
to the data. We first fit quadratic functions described by the
equation:

y= aquaa‘xz + bquadx + Cquad

where y is the metacognitive measure (meta-d'/d’, meta-d', Type-2
AUC, Phi) and x = {1, 2, ..., 49} is the confidence criterion
location. The coefficient of the highest order term, a,,,,,, controls
the curvature of the quadratic function such that values of a,,,, <
0 indicate a function that opens downward (decreases toward both
extremes of x). These functions were fit separately for each indi-
vidual subject and for each level of contrast.

We found that when averaged across the three contrasts, the
quadratic term, a,,,,, was not significantly different from zero
either for meta-d'/d" t(19) = —1.69, p A1 or meta-d’,
#(19) = —1.21, p = .25 thus showing no evidence for a quadratic
relationship with the confidence criterion location. On the other
hand, a,,,, was significantly negative for each of the three con-
trasts both for Type-2 AUC (Contrast 1: #(19) = =543, p =

~—Contrast 1 — Contrast 2 — Contrast 3

250\
1 e
g 0.8 15 2. N
Q
Eos 1 «_N\
0.4 08

60 80 100 60 80 100
Confidence criterion location =~ Confidence criterion location

60 80 100 60 80 100
Confidence criterion location ~ Confidence criterion location

Figure 3. Metacognitive scores depend on confidence criteria. We
smoothly varied the location of the confidence criterion along 49 points on
the confidence scale and computed metacognition for each location of the
criterion separately for each of our three contrast levels. These plots
demonstrate that none of the currently popular measures of metacognition
are independent of the confidence criterion used. The shapes of the rela-
tionships are largely preserved across contrast levels. The shaded areas
represent across-subject SEM. See the online article for the color version
of this figure.

.00003; Contrast 2: #(19) = —7.19,p = 7.9 X 10~7; Contrast 3:
1(19) = =755 p = 39 X 1077 and Phi (Contrast 1:
1(19) = —6.16, p = 6.4 X 10~°; Contrast 2: #(19) = —8.30, p =
9.6 X 107%; Contrast 3: #(19) = —5.22, p = .00004). We note that
the inverted U-shaped relationship between confidence criteria and
Type-2 AUC directly follows from the properties of how Type-2
AUC is computed (see Supplementary Figure 7). We further note
that the empirical curves for both Type-2 AUC and Phi are asym-
metric, and therefore a quadratic model is not the correct model for
precisely describing how these quantities depend on the criterion
location. However, describing the exact relationship is not really
our goal here; instead, we simply seek to establish whether these
measures of metacognition are significantly dependent on confi-
dence criterion location.

Given that the measures meta-d'/d" and meta-d" did not have a
quadratic relationship with the confidence criterion location, we
further fit a linear function for both measures. The function was
modeled as:

Y = ajipX + blin

where y is the metacognitive measure (meta-d'/d" or meta-d") and
x = {1,2,...,49} is the confidence criterion location. Values of
the slope, a,, < O indicate that the measures decrease with
increasing confidence criteria.

We found a significant linearly decreasing relationship between
confidence criterion and both meta-d'/d’ and meta-d'. Indeed, a,,,
was significantly negative across all levels of contrasts for both
meta-d'/d’" (Contrast 1: #(19) = —3.44, p = .003; Contrast 2:
1(19) = —4.93, p = .00009; Contrast 3: 1(19) = —4.16, p = .0005)
and meta-d’ (Contrast 1: #(19) = —3.44, p = .003; Contrast 2:
1(19) = —4.51, p = .0002; Contrast 3: #(19) = —4.06, p = .0006).
It is notable that the results for both meta-d'/d’" and meta-d' were
strongest for the middle contrast, which produced an average
accuracy (77%) very close to the ideal threshold performance of
75%. Therefore, the results for these measures are unlikely to be
driven by ceiling and floor effects on performance. Further, it may
appear from Figure 3 that the results for meta-d'/d" are qualita-
tively different for, on one hand, Contrasts 2 and 3 where a
relatively smooth decrease is observed and, on the other hand,
Contrast 1 where a slower decrease followed by a steeper decrease
is observed. However, we note that the meta-d'/d’ values for all
three contrasts start and end at approximately the same locations
and the unevenness observed for Contrast 1 is likely due to the
reduced range of meta-d’ for contrast 1 (see Figure 3). Moreover,
the fact that meta-d'/d" remained largely the same across the three
levels of contrast suggests that the decrease in metacognitive
efficiency for higher confidence criterion levels is a general prop-
erty of confidence generation and does not depend on the specific
difficulty level employed.

These findings establish that the four measures of metacogni-
tion—meta-d'/d', meta-d', Type-2 AUC, and Phi—are dependent
on the confidence criterion location, although with differing pat-
terns of dependence. These results suggest that current measures of
metacognition fail to adequately capture the metacognitive pro-
cess. Further, the observed dependencies falsify the implicit pro-
cess models associated with each of these measures.
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The Relationship Between Task Difficulty and
Metacognitive Scores

The data from Figure 3 can also be used to infer the dependence
of each measure on task difficulty. Indeed, increasing contrast
levels produced increasing task performance d’ (Contrast 1: aver-
age d’ = 0.89, Contrast 2: average d' = 1.51, Contrast 3: average
d'" = 2.55; one-way repeated measures ANOVA on d' with con-
trast level as the factor: F = 470.37,p = 1.6 X 10~%7). Therefore,
the dependence of the metacognitive scores on contrast can be
used to elucidate their relationship to task difficulty.

We quantified the influence of task performance on metacog-
nitive measures by performing one-way repeated measures
ANOVASs on the measures with stimulus contrast as the factor. To
test for the main effect of contrast, we computed all of the
measures by transforming the continuous confidence scale into a
6-point scale by defining six equidistant bins along the continuous
scale (see Methods for details) and performed one-way repeated
measures ANOVAs on these measures with stimulus contrast as
the factor. We found highly significant effects of stimulus contrast
on meta-d', F(2, 19) = 313.17,p = 2.5 X 10724 Type-2 AUC,
F(2,19) = 274.51, p = 2.5 X 10~ **; and Phi, F(2, 19) = 64.53,
p = 6.1 X 10”3, but no significant effect of stimulus contrast on
meta-d'/d’, F(2, 19) = 1.38, p = .26. All pairwise comparisons
between the stimulus contrast levels showed that meta-d’, Type-2
AUC, and Phi significantly increased with increasing contrast
levels (all p’s < .0005), whereas none of the pairwise comparisons
was significant for meta-d'/d' (all p’s > .2). These results provide
clear empirical support for the notion that, of all popular measures
of metacognition, only meta-d'/d" provides a measure of “meta-
cognitive efficiency,” that is, it is independent of task difficulty
(Fleming & Lau, 2014).

Nonlinear zZROC Functions in Perceptual
Decision Making

The results so far demonstrate that all current measures of
metacognition are dependent on the location of the confidence
criterion and thus falsify these measures’ implied process models
of confidence generations. Critically, our results have specific
implications about the possible nature of metacognitive ineffi-
ciency. Namely, based on the results for meta-d'/d’ and meta-d’, it
appears that the confidence generation process becomes less reli-
able for higher confidence criteria. Nevertheless, it remains pos-
sible that the observed decrease in meta-d'/d’ and meta-d’ with
higher confidence criteria is due to some idiosyncratic assumptions
of these measures rather than a true decrease in the reliability of
confidence generation.

To understand the underlying relationship between the reliabil-
ity of confidence generation and the confidence criterion level, we
constructed zZROC curves. The zZROC function is predicted to be
linear by SDT. However, we reasoned that if confidence genera-
tion is more unreliable for high confidence criteria, then we should
observe concave zZROC curves. The reason for this prediction is
that increasingly unreliable confidence generation would result
in lower implied sensitivity for the extreme ends of the zZROC
curve.

The shape of zROC functions has been of great interest in
memory and several studies have found concave functions in

various memory tasks (Ratcliff et al., 1994; Ratcliff & Starns,
2013; Voskuilen & Ratcliff, 2016; Yonelinas, 1999; Yonelinas &
Parks, 2007). Nevertheless, the shape of the zZROC function has not
been investigated in the context of perceptual decision making and
is typically assumed to be linear following the predictions of
standard SDT.

Our experiment allowed us to finely vary the confidence crite-
rion location along the continuous confidence scale. We could thus
generate 98 (zFAR, zHR) pairs (49 pairs coming from the 49
confidence criteria for each of the two stimulus classes) and plot
the zZROC function with high resolution. For comparison, we
superimposed the linear zZROC function implied by the empirical
d' onto these plots. We found that the empirical ZROC curves have
a clear curvature that becomes more pronounced for higher con-
trast levels (Figure 4).

To quantify the overall curvature of the zZROC functions, we
first rotated the functions clockwise at 45° (see Methods) and then
fit a quadratic function (parabola) to individual subject’s zZROC
curves. The quadratic function had the following form:

W=axX@ZV)V?+bX(ZV)+c¢

where zU and zV are the transformed hit and false alarm rates after
the 45° rotation. Values of the quadratic coefficient a < 0 indicate
downward (concave) overall curvature. Although our curve-fitting
analyses cannot rigorously establish that empirical zZROC func-
tions are strictly concave in shape (that is, that there is a negative
curvature at every point of the function), they can capture the
global trend.

The results showed that the coefficient a was indeed significantly
negative for each level of contrast (Contrast 1: mean a = —0.012,

zHR

% Decision criterion
X Confidence criteria used for model fitting
@ Confidence criteria - Contrast 1
@ Confidence criteria - Contrast 2
@ Confidence criteria - Contrast 3

T T T 1
-1 0 1 2
zFAR

Figure 4. Empirical zZROC functions. We created zZROC plots by varying
the confidence criterion along the continuous confidence scale. The result-
ing zZROC curves were nonlinear with downward curvature. The linear
function predicted by standard SDT is plotted as a dashed gray line for
comparison. The overall curvature of the zZROC curves increases for higher
contrast levels. The (zFAR, zHR) pair generated by the decision criterion
is marked as “*”" and the pairs generated from the five confidence criteria
that were subsequently used for model fitting are indicated as “X.” See the
online article for the color version of this figure.
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#(19) = —2.51, p = .021; Contrast 2: mean a = —0.037,#(19) = —4.78,
p = .0001; Contrast 3: mean a = —0.057, «(19) = —4.69, p =
.0002). Further, we tested whether the zZROC functions became more
concave for higher contrasts. A one-way ANOVA revealed a signif-
icant main effect of contrast on the coefficient a, F(2, 19) = 13.71,
p = .00003. Further, comparisons between each of the three pairs
of contrast levels confirmed that the curvature of the zZROC func-
tions increased with increasing levels of contrast (Contrast 1 vs. 2:
1(19) = 3.33, p = .003; Contrast 1 vs. 3: #(19) = 4.24, p = .0004;
Contrast 2 versus 3: #(19) = 2.71, p = .013). Additionally, we
also corroborated these findings by plotting ZROC functions for
Experiments 1-3 and found that three out of the five tasks
showed considerable downward zROC curvature (Supplemen-
tary Figure 2).

These results demonstrate that robustly nonlinear zROC
curves exist not only in memory experiments but also in per-
ceptual decision making. More importantly, the downward cur-
vature of the zZROC functions is in line with the conclusions
from the meta-d'/d' and meta-d' analyses that confidence gen-
eration becomes less reliable for higher confidence criterion
locations.

Accounting for Biases in Estimation

The results so far suggest that metacognitive assessment
becomes less reliable for higher levels of confidence. However,
high confidence criteria are also noisier to estimate, and, in fact,
can lead to directional biases when estimating performance.
Such directional biases only occur for criteria with a sizable
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chance of producing 0 false alarms (or 0 misses; see Methods).
Therefore, in a control analysis, we removed all criteria
with >5% chance of producing zero false alarms in a given
subject and verified that this procedure virtually eliminates
directional biases (Supplementary Figures 3-5). We note that
this procedure is very conservative as it leads to the removal of
many criteria, thus resulting in restricted ranges for the meta-
d'ld', meta-d', and zZROC curves.

Removing criteria with >5% chance of producing O false alarms
led to the same qualitative results though the effect became smaller
due to the conservativeness of the analysis. We found that the
linearly decreasing relationship between confidence criterion and
meta-d'/d’ quantified by their slope a,;, was preserved for Con-
trasts 2 and 3 but not for Contrast 1 (Figure SA; Contrast 1: #(19) =
0.05, p = .96; Contrast 2: #(19) = —3.10, p = .006; Contrast 3:
t(19) = —2.13, p = .046). For meta-d’, this negative linear
relationship was significant for Contrast 2 and marginally signif-
icant for Contrast 3 (Figure 5A; Contrast 1: #(19) = —0.03, p =
98; Contrast 2: #19) = —-299, p = .007; Contrast 3:
1(19) = =2.02, p = .058). Similarly, the overall downward cur-
vature of the zZROC functions (quantified by the negative quadratic
coefficient, a) were significant for Contrasts 2 and 3 but not for
Contrast 1 (Figure 5B; Contrast 1: #19) = —1.73, p = .099;
Contrast 2: #(19) = —4.41, p = .0003; #(19) = —3.26, p = .004).
We further repeated these analyses by excluding any criteria which
have a > 1% chance of generating O false alarms and still found
similar results (Supplementary Analysis 1 and Supplementary Fig-
ure 3).
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Figure 5. Accounting for biases in estimation. (A) Relationship between metacognitive scores and confidence
criteria for meta-d'/d' and meta-d' after excluding criteria with >5% chance of producing O false alarms.
Negative linear relationships can still be seen though the effect sizes are attenuated. The shaded areas represent
across-subject SEM. (B) Empirical zZROC functions with the same exclusion criteria. Again, the overall concave
shape of the zROC curves is preserved but attenuated. For all zZROC plots, the linear functions predicted by
standard SDT are plotted as dashed gray lines for comparison and the (zFAR, zHR) pair generated by the
decision criterion is marked as “*.” See the online article for the color version of this figure.
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Constructing a Model of Metacognitive Inefficiency

Based on our empirical observations, we sought to build a
process model of confidence generation that meets several criteria.
First, the model should provide a better fit to the raw data than
competing models. Second, the model should predict both the
observed pattern of dependence of existing measures on the con-
fidence criterion level and the shape of the empirical ZROC curves.
Third, the model should have an explicit connection to measuring
metacognition; in other words, the process model should postulate
the nature of metacognitive inefficiency and its parameters should
then serve as theoretically inspired measure of metacognitive abil-
ity. Finally, the measure of metacognitive ability implied by the
model should be independent of both the confidence criterion and
task difficulty.

A process model that meets the above criteria has to postulate an
imperfect confidence generation process unlike standard models
such as SDT (Figure 6). Such imperfection has typically been
incorporated via the assumption of Gaussian metacognitive noise,
that is, additional Gaussian noise corrupting the confidence ratings
but not to the perceptual decision (Bang et al., 2019; De Martino
et al., 2013; Fleming & Daw, 2017; Maniscalco & Lau, 2016;
Mueller et al., 2008; Rahnev et al., 2016; Shekhar & Rahnev,
2018; van den Berg et al., 2017).

Models with Gaussian metacognitive noise, however, face at
least two challenges. First, because the metacognitive noise is
conceptualized as independent of the sensory noise, these models
predict the existence of arguably nonsensical scenarios where on
some trials the decision-level evidence points to one stimulus
category but the metalevel evidence points to the other stimulus
category (sometimes with high degree of confidence). Second,
these models postulate the same level of noise for all confidence
criteria, which runs counter to our findings that metacognition
becomes more unreliable for higher confidence criteria.

To address these challenges, we created a model where meta-
cognitive noise follows a lognormal distribution (Figure 6). The
lognormal distribution, LN(j, 6), is defined on the interval (0, %).
Therefore, by defining the decision criterion as the zero of the
evidence axis, we ensure that the resulting “lognormal meta noise
model” does not produce nonsensical scenarios where the decision
and confidence conflict with each other. Further, for a given noise
level, o2, criterion locations farther from the decision criterion
feature higher variability. Thus, the lognormal meta noise model
appears to address both challenges faced by the Gaussian meta
noise model.

The Lognormal Meta Noise Model Fits the Data
Better Than Competing Models

To formally evaluate the performance of our lognormal meta
noise model, we compared its ability to fit the raw data with two
competing models: the standard SDT model and the Gaussian meta
noise model (Figure 6). For the purposes of model fitting, we
transformed the continuous confidence scale into a 6-point scale,
which required the estimation of 10 confidence criteria (five cri-
teria for each of the two stimulus categories) for every model. To
evaluate the models’ performance, we compared the AIC™ values
generated by each model’s fit. AIC* measures the quality of

models’ fits to the data while punishing the models for the number
of free parameters.

AIC™ analyses favored the lognormal meta noise model over the
standard STD model by an average of 29.75 points (Figure 7 and
Supplementary Table 1). The lognormal meta noise model also
outperformed the Gaussian meta noise model by an average AIC*
of 17.46 points. We further corroborated these results by fitting the
three models to Experiments 1, 3a, and 3b and demonstrating that
the lognormal meta noise model outperforms all other models
though the differences were smaller due to the smaller amount of
data per subject (Supplementary Tables 3, 4, and 5).

However, close inspection of Figure 7 suggests the existence of
a large variability between subjects: although the lognormal meta
noise model strongly outperformed the standard SDT and the
Gaussian meta noise models for some subjects, there was little
difference between the models for others. If the lognormal meta
noise model provides a valid description of the confidence gener-
ation process for all subjects, then one may expect that the vari-
ability in the relative quality of model fits between models depends
on subjects’ metacognitive performance. Indeed, high metacogni-
tive performance would imply the existence of negligible meta-
cognitive noise and thus, all three models could be expected to fit
equally well. On the other hand, low metacognitive performance
would imply the existence of sizable metacognitive noise, which,
if described well by a lognormal distribution, would make the
lognormal model substantially outperform both the standard SDT
and Gaussian meta noise models.

We tested for this relationship by correlating the difference in
AIC™ values between the lognormal meta noise model and its
competing models with metacognitive performance as quantified
by meta-d'/d’" (Figure 8). We found that the difference in AIC*
between the lognormal meta noise model and the standard SDT
model was very strongly correlated with meta-d'/d’ (r = .88, p =
3.7 # 1077). This result is expected since lower metacognitive
scores imply greater metacognitive noise, which can, in turn, be
better accommodated by the lognormal meta noise model to pro-
vide better fits to the data. However, the AIC™ difference between
the lognormal and Gaussian meta noise models was also signifi-
cantly correlated with meta-d'/d’, r = .6, p = .005, which strongly
supports the notion that metacognitive noise has a lognormal (or
similar to lognormal) distribution. To further confirm the robust-
ness of this relationship, we excluded one subject who showed a
large difference in AIC" between the lognormal meta noise model
and its competing models (AAIC™ for standard SDT: 148.8 and
AAIC” for Gaussian meta noise model: 132.8). Recomputing the
correlations between meta-d'/d' and the AIC™ difference, we found
that the correlations decreased only slightly (standard SDT: r
changed from 0.88 to 0.87; Gaussian meta noise model: r changed
from 0.62 to 0.46) with both correlations remaining significant
(SDT: p = 9.7 * 10~ 7; Gaussian meta noise model: p = .047).

Only the Lognormal Meta Noise Model Accurately
Captures the Relationship Between Measures of
Metacognition and the Confidence Criterion

Our empirical results established that metacognitive perfor-
mance—as quantified by meta-d'/d’, meta-d', Type-2 AUC, and
Phi—depends on the confidence criterion location. Here we tested
whether the three models above—the lognormal meta noise,
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Figure 6. Computational models of confidence generation. Depiction of three models of confidence genera-
tion: standard SDT, Gaussian meta noise, and lognormal meta noise. The three models are identical in
postulating Gaussian sensory distributions for each stimulus category. At the metacognitive level, the models
differ in how they generate confidence ratings. The standard SDT model assumes a noiseless confidence
generation process with the placement of deterministic confidence criteria on the evidence axis. The Gaussian
and lognormal meta noise models incorporate additional metacognitive noise (that is independent of sensory
noise) into the confidence response. Metacognitive noise in these models refers to the trial-by-trial variability of
the confidence criteria. The Gaussian and lognormal meta noise models differ only in their assumptions about
the distributional properties of the metacognitive noise. Note that alternative versions of the Gaussian and
lognormal meta noise model with variability in the sensory signal produce very similar results (Supplementary
Analysis 6). See the online article for the color version of this figure.

Gaussian meta noise, and standard SDT—can predict the observed
dependence of different measures of metacognition on the confi-
dence criterion. Following our analyses of the empirical data, we
quantified the relationship between the measures and confidence
criteria by fitting linear functions (for meta-d'/d’ and meta-d") and
quadratic functions (for Type-2 AUC and Phi) to individual-subject
data for each level of contrast. For the linear fits, we tested the
significance of the estimated slopes; for the quadratic fits, we
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Figure 7. Model fitting results. The lognormal meta noise model signif-
icantly outperformed both the standard SDT and the Gaussian meta noise
models. Positive AIC" values indicate that the lognormal meta noise model
provided better fits to the data. Error bars indicate SEM and dots indicate
individual subjects. See the online article for the color version of this
figure.

tested estimates of the parameter controlling the curvature of the
parabola.

We observed a stark difference between the three models in
their predictions about the relationship between the confidence
criterion level and the measures meta-d'/d’ and meta-d' (Figure 9;
average parameter estimates, as well as t and p values are reported
in Supplementary Table 7). Only the lognormal meta noise model
successfully captured the fact that both of these measures de-
creased with increasing confidence criterion in the empirical data
(Figure 3). Indeed, the lognormal meta noise model predicted
negative slopes for both meta-d'/d’ and meta-d' for each of the
three contrasts (p < .0001 for all six slopes). On the other hand, the
standard SDT model predicted that meta-d'/d’ and meta-d’ both
remain constant for increasing confidence criteria (p > .35 for all
six slopes). This is unsurprising because meta-d' is designed
within the SDT framework and in the absence of any corrupting
influence on confidence, it should always be equal to d' for all
criterion levels. Finally, the Gaussian meta noise model predicted
that both meta-d'/d" and meta-d' would increase with increasing
confidence criterion (p < .006 for all six slopes). In other words,
the Gaussian meta noise model makes a qualitatively wrong pre-
diction about how meta-d'/d' and meta-d’ depend on confidence
level.

Despite the large differences between the three models in their
predictions about meta-d'/d" and meta-d', there was a remarkable
agreement between them in regards to both Type-2 AUC and Phi
(Figure 9). Specifically, all three models correctly predicted the
inverted U-shape functions observed for these measures in
the empirical data (all p’s < .0001). These results suggest that the
parametric assumptions of both Type-2 AUC and Phi are so strong
that they can be captured with any SDT-based model regardless of
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Figure 8. Relationship between metacognitive performance and the quality of model fits. Correlation between
meta-d'/d" and the AIC™ difference between the lognormal meta noise model and both standard SDT and
Gaussian meta noise model. The difference in AIC" between the lognormal meta noise model and its competing
models increased as metacognitive performance (quantified by meta-d'/d") decreased. These results suggest that
the lognormal meta noise model specifically outperforms other models when metacognition is imperfect. The
gray lines represent the linear fits to the data. Circles depict individual subjects. See the online article for the

color version of this figure.

whether the model even postulates the presence of metacognitive
inefficiency.

Only the Lognormal Meta Noise Model Accurately
Captures the Observed zZROC Curves

Our experimental data revealed that zZROC functions are
robustly nonlinear (Figure 4). Here we tested whether the three
models above—the lognormal meta noise, Gaussian meta noise,
and standard SDT—can predict the observed zROC shapes.
From our previous simulations of the confidence generation
process, we estimated the zROC functions separately for each
subject and contrast level. We plotted the average zROC func-
tion within each contrast level by averaging across all subjects.
(Figure 10). As in the empirical data, we quantified the overall
curvature of ZROC functions predicted by each model by fitting
a quadratic function for each individual subject and for each
level of contrast. Quadratic coefficients a < 0 indicate zZROC
functions with an overall downward curvature.

We observed that only the lognormal meta noise model was able
to quantitatively capture the overall concaveness of the zROC
curves. Indeed, the estimated quadratic coefficient a for the log-
normal meta noise model was significantly negative for each level
of contrast (Contrast 1: M = —0.018, #(19) = —4.24, p = .0004;
Contrast 2: M = —0.031, #(19) = —4.12, p = .0005; Contrast 3:
M = —0.050, #(19) = —4.45, p = .0003), and, more importantly,
was not significantly different from those obtained from the qua-
dratic fits to empirical zZROC curves (Contrast 1: mean differ-
ence = .005, 71(19) = 1.53, p = .14; Contrast 2: mean differ-
ence = —0.009, #(19) = —1.35, p = .20; Contrast 3: mean
difference = —0.01, #(19) = —0.84, p = .40). On the other hand,
the curve fits for the Gaussian model also yielded significantly
negative estimates of the quadratic coefficient a for Contrasts 1
and 2 (Contrast 1: M = —0.002, #(19) = —2.15, p = .008; Contrast
2: M = —0.04, t(19) = —2.46, p = .02; Contrast 3: M = —0.004,
1(19) = —1.73, p = .09), but these estimates were significantly
smaller than the empirically observed values for Contrasts 2 and 3
and marginally smaller for Contrast 1 (Contrast 1: mean differ-

ence = —.01, #(19) = —1.93, p = .07; Contrast 2: mean differ-
ence = —0.034, 1(19) = —4.25, p = .0004; Contrast 3: mean
difference = —0.05, #(19) = —4.34, p = .0003). Finally, the
standard SDT model predicted estimates of the quadratic coeffi-
cient a that were not significantly different from zero (Contrast 1:
M = —0.0009, #(19) = —0.8, p = .43; Contrast 2: M = —0.001,
1(19) = —0.68, p = .50; Contrast 3: M = —0.003, #19) = —1.01,
p = .32) and were significantly smaller than the empirically observed
values (Contrast 1: mean difference = —.01, #(19) = —2.32, p = .03;
Contrast 2: mean difference = —0.04, 1(19) = —4.57, p = .0002;
Contrast 3: mean difference = —0.05, #(19) = —4.54, p = .0002), as
expected given that SDT is known to imply linear zZROC functions
(Green & Swets, 1966).

In addition, both the Gaussian and the lognormal meta noise
models predicted zROC functions with increasing curvature for
increasing contrast levels, as observed in the empirical zZROC
plots. Indeed, the one-way repeated measures ANOVAs on the
quadratic coefficient a revealed significant mean differences be-
tween the zZROC functions for the three contrast levels for both
models (lognormal model: F(2, 19) = 20.65, p = 8.5 X 107 7;
Gaussian model: F(2, 19) = 8.12, p = .001). Pairwise comparisons
confirmed that the quadratic coefficient a increased significantly
for higher levels of contrast for all possible comparisons for both
models (all p’s < .014). Thus, both models qualitatively capture
the empirically observed increased overall curvature of zROC
functions for higher contrasts though the lognormal meta noise
model provides more precise quantitative fits.

The Lognormal Meta Noise Model Leads to a Measure
of Metacognition That Is Independent of the
Confidence Criterion

Our empirical results demonstrated that metacognitive perfor-
mance depends on the level of confidence. However, researchers
are typically interested not in the level of performance in a specific
condition but in the overall ability of the subject. For example, d’
is typically preferred over percent correct exactly because it does
not change as bias increases even though higher bias means that
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the subject is answering correctly less frequently. Therefore, a

Confidence criterion location

Confidence criterion location ~ Confidence criterion location =~ Confidence criterion location

Figure 9. Predictions of standard SDT, Gaussian meta noise, and lognormal meta noise models for the
dependence of existing measures of metacognition on the confidence criterion. We observed a stark difference
in the models’ predictions for the relationship between confidence criteria and the measures meta-d'/d" and
meta-d’. While the lognormal noise model successfully captured the empirically observed negative relationship
between metacognition and confidence criterion for meta-d'/d’ and meta-d', the Gaussian meta noise and
standard SDT models predicted qualitatively different relationships between metacognitive scores and confi-
dence criteria for these measures. For the other two measures, Type-2 AUC and Phi, all the three models
consistently predicted an inverted U-shaped function, suggesting that the strong parametric assumptions of these
measures overshadowed the effect of metacognitive noise. The shaded areas represent the SEM of the measures
across subjects. See the online article for the color version of this figure.

dent estimates of o,,,,, for each level of the confidence criterion as

measure of the true metacognitive ability of a person should not
depend on the level of confidence and must reflect only those
changes that affect the metacognitive processing itself. Our results
suggest that no existing measure meets this criterion.

We therefore tested whether the estimated metacognitive noise,
0,100 10 OUT lognormal meta noise model could serve as a measure
of metacognitive ability that is uncontaminated by the confidence
level or the performance of the subject on the primary task. We ran
the model fitting procedure independently for each of the five
confidence criteria (that were previously defined for transforming
our continuous confidence data into 6-point ratings for the main
fitting procedure; see Methods for details) and for each of the three
contrast levels. From this fitting procedure, we obtained indepen-

well as for each level of contrast.

We first assessed the main effects of confidence criterion loca-
tion and stimulus contrast on o,,,,,, from each model by performing
two-way ANOVAs. We found that o,,,,,, as computed based on
the lognormal meta noise model, was insensitive to both confi-
dence criterion location and contrast. Indeed, a two-way ANOVA
revealed no main effect of confidence criterion, F(4, 19) = 1.21,
p = .31, or stimulus contrast, F(2, 19) = .66, p = .52, on 0,,,.,,
estimated from the lognormal meta noise model (Figure 11A). On
the other hand, we found that o,,,,, estimated from the Gaussian
meta noise model increased significantly for higher confidence
criterion locations, F(4, 19) = 8.95, p = 5.6 X 10> (Figure 11B)
but did not vary with stimulus contrast, F(2, 19) = .89, p = .42.
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Figure 10. Predictions of standard SDT, Gaussian meta noise, and lognormal meta noise models for the
observed zZROC functions. Standard SDT predicted linear zZROC functions for all contrasts. On the other hand,
both the Gaussian and lognormal meta noise models predicted zZROC functions with downward curvature, as
observed in our empirical data (see Figure 4). However, only the lognormal meta noise model captured the
overall level of concaveness, with the Gaussian meta noise model significantly underestimating the overall
concaveness. See the online article for the color version of this figure.

For both models, the interaction between stimulus contrast and
confidence criterion was not significant (lognormal meta noise
model: F(2,4) = 1.38, p = .21, Gaussian meta noise model: F(2,
4) = 1.77, p = .09) indicating that the relationship between o
and confidence criterion is similar across contrasts.

To further corroborate this conclusion, we ran Bayesian statis-
tical analyses that can quantify the evidence in favor of our null
hypothesis that o,,,,, is unaffected by confidence criterion and
stimulus contrast. In these analyses, we computed the Bayes factor
(BF) which measures evidence in favor of the null hypothesis (no
main effects of contrast, confidence criterion, or the interaction
between the two) relative to evidence in favor of alternative
hypotheses which include these effects. In the case where o,,,,,
was derived from the lognormal meta noise model, we found that
the null model was favored over all alternative models (model with
main effect of contrast only: BF,,;, = 13.42; model with main effect
of criterion location only: BF,, = 94.79; model with effects of
both contrast and criterion location: BF,,, = 1.4 X 10; model with

meta

effects of contrast, criterion location, and interaction between
them: BF,, = 2.5 X 10°). On the other hand, when o,,,, was
derived from the Gaussian meta noise model, the best model
included a simple main effect of confidence criterion (BF,, =
1.2 X 107). These findings provide strong support for the notion
that o,,,,, derived from the lognormal meta noise model (but not
when derived from the Gaussian meta noise model) is independent
of both difficulty and confidence criterion location and thus could
be used as a more robust measure of true metacognitive ability.

Discussion

We found that metacognitive performance depends on the con-
fidence level. This finding was robust across five previous and one
new data sets and four measures of metacognitive ability. Further,
we showed that empirical zZROC functions constructed from con-
fidence ratings, widely believed to be linear, have a distinctly
concave overall shape. Based on these findings, we developed a
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is independent of contrast. Thus, metacognitive noise derived from the lognormal meta noise model but not from
the Gaussian meta noise model could be used as a more robust measure of true metacognitive ability. Error bars
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indicate SEM. See the online article for the color version of this figure.

process model of metacognition, which assumes that confidence
criteria are drawn from a lognormal distribution. The resulting
lognormal meta noise model significantly outperformed competing
models with deterministic confidence criteria (standard SDT
model) or with confidence criteria drawn from Gaussian distribu-
tions (Gaussian meta noise model). Finally, we showed that the
lognormal meta noise model was able to yield a measure of
metacognition, ¢,,,,,, that is independent of confidence levels. Our
findings uncover a new mechanism underlying metacognitive in-
efficiency, derive an empirically validated process model of con-
fidence generation, and carry important implications for measuring
metacognition.

Joint Development of Process Models of Confidence
Generation and Measures of Metacognition

Process models of metacognition are intricately tied to measures
that quantify metacognitive ability. Specifically, a model that
proposes a specific mechanism for a given process should generate
a measure in the form of a parameter (or a combination of param-
eters) that is sensitive only to changes in that process. Conversely,
all measures of metacognitive ability implicitly assume a process
model that generates them. Therefore, assessing the sensitivity of
metacognitive measures to nuisance variables can allow us to test
the validity of their implicit process models. If we find that a
measure depends on one or more nuisance variables, this would
imply that its associated process model is either unable to effec-
tively tease apart metacognitive processes from other extraneous
influences or is failing to capture metacognitive processes in their
entirety.

However, this strong link between process models of confidence
generation and measures of metacognition has remained largely
unrecognized. Consequently, no current process model of meta-
cognition has been used to create a measure of metacognition, and
no existing measure of metacognition has been linked to its im-
plied process model of confidence generation. Our lognormal meta
noise model provides the first explicit bridge between models of
confidence generation and measures of metacognition. Future
work on either process models of confidence or on measures of

metacognition should attempt to connect explicitly these two areas
of research.

The Concept of Metacognitive Noise

The existence of metacognitive noise is at the heart of our
lognormal meta noise model. Several studies have previously
postulated the existence of metacognitive noise to explain meta-
cognitive inefficiency. Bang, Shekhar, and Rahnev (2019) dem-
onstrated that models with metacognitive noise make the unique
prediction that sensory noise would increase metacognitive effi-
ciency and confirmed the prediction in three different experiments.
Further, models with metacognitive noise explained observed
accuracy-confidence dissociations better than dual-channel models
(Maniscalco & Lau, 2016) and captured the effects of transcranial
magnetic stimulation to different sites in the prefrontal cortex
(Shekhar & Rahnev, 2018). The existence of metacognitive noise
has also received support in the memory literature with the finding
that its inclusion in models generates significantly better fits to the
data (van den Berg et al., 2017).

Nevertheless, the exact source of this metacognitive noise re-
mains unclear. Metacognitive noise is an umbrella term encom-
passing all noise sources that selectively influence the confidence
generation process. Mounting evidence suggests that confidence
generation incorporates many types of nonperceptual information
that have little to no influence on the perceptual decision. For
example, confidence ratings are influenced by previous confidence
ratings (Rahnev et al., 2015), arousal (Allen et al., 2016), and
action fluency (Fleming et al., 2015). Further, metacognitive de-
cisions have been suggested to use a heuristic strategy that ignores
evidence against a perceptual choice (Maniscalco et al., 2016;
Peters et al., 2017; Zawadzka, Higham, & Hanczakowski, 2017).
Fatigue (Maniscalco et al., 2017) and working memory manipu-
lations can also selectively impact metacognitive judgments
(Maniscalco & Lau, 2015). Finally, metacognitive but not percep-
tual sensitivity can be perturbed by transcranial magnetic stimu-
lation (Rahnev et al., 2016; Rounis et al., 2010; Ryals, Rogers,
Gross, Polnaszek, & Voss, 2016; Shekhar & Rahnev, 2018) and
lesions (Fleming, Ryu, Golfinos, & Blackmon, 2014) to the pre-
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frontal cortex. Collectively, these studies demonstrate a set of
factors which selectively influence metacognition and may serve
as plausible sources of metacognitive noise.

Adding Metacognitive Noise to the Confidence Criteria
Versus the Perceptual Signal

Here we modeled metacognitive noise as variability of the
confidence criterion but previously we modeled metacognitive
noise as affecting the perceptual signal at the metacognitive stage
(Bang et al., 2019; Shekhar & Rahnev, 2018). In the absence of
additional manipulations, these two ways of modeling metacogni-
tive noise are equivalent for the Gaussian meta noise model (see
Supplementary Analysis 6 for a demonstration of this equiva-
lence). These two implementations are not mathematically equiv-
alent for the lognormal meta noise model but additional model
fitting analyses showed that they produce virtually the same results
(Supplementary Analysis 6 and Supplementary Table 8).

Nevertheless, conceptually, noise in the perceptual signal and
noise in the confidence criteria correspond to different sources of
inefficiency in the system: noise could come from poor informa-
tion transmission to areas responsible for confidence generation
(conceptually captured by noise added to the signal) or poor
confidence generation (conceptually captured by noise added to
the criterion). We suspect that both of these sources of noise
contribute nontrivially to the overall metacognitive noise. Teasing
these influences apart is an important topic for future research.

The Distributional Properties of Metacognitive Noise

Our results strongly suggest that metacognitive noise is better
described by a lognormal rather than a Gaussian distribution. The
distributional properties of metacognitive noise have not been
previously examined and researchers have typically assumed, as
default, a Gaussian distribution. However, Gaussian metacognitive
noise leads to nonsensical situations where the sensory evidence
on the decision level points to one stimulus category but the
metacognitive level dictates a rating of high confidence for
the other stimulus category. Gaussian metacognitive noise also
cannot account for our observation that metacognitive inefficiency
increases with higher confidence criteria. Modeling metacognitive
noise with a lognormal distribution, which has a lower bound and
whose variance scales with its mean, addresses both of these
limitations.

Why may metacognitive inefficiency follow a lognormal distri-
bution? It has long been established that cortical neurons exhibit a
fairly stable normalized variability (quantified as the Fano Factor,
which is equal to variance divided by the mean). In other words,
higher firing rates lead to higher variability of the across-trial
neuronal response (Dean, 1981; Tolhurst, Movshon, & Dean,
1983; Tolhurst, Movshon, & Thompson, 1981). It is likely that
neural implementations of high confidence criteria or high sensory
signal may entail increased firing rates and that these increased
firing rates would then be expected to be more variable from trial
to trial. This mechanism may explain why metacognitive variabil-
ity increases with confidence criteria. The idea that noise levels
increase for higher values of the sensory evidence has also re-
ceived substantial support in the context of research on attention
and visual perceptual learning (Dosher & Lu, 1999, 2017; Lu &

Dosher, 2008; Lu et al., 2002). This research has demonstrated the
presence of signal-dependent multiplicative noise. This type of
noise is very similar to our use of a lognormal distribution for
modeling the noise in confidence criteria although this previous
work did not explore the implications of multiplicative noise to
models of metacognition. Finally, the notion that confidence rep-
resentations are derived from logarithmic mapping of evidence has
also been previously explored by van den Berg, Yoo, and Ma
(2017). In their generative model, confidence responses were com-
puted as logarithmic transformation of evidence (measured as
memory precision) followed by the addition of normally distrib-
uted metacognitive noise. This computation is equivalent to adding
lognormal metacognitive noise to the evidence variable before the
log transformation.

Another potential explanation for these patterns of results may
come from probability distortions which lead to increasing over- or
underestimation of probability for higher probability estimates.
However, probability distortions are unlikely to cause variations in
metacognitive accuracy because they are typically associated with
systematic biases in confidence. As long as these shifts are con-
sistent (occurring in one particular direction) for a given level of
confidence, they should not lead to changes in metacognitive
ability. We confirmed these expectations by simulating the effects
of probability distortions in a standard SDT model (as described by
Zhang & Maloney, 2012). We found that probability distortion
consistently led to either over- or underestimation of confidence,
because the confidence criteria are shifted either inward or out-
ward. However, the probability distortion had no significant effect
on metacognitive scores (Supplementary Figure 8).

Finally, it is important to clarify that we do not claim that the
structure of metacognitive noise is exactly lognormal. The
general phenomenon of metacognition becoming more imper-
fect with high confidence criteria can be captured by a number
of distributions whose variance scales with their mean—such as
Gamma or chi-squared distributions. Future work should ex-
plore whether any other distribution provides an even better
description of the data.

ZROC Functions in Perceptual Decision Making

A substantial amount of research has demonstrated the existence
of nonlinear zROC functions in memory research (Ratcliff et al.,
1994; Ratcliff & Starns, 2013; Voskuilen & Ratcliff, 2016; Yoneli-
nas, 1999; Yonelinas & Parks, 2007). However, empirical zZROC
functions have not received much scrutiny in perceptual decision
making. Using confidence ratings collected on a continuous
scale, we smoothly varied the confidence criterion and plotted
zROC functions with high resolution. Our results revealed the
existence of robustly nonlinear zROC curves in perceptual
decision making.

Further, we observed that the curvature of zROC functions
increases with higher stimulus contrast levels. This effect was
nicely captured by our lognormal meta noise model even though
the model was not explicitly designed to do so. Why does the
lognormal meta noise model predict different ZROC curvatures for
different contrasts? To clarify this, it is helpful to first explore why
the lognormal meta noise model predicts any curvature at all. The
model postulates the existence of larger noise in the extreme
confidence criteria. Critically, large noise in the extreme confi-
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dence criteria to the right of the decision criterion has larger impact
on zHR than zFAR because these criteria have a larger overlap
with the target compared with the nontarget distribution. Equiva-
lently, large noise in the extreme confidence criteria to the left of
the decision criterion has larger impact on zFAR than zHR. To-
gether, these effects create the curvature in zZROC functions. Once
this effect is appreciated, it becomes clear that the curvature can be
expected to be relatively small when the target and nontarget
distributions are relatively close to each other (as is the case for
low contrasts) and increase as the target and nontarget distributions
diverge more (as is the case for high contrasts).

Nevertheless, it should be noted that even though the lognormal
meta noise model is successful in capturing the overall curvature
of the zROC functions, it does not capture the shape of the
empirical ZROC functions precisely. Specifically, rather than a
function with smooth downward curvature, the lognormal meta
noise model predicts functions which appear to be piecewise linear
and decreasing on both side of the decision criterion. It is thus
possible that models where metacognitive noise follows other
functions (e.g., Gamma or chi-squared distributions) would pro-
vide a better fit. Nevertheless, the lognormal meta noise model is
more successful than existing competing models in quantitatively
capturing the global trend of the zZROC curvature.

An important question that arises from these findings is whether
other models or theories can explain the observed concave zZROC
functions. Both concave and convex zROC functions have been
observed in recognition memory and have been modeled as arising
from a dual processes of recognition and familiarity (Yonelinas,
1999). Such models, however, are pertinent only to memory and
cannot be easily extended to perceptual decision making. The only
other model that has been used to explain nonlinear zZROC func-
tions is the response-time confidence (RTCON) model (Ratcliff &
Starns, 2009; Voskuilen & Ratcliff, 2016) in which confidence is
the outcome of competing evidence accumulators, each represent-
ing one possible confidence response. In RTCON, the threshold
for each confidence accumulator is set independently and varying
these thresholds in relation to each other can lead to various zZROC
shapes. For example, when the thresholds are more liberal for
extreme confidence criteria, ZROC functions are concave, whereas
the opposite pattern results in convex zZROCs. Thus, RTCON can
account for any zZROC shape but does not predict a priori whether
convex or concave zZROC functions should be observed in percep-
tual decision making. In contrast, our lognormal meta noise model
is considerably more constrained and offers a plausible mechanis-
tic explanation for the concave zZROC curves in perceptual deci-
sion making.

Finally, it is currently unclear whether other existing models such
as dual-channel models (Del Cul, Dehaene, Reyes, Bravo, &
Slachevsky, 2009; Maniscalco & Lau, 2016), second-order Bayesian
inference models (Fleming & Daw, 2017), or models developed to
account for response time (RTs; Kiani, Corthell, & Shadlen, 2014;
Moran, Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 2010;
Vickers, 1979) can explain concave zZROC functions. We note that
none of these previous models include mechanisms where higher
confidence ratings become less reliable but further research is needed
to establish whether these models may be able to predict zZROC
functions with a downward curvature.

Implications for Measuring Metacognition

Our results demonstrate that all popular measures of metacognition
are significantly affected by confidence bias. Specifically, meta-d’
and meta-d'/d’ decreased with higher confidence criteria, whereas Phi
and Type-2 AUC followed an inverted U-shape function. Therefore,
subjects who have a bias toward low confidence (and are thus using
high confidence criteria) may be wrongly inferred to have lower
metacognitive ability when that ability is quantified using meta-d" or
meta-d'ld’. Similarly, subjects with very high or very low confidence
may be wrongly inferred to have lower metacognitive ability when
that ability is quantified using Phi or Type-2 AUC. Therefore, when
metacognitive ability is compared, researchers should attempt to
match confidence levels between groups of subjects or conditions.
Further, the results of experiments with very few confidence ratings
(especially binary confidence scales) may be more prone to contam-
ination by the confidence level of the subject. Using confidence scales
with multiple levels should make the results more robust to confi-
dence biases because the confidence criteria used by the subject are
likely to cover a larger part of the confidence scale.

Our results demonstrate that the lognormal metacognitive noise
parameter o, does not vary with task difficulty. Therefore, 0.,
can be used as a measure of metacognitive efficiency, that is a measure
of metacognition that does not vary with task difficulty (Fleming &
Lau, 2014). Further, unlike all existing measures of metacognition,
O neta 18 Invariant to changes in confidence criterion, thus suggesting
that it may potentially be a better measure of metacognitive efficiency
than existing ones. However, any principled measure of metacogni-
tion must also be insensitive to variation in response bias. Because we
did not experimentally manipulate response bias in our current study,
we cannot yet inform the question of whether our proposed measure
is indeed robust to changes in response bias. It will also be important
to test how stable the parameter o,,,,,, iS in common situations where
relatively limited data are available. Therefore, before metacognitive
noise can be accepted as a valid measure of metacognitive efficiency,
additional tests are required to fully establish its properties.

Predictions of the Lognormal Meta Noise Model

Any good model should not only fit existing data but should also
ideally make new predictions. Our lognormal meta noise model
makes a clear prediction that can be tested empirically. Specifically,
the model predicts that a bias toward low confidence must be asso-
ciated with lower meta-d’ and meta-d'/d' even when subjects use
confidence scale with multiple confidence ratings. In our current
study, a similar dependence was demonstrated by analytically manip-
ulating the confidence scale within the same subjects. However, this
prediction also holds between different subjects such that there should
be a positive across-subject correlation between average confidence
and both meta-d" and meta-d'/d’.

Limitations of the Lognormal Meta Noise Model

The lognormal meta noise has several desirable features: It (a)
captures the dependence of meta-d' and meta-d'/d’ on confidence
criterion, (b) explains the concave shape of zZROC functions in per-
ceptual decision making, and (c) provides the first link between
process models of confidence generation and measures of metacog-
nitive ability.
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However, the model also has several limitations. First, the lognor-
mal meta noise model cannot be used to model RT unlike models
based on sequential sampling. Second, our model cannot inform
theories of postdecisional evidence processing because it is equivocal
about the timing of confidence decisions with respect to the choice.
Indeed, although the lognormal meta noise model posits that inde-
pendent noise sources underlie perceptual and confidence decisions, it
does not commit to the interpretation that this independence neces-
sarily arises from postdecisional processing. Third, the model does not
specify the exact sources of metacognitive noise but simply specifies
the distribution of the noise resulting of all corrupting influences
considered together. Thus, the lognormal meta noise model does not
directly relate to previous work on either RT or postdecision evidence
accumulation, and does not allow for direct identification of specific
sources of metacognitive noise.

Another limitation of the lognormal meta noise model is that it
cannot account for error detection or changes of mind since the
confidence rating is constrained to never contradict the original deci-
sion. We note that the Gaussian meta noise model leads to situations
where the perceptual decision and the confidence rating disagree.
However, in that model, the perceptual decision is more reliable than
the confidence rating, which is the opposite effect of what is observed
in changes of mind where subjects are more likely to correct a wrong
decision into a correct one (Resulaj et al., 2009). We further note that
the recently proposed second-order model by Fleming and Daw
(2017), which readily accounts for changes of mind, can, in fact,
subsume the Gaussian meta noise model. More specifically, the two
models become similar when the noise in the decision variable in the
second-order model by Fleming and Daw (2017) is lower than the
noise in the confidence variable and the correlation between the two
variables is high.

A final limitation of the lognormal meta noise model is that it
cannot accommodate findings of meta-d'/d" > 1. We note, however,
that such findings are controversial because most demonstrations have
come from studies that use continuous staircase paradigms and we
have recently demonstrated that mixing different difficulty levels in
this way leads to a strong overestimation of metacognitive scores
including meta-d'/d’ (Rahnev & Fleming, 2019). Therefore, it is still
unclear whether meta-d’ can be truly greater than d’. We also note that
it is possible to extend the lognormal meta noise model to account for
meta-d'ld’ > 1 by adding either a lapse rate parameter or late decision
noise.

Conclusion

We demonstrated a robust dependence between current popular
measures of metacognition and confidence levels. Nonlinearities in
empirical ZROC functions confirmed not only the existence of meta-
cognitive noise but also that this noise increases for higher confidence
criteria. To account for these empirical insights, we developed a new
process model of metacognition that successfully yielded a measure
of metacognition that was stable across confidence and contrast lev-
els. Our results carry important implications for measuring metacog-
nition while revealing the nature of the inefficiencies underlying the
process of confidence generation.
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