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A comprehensive assessment of current
methods for measuring metacognition

Dobromir Rahnev 1,2

One of the most important aspects of research on metacognition is the mea-
surement of metacognitive ability. However, the properties of existing mea-
sures of metacognition have been mostly assumed rather than empirically
established. Here I perform a comprehensive empirical assessment of
17 measures of metacognition. First, I develop a method of determining the
validity and precision of a measure of metacognition and find that all 17 mea-
sures are valid and most show similar levels of precision. Second, I examine
how measures of metacognition depend on task performance, response bias,
and metacognitive bias, finding only weak dependences on response and
metacognitive bias but many strong dependencies on task performance.
Third, I find that all measures have very high split-half reliabilities, but most
have poor test-retest reliabilities. This comprehensive assessment paints a
complex picture: no measure of metacognition is perfect and different mea-
sures may be preferable in different experimental contexts.

Metacognition is classicallydefinedasknowing about knowing1.Within
this broad construct, the term “metacognitive ability” refers more
narrowly to the capacity to evaluate one’s decisions by distinguishing
between correct and incorrect answers2,3. High metacognitive ability
allows us to have high confidence when we are correct but low con-
fidence when we are wrong. Conversely, low metacognitive ability
impairs the capacity of confidence ratings to distinguish between
instances whenwe are correct or wrong.Metacognitive ability is thus a
critical capacity in human beings linked to our ability to learn4, make
good decisions5, interact with others6, and know ourselves7. As such, it
is critical that we have the tools to precisely measure metacognitive
ability in human participants.

Metacognitive ability is typically assumed to be a somewhat
stable trait with meaningful variability across people2,8,9. Conse-
quently, metacognitive ability has been correlated with other stable
individual differences, such as brain structure10–13. While metacogni-
tive ability is often assumed to be domain-general and rely on shared
neural substrates, this question remains hotly debated14–17. The con-
struct of metacognitive ability is also thought to be different from
other constructs such as task skill or bias, so it is often desirable to
find metrics of metacognitive ability unrelated to these other
constructs18.

Below, I first examine the properties that one may desire in a
measure of metacognition and then review the known properties of
existing measures of metacognitive ability. This brief overview
demonstrates that there is little we firmly knowabout the properties of
existing measures of metacognition. The rest of the paper aims to fill
this gap by providing a comprehensive test of the critical properties of
many common measures of metacognition.

Before one can evaluate a givenmeasure ofmetacognition, it is first
necessary to determine what properties are important or desirable.
Since there is no existing list of desirable properties, I start by creating
one here (Supplementary Table 1) and discuss each property below.

The most important property of any measure is that it is valid:
namely, it should measure what it purports to measure19. Existing
measures of metacognitive ability assess the degree to which con-
fidence is associated with objective reality, thus making them face
valid. Still, we lack a formal way of verifying the validity of existing
measures. A related property is precision. I use the term “precision”
following its definitions in the literature as “the ability to repeatedly
measure a variable with a constant true score and obtain similar
results”20, “the margin of error” in a measurement21, or “the spread of
values that would be expected across multiple measurement
attempts”22. Note that precision here does not refer to whether a
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measure is only affected by the construct of interest. Precision has
been largely ignored in the context of measures of metacognition and
we currently lack methods to measure it. Here I develop a simple and
intuitive method for assessing both validity and precision of meta-
cognition measures. The method demonstrates that all existing mea-
sures ofmetacognition are valid but show somevariations in precision.

Another critical property ofmeasures of metacognition—one that
is perhaps the most widely appreciated—is that such measures should
be independent of various nuisance variables. Here a “nuisance vari-
able” is any property of people’s behavior that is not directly related to
their metacognitive ability.

The nuisance variable that has received the most attention is task
performance. It is often desirable that a measure of metacognition
should not be affected by whether people happened to be performing
an easy or a difficult task3,18. For example, in visual perception tasks
with confidence, there is little reason to believe that the underlying
metacognitive ability should be affected by stimulus contrast. Thus,
onemaywant tomeasure the samemetacognitive ability regardless of
contrast level. Note that there are subtleties here. If difficulty is
manipulated by introducing cognitive load or other task demands that
may tax the metacognitive system, then one would not necessarily
expect metacognitive ability to remain the same anymore (though
whether metacognitive ability is affected by working memory load
remains a topic of debate23–25). Therefore, the logic here applies more
readily to stimulus than taskmanipulations. That said, even if one does
not agree that metacognitive ability should be independent from task
performance, examining how each measure depends on task perfor-
mance is still informative, especially if there aremeaningful differences
between measures. Task performance can be computed as d’, which is
a measure of sensitivity derived from signal detection theory (SDT).

A second nuisance variable is response bias, that is, the tendency to
select one response categorymore than another18. For two-choice tasks,
this variable can be quantified as the decision criterion, c, derived from
SDT. Response bias is under strategic control in that participants can
freely choose to select one stimulus categorymore often than others. In
fact, they consistently do so in response to experimental manipulations
such as expectation or reward26. As such, measures of metacognitive
ability should ideally remain independent of response bias.

The final nuisance variable is metacognitive bias, that is, the ten-
dency of people to be biased towards the lower or upper ranges of the
confidence scale27,28. This variable can be quantified simply as the
average confidence across all trials. As with response bias, metacog-
nitive bias is under strategic control in that participants can freely
choose to use lower or higher confidence. As such, measures of
metacognitive ability should ideally remain independent of metacog-
nitive bias because we do not want to measure different ability if
people purposefully choose to use predominantly low or high con-
fidence ratings3. The logic here is similar to the logic in SDT, where the
measure of performance (d’) is designed to be mathematically inde-
pendent from themeasureof response bias (c)29. In the case of SDT,we
interpret high d’ values as showing high ability to perform the task
even if the participant exhibits an extreme bias and, consequently, low
percent of correct responses. Similarly, this paper, following the
standard in the field18, adopts the perspective that measures of meta-
cognitive ability should be independent of metacognitive bias.

Task performance, response bias, and metacognitive bias are
arguably the primary nuisance variables that a measure of metacog-
nitive ability should be independent of (Supplementary Table 2). They
are also variables that can be measured in any design that also allows
the measurement of metacognitive ability. It is possible to add more
variables to this list (e.g., reaction time30) but the current paper only
examines these three variables.

The final critical property ofmeasures ofmetacognition is that they
should be reliable. This property is critical for studies of individual dif-
ferences. This paper examines both split-half and test–retest reliability.

Having reviewed the desirable properties of measures of meta-
cognition, let us now turn our attention to the existing measures of
metacognitive ability. One popularmeasure is the area under the Type 2
ROC function31, also known as AUC2. Other popular measures are the
Goodman–Kruskall Gamma coefficient (or just Gamma), which is
essentially a rank correlation between trial-by-trial confidence and
accuracy32 and the Pearson correlation between trial-by-trial confidence
and accuracy (known as Phi33). Another simple but less frequently used
measure is the difference between average confidence on correct trials
and the average confidence on error trials (which I call ΔConf).

While all four of these traditional measures are intuitively
appealing, they are all thought to be influenced by the primary task
performance18. To address this issue, Maniscalco and Lau34 developed
a new approach to measuring metacognitive ability where one can
estimate the sensitivity, meta-d’, exhibited by the confidence ratings.
Becausemeta-d’ is expressed in theunits ofd’,ManiscalcoandLau then
reasoned thatmeta-d’ can be normalized by the observed d’ to obtain
either a ratio measure (M-Ratio, equal to meta-d’/d’) or a difference
measure (M-Diff, equal to meta-d’–d’). These measures are often
assumed to be independent of task performance18.

The normalization introduced by Maniscalco and Lau34 has only
been applied to the measuremeta-d’ (resulting in the measuresM-Ratio
andM-Diff), but there is no theoretical reasonwhy a conceptually similar
correction cannot be applied to the traditional measures above. Con-
sequently, here I develop eight new measures where one of the tradi-
tional measures of metacognitive ability is turned into either a ratio
(AUC2-Ratio, Gamma-Ratio, Phi-Ratio, and ΔConf-Ratio) or a difference
(AUC2-Diff, Gamma-Diff, Phi-Diff, and ΔConf-Diff) measure. The logic is
that a given measure (e.g., AUC2) is computed once using the observed
data (obtaining, e.g., AUC2observed) and a second time using the predic-
tions of SDT given the observed sensitivity and decision criterion
(obtaining, e.g., AUC2expected). One can then take either the ratio or the
difference between the observed and the SDT-predicted quantities.

Finally, one important limitation of all measures above is that they
are not derived from a processmodel ofmetacognition. In other words,
none of these measures are based on an explicit model of how con-
fidence judgments may be corrupted. Recently, Shekhar and Rahnev27

developedaprocessmodel ofmetacognition—the lognormalmetanoise
model—that is based on SDT assumptions but with the addition of log-
normally distributed metacognitive noise. This metacognitive noise
corrupts the confidence ratings but not the initial decision and, in the
model, takes the form of confidence criteria that are sampled from a
lognormal distribution rather than having constant values. The meta-
cognitive noise parameter (σmeta, referred here asmeta-noise) can then
be used as a measure of metacognitive ability. A similar approach was
takenbyBoundy-Singer et al.35 whodevelopedanotherprocessmodelof
metacognition, CASANDRE, based on the notion that people are
uncertain about the uncertainty in their internal representations. The
second-order uncertainty parameter (meta-uncertainty) thus represents
another possible measure of metacognitive ability.

This paper examines the properties of all 17 measures of meta-
cognition introduced above (for a summary, see Table 1). Before then,
however, I briefly review the previous literature on the properties of
these measures.

Given the importance of using measures with good psychometric
properties, it is perhaps surprising that the published literature con-
tains very little empirical investigation into the properties of the dif-
ferent measures of metacognition. For example, no paper to date
has examined the precision of any existing measure. Several papers
have relied exclusively on simulations to investigate some of the
properties of measures of metacognition36,37. Such investigations are
important but cannot substitute empirical studies because it is a priori
unknown how well the process models used to simulate data reflect
empirical reality. Evans and Azzopardi38 empirically showed that a
specific measure of metacognition, Kunimoto’s a’39, exhibits a strong
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dependence on response bias. Because Kunimoto’s a’ is built onwrong
distributional assumptions40, it is not investigated here. Finally, several
older papers investigated the theoretical properties of several mea-
sures independent of any simulations or empirical data32, but this
approach cannot be used to establish the empirical properties of the
measures under consideration.

Only recently, Shekhar and Rahnev27 examined the dependence
on both task performance and metacognitive bias for five measures:
meta-d’, M-Ratio, AUC2, Phi, and meta-noise. They found that meta-d’,
AUC2, and Phi strongly depend on task performance, butM-Ratio and
meta-noise do not. On the other hand,meta-d’,M-Ratio, AUC2, and Phi
have a complex dependence on metacognitive bias, while only meta-
noise appeared independent of it. Guggenmos41 examined both the
split-half reliability and the across-participant correlation between d’
and several measures of metacognition (meta-d’, M-Ratio, M-Diff, and
AUC2) finding surprisingly low reliability and significant correlations
with d’ for all measures. Relatedly, Kopcanova et al.14 examined the
test-retest reliability of M-Ratio and also found low-reliability values.
Another paper developed a new technique to examine dependence on
metacognitive bias and found that meta-d’ and M-Ratio are not inde-
pendent ofmetacognitive bias28. Finally, Boundy-Singer et al.35 showed
that meta-uncertainty appears to have high test–retest reliability, and
only a weak dependence on task performance andmetacognitive bias.

As this brief overview demonstrates, most previous investigations
only focusedon a fewmeasures ofmetacognition, only examined a few
of the critical properties of interest, and often did not make use of
empirical data. Here, I empirically examine each of the critical prop-
erties for all 17measures ofmetacognition introduced above. Todo so,
Imakeuse of six large datasets27,42–46 (Table 2) allmade available on the
Confidence Database47. All datasets involve 2-choice tasks because
most measures of metacognition only apply to 2-choice tasks.

Overall, I find that no current measure of metacognitive ability is
“perfect” in the sense of possessing all desirable properties. Never-
theless, they arenot equivalent eitherwithmany important differences
between measures emerging. Based on these results, I make recom-
mendations for the use of different measures of metacognition based
on the specific analysis goals.

Results
Here I assess the properties of 17 measures of metacognition. Specifi-
cally, I focusoneachmeasure’s (1) validity andprecision, (2)dependence

on nuisance variables, and (3) reliability. To examine each of these
properties, I use six existing datasets (Table 2) from the Confidence
Database. For each property, I analyze the data from between one and
three of the six datasets. In addition, I computeprecision and reliabilities
using 50, 100, 200, or 400 trials at a time to clarify how thesemeasures
behave for different amounts of underlying data.

Validity and precision
Perhaps the most important requirement for any measure is that it is
both valid and precise19–22,48. In other words, a measure should reflect
the quantity it purports to measure, and it should do so with a high
level of quantitative accuracy. However, despite the importance of
both criteria, there has been no formalmethod to assess the validity or
precision of measures of metacognition.

Here I develop a simple method for assessing both properties. The
method selects a small proportion of trials and decreases confidence by
1 point for each correct trial and increases confidence by 1 point for each
incorrect trial. This manipulation artificially decreases the informative-
ness of confidence ratings. A valid measure of metacognition should
therefore showadropwhenapplied to these altereddata. The sizeof the
drop relative to the normal fluctuations of the measure quantifies the
precision of the measure (i.e., if the drop is large relative to background
fluctuations, this indicates that themeasurehasahigh level ofprecision).

To quantify the precision of existing measures of metacognition,
onewould ideally use a datasetwith very large number of trials coming
from a single experimental condition because mixing conditions can
strongly impact metacognitive scores49. Consequently, I selected the
two datasets from the ConfidenceDatabasewith the largest number of
trials per participant that also had a single experimental condition:
Haddara (3000 trials per participant) and Maniscalco (1000 trials per
participant). In each case, I examined the results of altering 2, 4, and 6%
of all trials and computed metacognitive scores using bins of 50, 100,
200, and 400 trials.

The results showed that all 17 measures are valid in that meta-
cognitive scores decreased when confidence ratings were artificially
corrupted (Fig. 1). The decrease in each measure was roughly a linear
function of the percent of trials corrupted. For example, in the Had-
dara dataset, the values of meta-d’ decreased from an average of 1.14
without any corruption to averages of 0.98, 0.84, and 0.72 when 2%,
4%, and 6% of trials were corrupted, respectively (for an average drop
of about 0.14 for every 2% of trials corrupted). However, this drop is

Table 1 | Measures of metacognition examined in the current paper

Measure Calculation Based on a process model

meta-d' d’ value that provides best fit to Type 2 ROC No

AUC2 Area under the Type 2 ROC curve No

Gamma Rank correlation between confidence and accuracy No

Phi Pearson correlation between confidence and accuracy No

ΔConf Difference between average confidence for correct and error trials No

M-Ratio meta-d’ divided by d' No

AUC2-Ratio AUC2 divided by expected AUC2 under SDT assumptions No

Gamma-Ratio Gamma divided by expected Gamma under SDT assumptions No

Phi-Ratio Phi divided by expected Phi under SDT assumptions No

ΔConf-Ratio ΔConf divided by expected ΔConf under SDT assumptions No

M-Diff meta-d’ minus d' No

AUC2-Diff AUC2 minus expected AUC2 under SDT assumptions No

Gamma-Diff Gamma minus expected Gamma under SDT assumptions No

Phi-Diff Phi minus expected Phi under SDT assumptions No

ΔConf-Diff ΔConf minus expected ΔConf under SDT assumptions No

meta-noise Metacognitive noise computed using the lognormal meta noise model Yes

meta-uncertainty Metacognitive uncertainty computed using the CASANDRE model Yes
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difficult to comparebetweenmeasures because differentmeasures are
on different scales (e.g., meta-d’ normally takes values between 0 and
1, whereasAUC2 normally takes values between 0.5 and 1). Therefore,
to obtain values that are easy to interpret and compare, one can nor-
malize the average drop after corruption by the standard deviation
(SD) of the observed values across different subsets of trials in the
absence of any corruption. Because the SD value is larger for smaller
bin sizes—reflecting the larger noisiness of each measure when few
trials are used—the results show that larger bin sizes lead to greater
precision of the measures (Fig. 1a). Indeed, across the 17 measures,
corrupting 2% of the trials led to an average decrease of 0.35, 0.50,
0.70, and 1.04 SDs in themeasuredmetacognitive ability value for bins
of 50, 100, 200, and 400 trials, respectively.

This technique allows us to compare the precision of different
measures. To simplify the comparison, I averaged the decreases across
the four different bin sizes and the three levels of corruption (2, 4, and
6%; Fig. 1b,c). These analyses revealed that the precision scores were
overall higher in the Haddara compared to the Maniscalco datasets.
This difference is likely due to differences in variables such as sensi-
tivity and metacognitive bias that are likely to vary across datasets.
Therefore, the technique introduced here is useful for comparing
between different measures but is unlikely to be useful if one wants to
compare values across different datasets.

More importantly, most measures of metacognition showed
comparable levels of precision (Fig. 1b,c). The one exception was the
measure meta-uncertainty, which had substantially lower average
precision score in both the Haddara (meta-uncertainty: 0.37; average
of other measures: 0.67; ratio = 0.56) and the Maniscalco datasets
(meta-uncertainty: 0.30; average of other measures: 0.53; ratio =
0.58). Indeed, pairwise comparisons showed that, without multiple
comparison correction, the precision for meta-uncertainty was sig-
nificantly lower than every one of the other 16 measures in both
datasets (p < 0.05 for all 32 comparisons). In the Haddara dataset, 15
of the 16 comparisons remained significant even after applying a
very conservative Bonferroni correction for the existence of
17*16
2 = 136 pairwise comparisons; in the smaller Maniscalco dataset,

no comparison remained significant after this conservative correc-
tion. This difference between meta-uncertainty and the remaining
measures may stem from the noisiness of the process of estimating
meta-uncertainty in the presence of relatively few trials. In fact, the
original authors who introduced meta-uncertainty already warned

about the dangers of trying to compute this variable using low trial
numbers35.

The differences between the remaining measures were much
smaller and, in some cases, inconsistent across the two datasets. The
differences between all other measures of pairs were never significant
(atp <0.05 uncorrected) in both theHaddara andManiscalcodatasets.
Nevertheless, there appear to be some small but consistent difference
between measures, such that meta-d’, Gamma, Phi, Gamma-Diff, Phi-
Diff, and meta-noise show above-average precision, whereas AUC2,
ΔConf, and ΔConf-Diff show below-average precision (Fig. 1d). Overall,
these analyses suggest that allmeasures ofmetacognition investigated
here are valid, and thatmost have comparable level of precisionexcept
for meta-uncertainty, which appears to be noisier than the remaining
measures. Whether the differences between the remaining measures
are meaningful remains to be demonstrated.

Dependence on nuisance variables
Beyond validity and precision, another important feature for good
measures of metacognition is that they should not be influenced by
nuisance variables. Here I examine three nuisance variables—task per-
formance, metacognitive bias, and response bias—and test how much
eachof these variables affects each of the 17measures ofmetacognition.

Dependence on task performance
The most widely recognized nuisance variable for measures of
metacognition is task performance18. The reason that task perfor-
mance is a nuisance variable is that an ideal measure of metacogni-
tion should not be affected by whether a participant happens to be
given an easier or a more difficult task. That is, the participant’s
estimated ability to provide informative confidence ratings should
not change based on the difficulty of the object-level task that they
are asked to perform. As mentioned earlier, this logic does not apply
well to task manipulations, which is why I only examine stimulus
manipulations here.

To quantify how task performance affects measures of metacog-
nition, one needs datasets with multiple difficulty conditions and a
large number of trials (either because of including many participants
or many trials per participant). I selected three datasets from the
Confidence Database that meet these characteristics: Shekhar (3 dif-
ficulty levels, 20 participants, 2800 trials/sub, 56,000 total trials),
Rouault1 (70 difficulty levels, 466 participants, 210 trials/sub, 97,860

Table 2 | Datasets used in the current paper

Dataset Haddara Locke Maniscalco Rouault1 Rouault2 Shekhar

# participants analyzed 70 10 22 466 484 20

# excluded participants 5 0 8 32 13 0

% excluded participants 7% 0% 27% 6% 3% 0%

# trials/participant 3000 4900 1000 210 210 2800

# total trials in experiment 210,000 49,000 22,000 97,860 101,640 56,000

# difficulty levels 1 1 1 70 staircase 3

Criterion manipulated — ✓ — — — —

Original confidence scale 4-point 2-point 4-point 11-point 6-point Continuous

Analyses of each dataset

Precision ✓ — ✓ — — —

Dependence on task performance — — — ✓ ✓ ✓

Dependence on metacognitive bias ✓ — ✓ — — ✓

Dependence on response bias — ✓ — — — —

Split-half reliability ✓ — ✓ — — ✓

Test–retest reliability ✓ — — — — —

Inter-measure correlations ✓ — ✓ — — ✓

The table lists details of each dataset and indicates which analyses in the present paper each dataset was used for.
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total trials), and Rouault2 (many difficulty levels, 484 participants, 210
trials/sub, 101,640 total trials). Both Rouault datasets have a large
range of difficulty levels which I split into low/high by taking a median
split. I then computed eachmeasure separately for each difficulty level
and compared them using t-tests.

The results showed that all traditional measures that are not
normalized in any way (i.e., meta-d’, AUC2, Gamma, Phi, and
ΔConf) are strongly dependent on task performance: they all sub-
stantially increase as the task becomes easier (p < 0.001 for all five
measures and three datasets; Fig. 2a; Supplementary Tables 3–5; see
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Fig. 1 | Validity and precision of each measure. Results of an artificial corruption
of the confidence ratings where confidence for correct trials was decreased by 1,
and confidence for incorrect trials was increased by 1. a Detailed results for the
Haddaradataset (for detailed results on theManiscalcodataset, see Supplementary
Fig. 1). Each one of the 17 measures of metacognition showed a decrease with this
manipulation. The plot shows the decrease in units of the standard deviation (SD)
of themeasure’s fluctuations across different bins. The decreasewas computed for

bin sizes of 50, 100, 200, and 400 trials, as well as for 2, 4, and 6% of trials being
corrupted. b Normalized precision for all 17 measures in each of the two datasets
(Haddara and Maniscalco). The precision values are normalized such that the
average precision level of the first 16 measures equals 1 in each of the two datasets.
As can be seen,meta-uncertainty has substantially lower level of precision than the
rest of the measures. The differences between the remaining measures are not
always trivial but tend to be smaller.
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Supplementary Fig. 2 for the same plots as a function of difficulty
level instead of d’ level). Critically, the increase across the
five measures from the most difficult to the easiest had a very
large effect size (Cohen’s d = 2.47, 2.29, 2.95, 1.34, and 1.81 for each
of the five measures after averaging across the four data-
sets; Fig. 2b).

Having established that these five measures strongly depend on
task performance, I then examined whether normalizing them
removes this dependence. The more popular method of normal-
ization—the ratiomethod—indeed performedwell. The average effect
size (Cohen’s d) forM-Ratio,AUC2-Ratio,Gamma-Ratio, Phi-Ratio, and
ΔConf-Ratio was −0.18, −0.39, −0.11, −0.17, and −0.23, respectively.
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Fig. 2 | Dependence of estimated metacognitive scores on task performance.
a Estimated metacognitive ability for all 17 measures, as well as d’, criterion, and
confidence for different difficulty levels in the Shekhar (n = 20), Rouault1 (n = 466),
and Rouault2 (n = 484) datasets. Traditional measures of metacognition (top row)
all showed a strong positive relationship with task performance, whereas all dif-
ference measures (third row) show a strong negative relationship. Ratio measures
(second row) and the two model-based measures (meta-noise and meta-uncer-
tainty) performed much better but still showed weak relationships with task per-
formance. Error bars showing SEMaredisplayedonboth the x andy axes. Statistical
results are based on uncorrected two-sided t-tests comparing the highest to lowest

difficulty level within each dataset for eachmeasure (see SupplementaryTables 3–5
for complete results). ***, p <0.001; **, p <0.01; *, p <0.05; ns, not significant.
bEffect sizes fordependenceon taskperformance. Effect size (Cohen’sd) is plotted
for eachmetric anddataset. As canbe seen in thefigure, non-normalized traditional
measures (i.e., meta-d’, AUC2, Gamma, Phi, and ΔConf) show strong positive rela-
tionship with task performance. Corrections with the ratio and differencemethods
reverse this relationship, with the ratio correction being clearly superior. The
model-basedmetricsmeta-noise andmeta-uncertaintyperformwell too, withmeta-
uncertainty showing particularly low effect sizes.
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These are small effect sizes, except for AUC2-Ratiowhich hasmedium
effect size. Nevertheless, it should be noted that the negative direc-
tion of the effect between task performance onmetacognitive scores
was consistent across all five measures and three datasets (with 9/15
tests being significant at p < 0.05; Supplementary Tables 3–5). Thus,
while all ratio measures perform much better than the original
metrics they are derived from, they tend to slightly overcorrect.

The five difference measures (M-Diff, AUC2-Diff, Gamma-Diff, Phi-
Diff, and ΔConf-Diff) were much less effective in removing the depen-
dence on task performance compared to their ratio counterparts.
Indeed, they all exhibited an over-correction where easier conditions

led to lower scoreswithmediumaverageCohen’s d effect sizes (M-Diff:
−0.58;AUC2-Diff: −0.49;Gamma-Diff: −0.39; Phi-Diff: −0.30;ΔConf-Diff:
−0.55). Further, the relationship between task performance and the
metacognitive scorewas significantlynegative for allfivemeasures and
three datasets (p < 0.05 for all 15 tests; Supplementary Tables 3–5).
These results demonstrate that the difference measures uniformly fail
at their main purpose, which is to remove the dependence of meta-
cognitive measures on task performance.

Finally, the two model-based measures (meta-noise and meta-
uncertainty) showed relatively weak but still systematic relationships
with task difficulty. Specifically, meta-noise decreased for easier
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Fig. 3 | Dependence of estimated metacognitive scores onmetacognitive bias.
a Estimated metacognitive ability for all 17 measures, as well as d’, criterion, and
confidence for data recoded to have lower or higher confidence in the Haddara
(n = 70),Maniscalco (n = 22), and Shekhar (n = 20) datasets. Traditionalmeasures of
metacognition (top row) showed a medium-to-large positive relationship with
metacognitive bias (except for Gamma, which showed a negative relationship).
Ratio measures (second row) and the two model-based measures (meta-noise and
meta-uncertainty) performed the best. Error bars show SEM. Statistical results are
based on uncorrected two-sided t-tests comparing the high vs. low confidence

recode within each dataset for each measure (see Supplementary Tables 6–8 for
complete results). ***, p <0.001; **, p <0.01; *, p <0.05; ns, not significant. b Effect
sizes for dependence on metacognitive bias. Effect size (Cohen’s d) is plotted for
eachmetric and dataset. As can be seen in the figure, all metrics except forGamma
and meta-noise have a mostly positive relationship with metacognitive bias (i.e.,
higher confidence leads to higher estimates of metacognition). The smallest
absolute effect sizes (under 0.15) occurred for AUC2-Ratio, Gamma-Ratio, AUC2-
Diff, and Phi-Diff, but many other measures exhibited effect sizes in the small-to-
medium range.
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conditions in all three datasets (average Cohen’s d = −0.29), whereas
meta-uncertainty increased for easier conditions in all three datasets
(averageCohen’sd =0.06). Both effectswere associatedwith relatively
small Cohen’s d effect sizes that were comparable to what was
observed for the ratio measures. As such, both model-basedmeasures
perform as well as the ratio measures in controlling for task perfor-
mance. Given that meta-uncertainty corrected in the opposite direc-
tion of the other viable measures (the ratio measures and meta-noise)
and had the lowest absolute Cohen’s d, studies that feature task per-
formanceconfoundsmaybenefit fromperforming analyses using both
meta-uncertainty and at least one more measure.

Dependence on metacognitive bias
A less appreciated nuisance variable is metacognitive bias: the ten-
dency to give low or high confidence ratings for a given level of per-
formance. Metacognitive bias can be measured simply as the average
confidence in a condition. Recently, Shekhar andRahnev27 developed a

method that involves recoding the original confidence ratings to
examine how measures of metacognition depend on metacognitive
bias. The method was further improved by Xue et al.28. The Xue et al.
method consists of recoding confidence ratings as to artificially induce
metacognitive bias toward lower or higher confidence ratings. Com-
paring the obtained values for a given measure of metacognition
applied to the recoded confidence ratings allows us to evaluate whe-
ther the measure is independent of metacognitive bias.

Similar to quantifying precision, quantifying how metacognitive
bias affects measures of metacognition requires datasets with very
large number of trials coming from a single experimental condition.
Consequently, I selected the same two datasets used to quantify pre-
cision since they have the largest number of trials per participant while
also featuring a single experimental condition: Haddara (3000 trials
per participant) and Maniscalco (1000 trials per participant). In addi-
tion, I also used the Shekhar dataset (3 difficulty levels, 2800 trials per
participant) but analyzed each difficulty level in isolation and then
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Fig. 4 | Dependence of estimated metacognitive scores on response bias.
a Estimated metacognitive ability for all 17 measures, as well as d’, criterion, and
confidence for the seven conditions in the Locke (n = 10) dataset. As expected, the
condition strongly affected response criterion, c. Despite that, condition did not
significantly modulate any of the 17 measures of metacognition. The seven condi-
tions in the graph are arranged based on their average criterion values. Error bars
show SEM. Statistical results are based on repeated measures ANOVAs testing for

the effect of condition on each measure (see Supplementary Table 9 for complete
results). ***, p <0.001; ns, not significant.bCorrelationwith absolute response bias.
Average correlation between estimated metacognitive ability and absolute
response bias (i.e., |c|) for all 17measures (n = 10). As can be seen from the figure, all
relationships are relatively small, but there is still a fair amount of uncertainty
around each value. Error bars show SEM.
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averaged the results across the three difficulty levels. For that dataset,
the continuous confidence scalewasfirst binned into six levels as in the
original publication27.

The results demonstrated thatmeta-d’, AUC2, Phi, and ΔConf tend
to increase with higher average confidence, whereas Gamma tends to
decrease (Fig. 3a). The average (across the three datasets) Cohen’s d
effect size was in the medium-to-large range for all five measures
(meta-d’: 0.44; AUC2: 0.51; Gamma: −0.61; Phi: 0.81; ΔConf: 0.54;
Fig. 3b). In other words, all five non-normalized measures of meta-
cognition depend on metacognitive bias. All five ratio measures had a
positive relationship with metacognitive bias but with smaller Cohen’s
d effect sizes (M-Ratio: 0.27; AUC2-Ratio: 0.09; Gamma-Ratio: 0.001;
Phi-Ratio: 0.23; ΔConf-Ratio: 0.42). Difference measures performed
similarly to ratio measures (M-Diff: 0.43; AUC2-Diff: 0.10; Gamma-Diff:
0.24; Phi-Diff: 0.11; ΔConf-Diff: 0.34). Finally, the two model-based
measures performed similar to the ratio and difference measures and
exhibited low-to-medium effect sizes that again went in opposite
directions of each other (meta-noise: −0.21; meta-uncertainty: 0.27).
Note that the scores after recodingwere similar but slightly larger than
the original metacognitive scores before recoding (Supplementary
Fig. 3). Overall, researcherswhowant to control formetacognitive bias
would appear to do best if they used AUC2-Ratio,Gamma-Ratio, AUC2-
Diff, or Phi-Diff as these all featured absolute effect sizes under 0.15.
Nevertheless, given thatmeta-noise corrected in the opposite direction
of the ratio and difference measures, it may be advisable for results
obtained using one of thosemetrics to be reproducedwithmeta-noise.

Dependence on response bias
The final nuisance variable examined here is response bias. Response
bias can be measured simply as the decision criterion c in signal detec-
tion theory. To understand how response bias affects measures of
metacognition, one needs datasets where the response criterion is
experimentally manipulated and confidence ratings are simultaneously
collected. Very few such datasets exist and only a single such dataset is
featured in theConfidenceDatabase. Thedataset—namedhere Locke44—

features seven conditions with manipulations of both prior and reward.
Rewards were manipulated by changing the payoff for correctly
choosing category 1 vs. category 2 (e.g., R =4:2means that 4 vs. 2 points
were given for correctly identifying categories 1 and 2, respectively),
whereas priors were manipulated by informing participants about the
probability of category 2 (e.g., P=0.75 means that there was 75% prob-
ability of presenting category 2 and 25% probability of presenting cate-
gory 1). The seven categories were as follows (1) P=0.5, R =3:3, (2)
P=0.75,R =3:3, (3) P=0.25,R= 3:3, (4) P=0.5,R=4:2, (5) P=0.5,R= 2:4,
(6) P =0.75, R =2:4, and (7) P=0.25, R =4:2. The Locke dataset included
many trials per condition (700) but relatively few participants (N= 10)
and collected confidence on a 2-point scale.

The results suggested that none of the 17 measures of metacogni-
tion are strongly influenced by response bias (Fig. 4a). Indeed, while a
repeatedmeasures ANOVA revealed a very strong effect of condition on
response criterion (F(6,54) = 12.18, p<0.001, η2

p =0.58), it showed no
significant effect of condition on any of the measures of metacognition
(all p’s >0.13 for 17 tests; Supplementary Table 9). Critically, I computed
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Fig. 5 | Split-half reliability of metacognitive scores. Correlations between each
measure were computed based on odd vs. even trials for sample sizes of 50, 100,
200, and 400 trials. The figure shows that split-half correlations are high when at

least 100 trials are used for computations but become unacceptably lowwhen only
50 trials are used. The x-axis shows the results for three different datasets: Hadda
(Haddara), Shekh (Shekhar), and Manis (Maniscalco).
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the correlation between the estimated metacognitive ability for each of
the 17measures and the absolute valueof the response criterion (i.e., |c|).
The idea behind this analysis is to investigate whether more extreme
response bias (either positive or negative) is associatedwith increases or
decreases in estimated metacognitive ability. The results demonstrated
that all correlationcoefficientswerevery small (all r-valueswerebetween
−0.04 and 0.21; Fig. 4b). There was a fair amount of uncertainty about
these values, as seen by the wide error bars in Fig. 4b, so it is possible
some of these relationships may be stronger than the current data
suggest. Overall, these results should be interpreted with caution given
the small sample size and the fact that a 2-point confidence scalemay be
noisier for estimating metacognitive scores. Nonetheless, these initial
findings suggest that response bias may not have a large biasing effect
on measures of metacognition.

Reliability
Measures of metacognition are often used in studies of individual
differences to examine across-participant correlations between
metacognitive ability and many different factors such as brain
activity and structure10,11,50, metacognitive ability in other
domains51,52, psychiatric symptom dimensions46, cognitive pro-
cesses such as confidence leak12, etc. These types of studies require
measures of metacognition to have high reliability. (Note that the
reliability of a measure is enhanced by both high precision and
large spread of scores across participants, so both of these two
factors are important for between-subject analyses. In contrast,
within-subject analyses only require high precision. Therefore, low-
reliability scores are not necessarily problematic for within-subject
designs.)

Perhaps surprisingly, relatively little hasbeendone to quantify the
reliability of measures of metacognition (but see refs. 14,41). Here I
examine split-half reliability (correlation between estimates obtained
fromodd vs. even trials) and test-retest reliability (correlation between
estimates obtained on different days).

Split-half reliability
To examine split-half reliability for different sample sizes, one needs
datasets with many trials per participant and a single condition (or
large number of trials per condition ifmultiple conditions are present).
Consequently, I selected the same three datasets used to examine the
dependence of measures of metacognition on metacognitive bias:
Haddara (3000 trials per participant), Maniscalco (1000 trials per
participant), and Shekhar (3 difficulty levels, 2800 trials per partici-
pant). As before, I analyzed each difficulty level in the Shekhar dataset
in isolation and then averaged the results across the three difficulty
levels. For each dataset, I computed each measure of metacognition
based on odd and even trials separately and correlated the two. To
examine how split-half reliability depends on sample size, I performed
theprocedure above for bins of 50, 100, 200, and400 trials separately.
Because the datasets contained multiple bins of each size, I averaged
the results across all bins of a given size.

The results showed that measures of metacognition have good
split-half reliability as long as themeasures are computed using at least
100 trials (Fig. 5). Indeed, bin sizes of 100 trials produced split-half
correlations of r >0.837 for all 17 measures when averaged across the
three datasets with an average split-half correlation of r =0.861. These
numbers increased further for bin sizes of 200 (all r’s > 0.938, average
r = 0.946) and 400 trials (all r’s > 0.961, average r =0.965). Further,
these numbers were only a little lower than the split-half correlations
for d’ (100 trials: r =0.913; 200 trials: r =0.958; 400 trials: r = 0.970).
However, the split-half correlations strongly diminished when the
measures of metacognition were computed based on 50 trials with an
average r =0.424 and nomeasure exceeding r =0.6. It should be noted
that while performing better, d’ also had a relatively low split-half
reliability of r =0.685 when computed based on 50 trials. These results

suggest that individual difference studies should employ 100 trials per
participant at a minimum and that there is little benefit in terms of
split-half reliability for using more than 200 trials.

Test-retest reliability
Split-half reliability is a useful measure of the intrinsic noise present in
the across-subject correlations that can be expected in studies of
individual differences. However, they do not account for fluctuations
that could occur from day to day. These fluctuations can be examined
by computing measures of metacognition obtained from different
days, thus estimating what is known as test-retest reliability. Such
estimation requires datasets with multiple days of testing and a large
number of trials per participant per day. Only one dataset in the
ConfidenceDatabasemeets these criteria: Haddara (6 days; 3000 total
trials per participant; 70participants). I examined test–retest reliability
by computing both intraclass correlation (ICC) and Pearson correla-
tion between all pairs of days and then averaged across the
different pairs.

The results showed very low test–retest reliability values (Fig. 6).
Evenwith 400 trials used for estimation, nomeasure ofmetacognition
exceeded an average ICC reliability of 0.75 and none of the measures
outside of the five non-normalized and non-model-based measures
(i.e., meta-d’, AUC2, Gamma, Phi, and ΔConf) reached ICC reliability of
0.5, which is often considered the threshold for poor reliability. For
example, the widely used measure M-Ratio had average ICC reliability
of r =0.16 (for 50 trials), 0.23 (for 100 trials), 0.29 (for 200 trials), and
0.42 (for 400 trials). The measure with highest test–retest correlation
wasΔConfwith ICC reliability of0.39 (for 50 trials), 0.53 (for 100 trials),
0.65 (for 200 trials), and 0.75 (for 400 trials). Notably, test-retest
reliability was not much higher for d’ or criterion c compared to ΔConf
(average difference of about 0.1) and was only robustly high for con-
fidence (above 0.86 regardless of sample size). Similar test–retest
correlation coefficients were obtained when Pearson correlation was
computed instead of ICC (Fig. 6). These results are in line with the
findings of Kopcanova et al.14 and suggest that correlations between
measures of metacognition and measures that do not substantially
fluctuate on a day-by-day basis (e.g., structural brain measures) are
likely to be particularly noisy such that very large sample sizes may be
needed to find reliable results.

Across-subject correlations between different measures
Lastly, I examined how different measures are related to each other by
performing across-subject correlations. Note that these analyses
should be interpreted with extreme caution because the correlation
between two measures could be driven by a third factor. For these
analyses, I again used the Haddara (3000 trials per participant), Man-
iscalco (1000 trials per participant), and Shekhar (3 difficulty levels,
2800 trials per participant) datasets. As in previous analyses, I exam-
ined each difficulty level in the Shekhar dataset in isolation and then
averaged the results across the three difficulty levels. For each dataset,
I computed each measure of metacognition based on all trials in the
experiment and examined the across-subject correlations between
different measures.

Overall, the 17 measures of metacognition showed medium-sized
across-subject correlations with each other (average r =0.49, 0.55, and
0.56 for the Haddara, Maniscalco, and Shekhar datasets, respectively;
Supplementary Fig. 4). These analyses seemed to reveal three groups
of measures. The first group consists of the five non-normalized
measures (meta-d’, AUC2, Gamma, Phi, and ΔConf), which exhibited
average inter-measures correlation of 0.60 (r =0.60, 0.63, and 0.58 in
each dataset). The second group consists of the five ratio and five
difference measures, which exhibited average inter-measures corre-
lation of 0.63 (r = 0.62, 0.62, and 0.63 in each dataset). The average
correlation between the first two groups of measures was slightly
weaker than the within-group correlations (r =0.51 on average;
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r =0.42, 0.55, and 0.55 in each dataset). Note that these results could
bedriven by the fact that all five non-normalizedmeasures are strongly
driven byd’, thus increasing the correlations between them. Itmayalso
be that the SDT-based normalization makes all ratios and difference
measures similar to each other.

Finally, the third group of measures consists of the two model-
basedmeasures, which showed the strongest divergence from the rest
of the measures. Specifically,meta-noise had an average correlation of
0.35 with the remaining measures (r = 0.35, 0.34, and 0.37 in each
dataset) andmeta-uncertainty had an average correlation of 0.44 with
the remaining measures (r =0.33, 0.45, and 0.53 in each dataset). The
measuresmeta-noise andmeta-uncertainty had a veryweak correlation
with each other (r =0.15, 0.03, and 0.06 in each dataset). These results
suggest that the two model-based measures may capture unique var-
iance related to metacognitive ability.

Discussion
Despite substantial interest in developing good measures of meta-
cognition, there has been surprisingly little empirical work into the
psychometric properties of current measures. Here I investigate the
properties of 17 measures of metacognition, including eight new var-
iants. I develop amethod of determining the validity and precision of a
measure of metacognition and examine each measure’s dependence
on nuisance variables and its split-half and test-retest reliability. The
results paint a complex picture. No measure of metacognition is
“perfect” in the sense of having the best psychometric properties
across all criteria. Researchers need tomake informed decisions about
which measures to use based on the empirical properties of the dif-
ferent measures. The results are summarized in Fig. 7.

Validity and precision
I found that all 17 measures of metacognition examined here are valid.
With the exception of meta-uncertainty, all measures seem to have
comparable level of precision. This result is rather surprising and

suggests that precision may be limited by measurement error such that
it is unlikely that any new measure of metacognition can substantially
exceed the precision level found for the first 16 measures here. Never-
theless, new measures can be noisier and therefore it is critical to
demonstrate their level of precision. Note that less precisemeasures can
also appear to depend less on nuisance factors not because of their
better psychometric properties but due to their noisiness.

Dependence on task performance
Task performance is arguably the most important and best-
appreciated nuisance variable for measures of metacognition. As has
been previously suspected18, the results here show that all traditional
measures of metacognition are strongly dependent on task perfor-
mance. However, the ratio method does a very good job of correcting
for this dependencewithM-Ratio,Gamma-Ratio, Phi-Ratio, and ΔConf-
Ratio showing only weak dependence on task performance. On the
other hand, the difference method performed poorly in removing the
dependence on task performance. The model-based measures meta-
noise and meta-uncertainty also performed well.

Dependence on metacognitive bias
Previous research has shown that meta-d’ and M-Ratio are positively
correlated with metacognitive bias such that a bias toward higher con-
fidence also leads to high values for these measures27,28. The current
investigation replicated these previous results and showed that similar
effects are observed for many other measures. Nevertheless, the
dependence was of low to medium effect size for M-Ratio and com-
parable to newer measures such as meta-noise andmeta-uncertainty.

Dependence on response bias
The results for response bias should be considered preliminary
because they are based on a single dataset that consists of 10 partici-
pants. As such, the results should not be taken as strong evidence for
an absence of dependence on response bias (hence, all measures are
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Fig. 6 | Test–retest reliability ofmetacognitive scores.Test–retest correlations in
the Haddara dataset (6 days, 500 trials per day, 70 participants) show generally low
test-retest reliability. Upper panel shows ICC values, whereas lower panel shows

Pearson correlation. The test–retest reliability was low-to-moderate for the mea-
sures meta-d’, AUC2, Gamma, Phi, and ΔConf and very low for the remaining
measures.
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colored in yellow rather than green in Fig. 7). Yet, it does appear that
any dependencies are unlikely to be particularly strong, at least for the
range of response bias likely to occur in most experiments.

Alternative ways of quantifying dependence on nuisance
variables
I quantified the dependence on nuisance factors by examining effect
sizes (Cohen’s d and r-values). Alternative ways of examining the
dependence on nuisance variables make it difficult to compare the
measures. For example, the difference or ratio of the raw values
across easy vs. difficult conditions is not readily comparable across
metrics that take different ranges. The main limitation of the
approach I adopted (examining effect sizes) is that noisier measures
will have an advantage. In practice, the precision analysis found that
16 of the 17 measures examined here have a similar level of precision,
and thus do not substantially differ in their noisiness. Nevertheless, it
is possible that the relatively low dependence ofmeta-uncertainty on
nuisance variables is in part due to its lower precision (higher
noisiness).

Split-half reliability
Guggenmos41 recently examined many datasets in the Confidence
Database and concluded that split-half reliability for M-Ratio is rela-
tively poor (r ~ 0.7 for bin sizes between 400 and 600). (Note that the
paper computes split-half reliability but it calls it test-retest relia-
bility.) One issue with the approach by Guggenmos is that many of
the analyzed datasets in the Confidence Database feature a variety of
conditions, manipulations, and sample sizes. These factors may
reduce the observed split-half reliability. Indeed, focusing on a select
number of large datasets with a single condition at a time, the current
paper finds much higher split-half reliabilities (between 0.84 and 0.9

for a bin size of 100). These results suggest that for sample sizes of
100 or more, one can expect reliable estimates of metacognition for
everymeasure when using a single experimental condition. It is likely
that studies that mix different conditions and estimate metacogni-
tive scores across all of them would produce lower split-half relia-
bility in line with the results of Guggenmos. Note that
sample sizes of 50 produced unacceptably low reliabilities, so
100 should be considered as a rough lower bound for the necessary
number of trials when estimating metacognition in studies of indi-
vidual differences.

Test–retest reliability
One of the most striking results here is the very low test-retest reli-
abilities observed. Besides the five non-normalized measures (meta-d’,
AUC2, Gamma, Phi, and ΔConf), no other measure showed test-retest
reliability exceeding 0.5 even for sample sizes of 400 trials. However,
the non-normalized five measures are strongly dependent on task
performance, and thus their higher reliabilitymay be partly (or wholly)
due to the higher reliability of task performance itself (test-retest
reliability of d’ was 0.84 for a sample size of 400). Therefore, studies
that match d’ for all participants may result in test-retest reliability
values for these five measures of metacognition that are as low as the
remaining measures. Nevertheless, these results are based on a single
dataset and should therefore be replicated before strong recommen-
dations can bemade. That said, the results are consistent with a recent
paper that examined the test-retest reliability ofM-Ratio in a sample of
25 participants14. Therefore, researchers who study individual differ-
ences inmetacognition should beaware of the potential low test-retest
reliability of measures of metacognition, which may explain previous
failures to find significant correlations betweenmetacognitive abilities
across domains.

Measure Precision Dependence on 
task performance

Dependence on 
metacognitive bias

Dependence on 
response bias

Split-half 
reliability

Test-retest 
reliability Unique limitations Unique 

advantages

meta-d' Pr = .65 d = 2.47 d = 0.44 r = -.04 r = .89 ICC = .71
AUC2 Pr = .54 d = 2.29 d = 0.51 r = .18 r = .89 ICC = .73 Continuous

Gamma Pr = .65 d = 2.95 d = -0.61 r = .12 r = .88 ICC = .71 Continuous
Phi Pr = .61 d = 1.34 d = 0.81 r = .11 r = .87 ICC = .63 Continuous

ΔConf Pr = .50 d = 1.81 d = 0.54 r = .18 r = .90 ICC = .75 Continuous
M-Ratio Pr = .61 d = -0.18 d = 0.27 r = .07 r = .85 ICC = .42 Unstable for low d'

AUC2-Ratio Pr = .60 d = -0.39 d = 0.09 r = .13 r = .85 ICC = .36
Gamma-Ratio Pr = .61 d = -0.11 d = 0.001 r = .08 r = .84 ICC = .30 Unstable for low d'

Phi-Ratio Pr = .62 d = -0.17 d = 0.23 r = .01 r = .84 ICC = .28 Unstable for low d'
ΔConf-Ratio Pr = .58 d = -0.23 d = 0.42 r = .11 r = .84 ICC = .27 Unstable for low d'

M-Diff Pr = .56 d = -0.58 d = 0.43 r = -.002 r = .87 ICC = .47
AUC2-Diff Pr = .59 d = -0.49 d = 0.10 r = .12 r = .85 ICC = .29

Gamma-Diff Pr = .65 d = -0.39 d = 0.24 r = .06 r = .85 ICC = .43
Phi-Diff Pr = .62 d = -0.30 d = 0.11 r = .001 r = .85 ICC = .35

ΔConf-Diff Pr = .53 d = -0.55 d = 0.34 r = .12 r = .85 ICC = .31
meta-noise Pr = .63 d = -0.29 d = -0.21 r = .03 r = .84 ICC = .29 Cannot be negative Model-based

meta-uncertainty Pr = .34 d = 0.06 d = 0.27 r = .13 r = .86 ICC = .21 Cannot be negative Model-based

Fig. 7 | Summaryof results.Thefigure lists the values obtained for eachmeasureof
metacognition for various criteria. Precision is themeasure developed in this paper
and the values listed are the average of the values in Fig. 1b, c. Higher precision
values are better. For dependence of task performance andmetacognitive bias, the
figure lists the average Cohen’s d values reported in the paper. For dependence on
response bias, the figure lists the average correlation between each measure of
metacognitionand the absolute value of responsebias ( cj j). Lower absolute value of
these dependencies is better. The reported split-half reliability is the average value
across datasets obtained for a bin size of 100, whereas the reported test-retest
reliability (ICC) is the average value obtained for a bin size of 400. Higher reliability

values are better. Color coding is meant as a general indicator but should be
interpreted with caution. Green indicates very good properties, yellow indicates
good properties, orange indicates problematic properties, and red indicates bad
properties. Colors were assigned based on the following thresholds: 0.5 for preci-
sion, 0.3 and 1 forCohen’s d,0.5 for test–retest reliability. Greenwasnotused in any
of the columns regarding dependence on nuisance variables as to not give the
impression that any measure is certainly independent of any of the nuisance vari-
ables. The figure also lists several unique advantages and disadvantages of each
measure discussed in the main text.
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Unique advantages and disadvantages of different measures
Several measures feature unique advantages and disadvantages
(Fig. 7). For example, four of the ratio measures (M-Ratio, Gamma-
Ratio, Phi-Ratio, and ΔConf-Ratio) become unstable for difficult con-
ditions because they include division by variables (d’, expected
Gamma, expected Phi, and expectedΔConf, respectively) that are very
close to 0 in such conditions. These measures should therefore be
used preferentially when performance levels are relatively high (e.g.,
one should aim for d’ values above 1, which roughly corresponds to
accuracy values above 69%).

AnadvantageofAUC2,Gamma,Phi, andΔConf is that they allwork
well with continuous confidence scales. All other measures rely on
SDT-based computations that necessitate that continuous scales are
binned before analyses. Such binning may lead to loss of information,
but it is currently unclear how much signal may be lost by different
binning methods.

The twomodel-basedmeasures—meta-noise andmeta-uncertainty
—have unique advantages and disadvantages. Their main advantage is
that all their underlying assumptions are explicitly known. Conversely,
other measures must necessarily include hidden assumptions that are
difficult to reveal without linking them to a process model of
metacognition3. Another unique advantage of these measures is that
they can in principle be applied much more flexibly. For example,
when an experiment contains several conditions, other measures do
not allow the estimation of a single measure of metacognition and
simply ignoring the different conditions can lead to inflated scores49.
Conversely, both meta-noise and meta-uncertainty allow different
conditions to be modeled as part of their underlying process models
and thus a singlemetacognitive score can be computed in a principled
way across many conditions. A possible disadvantage of both mea-
sures is that they can only take positive values and therefore cannot be
used for situations where metacognition may contain more informa-
tion than the decision itself, such as in the presence of additional
information that arrives after the decision53,54.

Several measures showed dependence on nuisance variables that
went in the opposite direction from most other measures (meta-
uncertainty for task performance, as well asmeta-noise andGamma for
metacognitive bias). As such, these measures may be especially useful
to use when there is a concern that results may be driven by a specific
nuisance variable. Unfortunately, it is currently difficult to determine
why thesemeasures show the opposite effects (or, for thatmatter, why
mostmeasures show the dependencies they show). Understanding the
nature of these relationships will likely require further progress in
developing well-fitting process models of metacognition55,56.

IsM-Ratio still the gold standard for measuring metacognition?
In the last decade, M-Ratio has become the dominant measure of
metacognition due to its assumed better psychometric
properties18,34,57. This status hasnaturally attracted greater scrutiny and
many recent papers have criticized some of the properties of
M-Ratio27,28,37,41,58. However,while these criticisms arevalid, papers have
rarely tested how alternativemeasures performon the same tests. The
results here demonstrate that across all examined dimensions, there
are no measures that clearly outperform M-Ratio. Three measures—
meta-noise, Gamma-Ratio, and Phi-Ratio—showed very similar perfor-
mance toM-Ratio, while all other measures appear inferior toM-Ratio
in at least one critical dimension: they strongly depend on task per-
formance (all five non-normalized measures, all five difference mea-
sures, andAUC-Ratio), have lowprecision (meta-uncertainty), or strong
dependence on metacognitive bias (ΔConf-Ratio). I see no strong
argument in the present data to choose either Gamma-Ratio or Phi-
Ratio over M-Ratio, especially given how established M-Ratio is con-
trary to Gamma-Ratio and Phi-Ratio. There are good arguments for
using meta-noise in addition to M-Ratio as a way of controlling for
metacognitive bias given that the two measures depend on

metacognitive bias in opposite directions. Similarly, meta-uncertainty
can alsobe used in addition toM-Ratioormeta-noise to control for task
performance given that it depends on task performance in the oppo-
site direction than the other two measures.

There are strong reasons for the field to transition tomodel-based
measures ofmetacognition3 sincemodel-basedmeasures are uniquely
positioned to properly capture the influence of metacognitive
inefficiencies59. The measure meta-noise is especially promising given
its good performance on the current tests and the fact that its asso-
ciatedmodel is a successfulmodel ofmetacognition55. That said,meta-
noise is currently only implemented in Matlab (see codes associated
with the current paper) and is more computationally intensive. Thus,
althoughmeta-noise or othermodel-basedmeasures ofmetacognition
should eventually supplant M-Ratio, for the time being it is hard to
justify abandoning M-Ratio as the gold standard for the field.

Limitations
The present work has several limitations. First, despite the attempt to
be comprehensive, several measures of metacognition have been
omitted including recentmodel-basedmeasures30,60, different variants
of M-Ratio41, and legacy measures such as Kunimoto’s a’38. Never-
theless, the currentwork shouldmake itmucheasier for researchers to
establish the properties of other measures of metacognition and
compare them to the ones examined here. Second, while I have
attempted to use multiple large datasets for each analysis, two of the
analyses only included a single dataset (dependence on response bias
and test-retest reliability) and shouldbe interpretedwith caution. Even
in cases wheremultiple datasets were used, it is clear that addingmore
datasets would alter the values in Fig. 7. As such, the values there
should be understood as rough estimates that are bound to be
improved upon by future work that analyzes additional large datasets.
Third, all ratio anddifferencemeasureswere computedusing SDTwith
equal variance; computations assuming unequal variance may lead to
different results. Fourth, the current analyses were conducted exclu-
sively in the context of perception. Metacognition has been widely
studied in the context of learning, memory, problem solving, etc1.
While the results here are expected to generalize to these other
domains, additional research is needed to confirm that. Fifth, most
measures examined here only apply to 2-choice tasks and thus cannot
be used for designs with estimation tasks, n-choice tasks, etc.

Recommendations
Based on the current set of results and findings from the greater lit-
erature, Table 3 lists recommendations for researchers interested in
measuring metacognitive ability. The recommendations pertain to
experimental design, analysis, and interpretation.

Researchers interested in measuring metacognition precisely
need to pay special attention to experimental design. They should use
relatively easy tasks (while still avoiding ceiling effects) because ratio
measures become unstable for low d’. They should also ideally use a
single difficulty level to avoid the inflation that arises when multiple
difficulty levels are combined49. Finally, researchers need to ensure
adequate sample sizes. I recommend at least 400 trials per participant
for individual differences research and at least 100 trials per partici-
pant for within-subject studies.

At the level of analysis, I recommend using more than one mea-
sure whenever possible, especially if the results could plausibly
depend on task performance or metacognitive bias. Difference mea-
sures should not be assumed to properly correct for taskperformance.
In cases where performance is very low and ratio measures are
unstable, the results should be confirmed by examining both differ-
ence and non-normalized measures (since these two categories have
opposite dependence on task performance). When multiple condi-
tions are present, researchers should ideally use the model-based
measures meta-noise or meta-uncertainty via custom modeling.
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Finally, researchers should interpret findings ofM-Ratio and other
ratio measures being larger (or smaller) than 1 with caution. Tradi-
tionally, such findings have been interpreted as the metacognitive
system having more (or less) signal than the decision-making system.
However,many other factors can drive such results, such as themixing
of several difficulty levels49 or criterion (as opposed to signal) noise59,
and some researchers have even questioned the separation of
decision-making and metacognitive systems61.

Methods
Ethical regulations
The current study complies with all relevant ethical regulations. All
analyses were performed on deidentified data from publicly available
datasets and thus were exempt from Internal Review Board review.

Datasets
To investigate the empirical properties of measures of metacognition,
I used the datasets from the Confidence Database47 that are most
appropriate for each individual analysis. This process resulted in the
selection of six different datasets, briefly discussed below in alphabe-
tical order. In each case, participants completed a 2-choice perceptual
task and provided confidence ratings. For each dataset, I only con-
sidered trials from the main experiment and removed any staircase or
practice trials that may have been included. In addition, I excluded
participants who had lower than 60% or higher than 95% accuracy, or
who gave the same object-level or confidence response on more than
85% of trials. These exclusions were made because such participants
can have unstable metacognitive scores. Overall, these criteria led to
the exclusion of 58 out of 1091 participants (5.32% exclusion rate). Data
were collected in a lab setting unless otherwise indicated.

Haddara dataset
The first dataset is named “Haddara_2022_Expt2” in the Confidence
Database (simplified to “Haddara” here) and consists of 75 participants
each completing 3350 trials over seven days. Because Day 1 consisted
of a smaller number of trials (350) compared to Days 2–7 (500 trials
each), I only analyzed the data from Days 2–7 (3000 trials total). All
experimental details can be found in the original publication43. Briefly,
the task was to determine the more frequent letter in a 7 × 7 display of
X’es and O’s. Confidence was provided on a 4-point scale using a
separate button press. The data collection was conducted online and
half the participants received trial-by-trial feedback (all participants
are considered jointly here). Five participants were excluded from this
dataset (6.67% exclusion rate).

Locke dataset
The second dataset is named “Locke_2020” in the Confidence Data-
base (simplified to “Locke” here) and consists of 10 participants each
completing 4900 trials. All experimental details can be found in the
original publication44. Briefly, the task was to determine if a Gabor

patch was tilted to the left or right vertical. Confidence was provided
on a 2-point scale using a separate button press. There were seven
conditions with manipulations of both prior and reward. Rewards
were manipulated by changing the payoff for correctly choosing
category 1 vs. category 2 (e.g., R = 4:2 means that 4 vs. 2 points were
given for correctly identifying categories 1 and 2, respectively),
whereas priors were manipulated by informing participants about
the probability of category 2 (e.g., P = 0.75 means that there was 75%
probability of presenting category 2 and 25% probability of pre-
senting category 1). The seven categories were as follows (1) P = 0.5,
R = 3:3, (2) P = 0.75, R = 3:3, (3) P = 0.25, R = 3:3, (4) P = 0.5, R = 4:2, (5)
P = 0.5, R = 2:4, (6) P = 0.75, R = 2:4, and (7) P = 0.25, R = 4:2. There
were equal number of trials (700) per condition. No participants
were excluded from this dataset.

Maniscalco dataset
The third dataset is named “Maniscalco_2017_expt1” in the Confidence
Database (simplified to “Maniscalco” here) and consists of 30 partici-
pants each completing 1000 trials. All experimental details can be
found in the original publication45. Briefly, the task was to determine
which of the two patches presented to the left and right of fixation
contained a grating. A single difficulty condition was used throughout.
Confidence was provided on a 4-point scale using a separate button
press. Eight participants were excluded from this dataset (26.67%
exclusion rate).

Rouault1 and Rouault2 datasets
The fourth and fifth datasets are named “Rouault_2018_Expt1” and
“Rouault_2018_Expt2” in the Confidence Database (simplified to
“Rouault1” and “Rouault2” here). They consist of 498 and 497 parti-
cipants, respectively, each completing 210 trials. All experimental
details can be found in the original publication that describes both
datasets46. Briefly, the task was to determine which of the two
squares presented to the left and right of fixation contained more
dots and then rate confidence using a separate button press. The
Rouault1 dataset had 70 difficulty conditions (where the difference in
dot number between the two squares varied from 1 to 70) with 3 trials
each. It collected confidence on an 11-point scale that goes from 1
(certainly wrong) to 11 (certainly correct). However, because the first
six confidence ratings were used very infrequently, I combined them
into a single rating, thus transforming the 11-point scale into a 6-point
scale. On the other hand, Rouault2 used a continuously running
staircase that adaptively modulated the difference in dots. It col-
lected confidence on a 6-point scale that goes from 1 (guessing) to 6
(certainly correct), which is equivalent to the modified scale from
Rouault1 and thus did not require additional modification. Data
collection for both studies was conducted online. Thirty-two parti-
cipants were excluded from Rouault1 and 13 participants were
excluded from Rouault2 (6.43% and 2.62% exclusion rates,
respectively).

Table 3 | Recommendations for metacognition researchers

Recommendations

Experimental design 1. Use relatively easy tasks to avoid instability related to low d’ values
2. Whenever possible, use designs with a single difficulty level
3. Collect at least 100 trials per participant
4. For individual differences research, ideally collect at least 400 trials per participant

Analysis 1. Use several measures of metacognition
2.M-Ratio continues to be a good default measure of metacognitive ability
3. If results could plausibly depend on task performance ormetacognitive bias, then confirm that results remain the samewhen usingmeta-
noise or meta-uncertainty
4. Do not use difference measures to correct for differences in task performance
5. If multiple conditions are present, use meta-noise or meta-uncertainty (custom modeling necessary)

Interpretation 1. Do not automatically assume that M-Ratio < 1 indicates signal loss from the decision to the metacognitive system
2. Do not automatically assume that M-Ratio > 1 indicates signal gain from the decision to the metacognitive system
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Shekhar dataset
The final dataset is named “Shekhar_2021” in the Confidence Database
(simplified to “Shekhar” here) and consists of 20 participants each
completing 2800 trials. All experimental details can be found in the
original publication27. Briefly, the task was to determine the orientation
(left vs. right) of a Gabor patch presented at fixation. Participants indi-
cated their confidence simultaneously with the perceptual decision
using a single mouse click. Confidence was provided on a continuous
scale (from 50 to 100) but was binned into six levels as in the original
publication. The dataset featured three different difficulty levels
(manipulated by changing the contrast of the Gabor patch), which were
analyzed separately. No participants were excluded from this dataset.

Computation of each measure of metacognition
Previously proposedmeasures ofmetacognition. I computed a total
of 17 measures of metacognition and provided Matlab code for their
estimation (available at https://osf.io/y5w2d/). I first discuss nine of
these measures that have been previously proposed: AUC2, Gamma,
Phi, ΔConf, meta-d’, M-Ratio, M-Diff, meta-noise, and meta-uncertainty.

The first four of these measures have the longest history. AUC2
was first proposed in 1950s31 and measures the area under the Type 2
ROC function that plots Type 2 hit rate vs. Type 2 false alarm rate.
Gamma is perhaps themost popularmeasure in thememory literature
and measures are the Goodman–Kruskall Gamma coefficient, which is
essentially a rank correlation between trial-by-trial confidence and
accuracy32. Phi is conceptually similar to Gamma but measures the
Pearson correlation between trial-by-trial confidence and accuracy33.
Finally, ΔConf (my terminology) measures the difference between
average confidence on correct trials and the average confidence on
error trials. ΔConf is perhaps the simplest and most intuitive measure
of metacognition but is used very infrequently in the literature.

The next three measures were developed by Maniscalco and
Lau34. Theydevised anewapproach tomeasuringmetacognitive ability
where one can estimate the sensitivity, meta-d’, exhibited by the con-
fidence ratings. Because meta-d’ is expressed in the units of d’, Man-
iscalco and Lau reasoned that meta-d’ can be normalized by the
observed d’ to obtain either a ratio measure (M-Ratio, equal to meta-
d’/d’) or a difference measure (M-Diff, equal to meta-d’–d’). These
measures are often assumed to be independent of task performance18

but empirical work on this issue is scarce (though see41).
Finally, recent years have seen a concerted effort to build models

of metacognition derived from explicit process models of metacog-
nition. Two suchmeasures examined here were developed by Shekhar
and Rahnev27 and Boundy-Singer et al.35 Shekhar and Rahnev proposed
the lognormal meta-noise model, which is an SDT model with the
additional assumption of lognormally distributedmetacognitive noise
that affects the confidence criteria. The lognormal distribution was
used because it avoids non-sensical situations where a confidence
criterion moves on the other side of the decision criterion. The
metacognitive noise parameter (σmeta, referred to here as meta-noise)
can be used as ameasure ofmetacognitive ability. The fitting ofmodel
to data is rather expensive because it requires the computation of
many double integrals that do not have numerical solutions. Conse-
quently, the fitting method from Shekhar and Rahnev27 takes sub-
stantially longer than other measures examined here, making the
measure less practical. To address this issue, I make substantial mod-
ifications to the original code including many improvements in the
efficiency of the algorithm and creating a lookup table so that values of
the double integral do not need to be computed anew but can be
simply loaded. These improvements reduce the computation ofmeta-
noise fromminutes to a few seconds, thusmaking themeasure easy to
use in practical applications. The measure developed by Boundy-
Singer35—meta-uncertainty—is based on a different process model of
metacognition, CASANDRE, that implements the notion that people
are uncertain about the uncertainty in their internal representations.

Specifically, it denotes the noise present in the estimation of the sen-
sory noise. The second-order uncertaintyparameter,meta-uncertainty,
represents another possible measure of metacognition. The code for
estimating meta-uncertainty was provided by Zoe Boundy-Singer.

New measures of metacognition. In addition to the already estab-
lished measures mentioned above, I developed several new measures
that conceptually follow the normalization procedure introduced by
Maniscalco and Lau34. That normalization procedure has previously
only been applied to the measure meta-d’ (to create M-Ratio and
M-Diff), but there is no theoretical reason why a conceptually similar
correction cannot be applied to other traditional measures of meta-
cognition. Consequently, here I develop eight new measures where
one of the traditional measures of metacognitive ability is turned into
either a ratio (AUC2-Ratio, Gamma-Ratio, Phi-Ratio, and ΔConf-Ratio)
or a difference (AUC2-Diff, Gamma-Diff, Phi-Diff, and ΔConf-Diff) mea-
sure. The logic is to compute an observed and an expected value for
any given measure (e.g., AUC2), and then use the expected value to
normalize the observed value. First, a measure is computed using the
observed data, thus producing what may be called, e.g., AUC2observed.
Critically, themeasure is then computed again using the predictions of
SDT given the observed sensitivity (d’) and criteria, thus obtaining
whatmaybe called, e.g.,AUC2expected. One can then take either the ratio
(e.g., AUC2observed/AUC2expected) or the difference (e.g.,
AUC2observed –AUC2expected) between the observed and the SDT-
predicted quantities to create the new measures of metacognition.

I computed the SDT expectations in the following way. First, I
estimated d’ using the formula:

d0 = zðHRÞ � zðFARÞ ð1Þ

where HR is the observed hit rate and FAR is the observed false alarm
rate. Then, I estimated the location of all confidence and decision
criteria using the formula:

ci = � zðHRiÞ+ zðFARiÞ
2

ð2Þ

In the formula above, i goes from�ðk � 1Þ to k � 1, for confidence
ratings collected on an k-point scale. Intuitively, one can think of the
confidence ratings 1, 2, . . . k for category 1 being recoded to
�1, � 2, . . .� k, such that confidence goes from �k to k and simul-
taneously indicates the decision (negative confidence values indicat-
ing a decision for category 1; positive confidence values indicating a
decision for category 2). HRi and FARi are then simply the proportion
of times this rescaled confidence is higher or equal to iwhencategory 2
and category 1 are presented, respectively.

Once the values of d’ and ci are computed, they can be used to
generate predicted HRi and FARi values (which would be slightly dif-
ferent from the empirically observed ones). The measures AUC2,
Gamma, Phi, andΔConf can thenbe straightforwardly computedbased
on the predicted HRi and FARi values, thus enabling the computation
of the new ratio and difference measures.

Assessing validity and precision
Any measure of metacognition should be valid and precise19,22,48.
However, there is no established method to assess either validity or
precisionofmeasures ofmetacognition. Here I developed amethod to
jointly assess validity and precision. The underlying idea is to artifi-
cially alter confidence to be less in line with accuracy and then assess
how measures of metacognition change.

Specifically, the method corrupts confidence by decreasing con-
fidence ratings for correct trials and increasing them for incorrect
trials. For a given set of trials, the method loops over the trials starting
from the first and (1) if the trial has a correct response and confidence
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higher than 1, then it decreases the confidence on that trial by 1 point,
and (2) if the trial has an incorrect response and confidence lower than
maximum (that is k on an k-point scale), then it increases the con-
fidence on that trial by 1 point. If neither of these conditions apply, the
trial is skipped. The method then continues to corrupt subsequent
trials in the samemanner until a pre-set proportion of corrupted trials
is achieved. Then, all measures of metacognition are computed based
on the corrupted confidence ratings. A given dataset is first split into n
bins of a given trial number, and the procedure above is performed
separately for eachbin. Finally, to compute ameasure of precision that
canbe compared acrossdifferentmeasures ofmetacognition, I use the
following formula:

precision=
1
n

Xn

i = 1

measureOrigi �measureCorruptedi

SD
ð3Þ

where measureOrigi and measureCorruptedi are the values of a spe-
cific measure computed on the original (uncorrupted) and corrupted
confidence ratings, respectively, n is the number of bins analyzed, and
SD is the standard deviation of all measureOrigi for i= 1, 2, . . . , n.
Positive values of the variable precision indicate valid measures of
metacognition and higher values indicatemore precisemeasures (e.g.,
measures more sensitive to corruption in confidence compared to
background fluctuations).

I computed the precision of all 17 measures of metacognition for
two datasets from the Confidence Database: Maniscalco (1 day; 1000
trials per participant) and Haddara (6 days; 3000 trials per partici-
pant). I separately examined the results of altering 2, 4, and 6% of all
trials and computed metacognitive scores based on bins of 50, 100,
200, and 400 trials. I split the Maniscalco dataset into 20 bins of 50
trials, 10 bins of 100 trials, five bins of 200 trials, and two bins of 400
trials (by taking into consideration only the first 800 trials in this last
case). I split the 500 trials from each of the six days in the Haddara
dataset into 10 bins of 50 trials, five bins of 100 trials, two bins of 200
trials, and one bin of 400 trials (by taking into consideration only the
first 400 trials for the 200- and 400-trial bins). Across the 6 days, this
process resulted in 60 bins of 50 trials, 30 bins of 100 trials, 12 bins of
200 trials, and six bins of 400 trials.

Assessing dependence on task performance
To assess how task performance affects measures of metacognition, I
examined whether each measure of metacognition changed across
different difficulty levels in the same experiment. Specifically, I tested
whether each of the 17 measures of metacognition increases or
decreases for more difficult conditions. This process requires datasets
with (1) several difficulty conditions and (2) a large number of trials.
Consequently, I selected datasets from the Confidence Database that
meet these two criteria but do not include any other manipulations.
This resulted in the selection of three datasets: Shekhar (3 difficulty
levels, 20 participants, 2800 trials/participant, 56,000 total trials),
Rouault1 (70 difficulty levels, 466 participants, 210 trials/participant,
97,860 total trials), and Rouault2 (many difficulty levels, 484 partici-
pants, 210 trials/participant, 101,640 total trials). Because the two
Rouault datasets included very few trials from each difficulty level, I
instead used a median split to classify them in easy vs. difficult. To
perform statistical analyses and compute Cohen’s d, I conducted
t-tests comparing the lowest and highest difficulty levels in each
dataset. To avoid outlier values, for each difficulty level and each
measure of metacognition, I excluded any values that deviated by
more than 3*SD from the mean of that difficulty level. Finally, as a
reference, I performed all the above analyses on themeasures d’, c, and
average confidence.

Assessing dependence on metacognitive bias
To assess howmetacognitive bias affectsmeasures ofmetacognition, I
applied the method developed by Xue et al.28. In this method, con-
fidence ratings are recoded in two different ways as to artificially
inducemetacognitive bias towards lower or higher confidence ratings.
Specifically, an n-point scale is transformed into an (n−1)-point scale in
twoways. In the first recoding, the ratings from 2 to n are all decreased
by one. In the second recoding, only the rating of n is decreased by
one. When compared to each other, the first method results in a bias
towards lower confidence compared to the secondmethod (see mean
confidence values in the bottom right of Fig. 3a). A measure of meta-
cognition can then be computed for the newly obtained confidence
ratings. Comparing the obtained values for the two recodings allows
the assessment of whether each measure of metacognition is inde-
pendent of metacognitive bias.

This process would ideally be applied to datasets with (1) a single
experimental condition and (2) a large number of trials. Consequently,
I selected the same two datasets used to quantify precision: Haddara
(3000 trials per participant) and Maniscalco (1000 trials per partici-
pant). In addition, I also used the Shekhar dataset (3 difficulty levels,
2800 trials per participant) but analyzed each difficulty level in isola-
tion and then averaged the results across the threedifficulty levels. The
values of each measure of metacognition for the two recodings were
compared using a paired t-test.

Assessing dependence on response bias
To assess how response bias affects measures of metacognition, I
compared the values of each measure of metacognition in conditions
that differed in their decision criterion. To do so, I analyzed the Locke
dataset—the only dataset in the Confidence Database where the
response criterion is experimentally manipulated. I computed each
measure of metacognition for each of the seven conditions in that
dataset and conducted repeated measures ANOVAs to examine whe-
ther each measure of metacognition varied with the condition. In
addition, to estimate an effect size for the relationship between
response bias and each measure of metacognition, I computed the
correlation between the estimated metacognitive ability and the
absolute value of the response bias (i.e., |c|).

Assessing split-half reliability
To assess split-half reliability, I examined the correlation between
the values obtained for different measures of metacognition on odd
vs. even trials41. As with assessing precision, I estimated split-half
correlations for different sample sizes, so researchers can make
informed decisions about the sample sizes needed in future studies.
Specifically, I used bin sizes of 50, 100, 200, and 400 trials. Note that
a bin size of k here means that 2k trials were examined with both the
odd and even trials having a sample size of k. These computations
are best performed using datasets with (1) a single condition,
and (2) a large number of trials per participant. Consequently, I
selected the same three datasets used to examine the dependence
of measures of metacognition on metacognitive bias: Haddara
(3000 trials per participant), Maniscalco (1000 trials per partici-
pant), and Shekhar (3 difficulty levels, 2800 trials per participant).
As before, I analyzed each difficulty level in the Shekhar dataset in
isolation and then averaged the results across the three difficulty
levels. For a bin size of k, the computations were performed on as
many as possible non-overlapping bins of 2k trials. The obtained
r-values were then z-transformed, averaged, and the resulting
average z value was transformed back to an r-value for reporting and
plotting purposes.

Assessing test–retest reliability
To assess test-retest reliability, I examined the intraclass correlation
(ICC) coefficients between the values obtained for different
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measures of metacognition on different days. I report the two-way
absolute consistency ICC, named “A-1”62 computed using the code
provided by Salarian (https://www.mathworks.com/matlabcentral/
fileexchange/22099-intraclass-correlationcoefficient-icc). For ease of
comparison with the results by Guggenmos41, in addition to ICC, I
also computed the Pearson correlation. As with split-half reliability, I
estimated test-retest reliability for sample sizes of 50, 100, 200, and
400 trials. Because test-retest computations require data from mul-
tiple days and a large number of trials per participant per day, I
selected the Haddara dataset as it is the only dataset in the Con-
fidence Database to meet these criteria. I computed test-retest cor-
relations between all pairs of days for as many as possible non-
overlapping bins. Note that, unlike for split-half analyses, analyses of
bin size of k involved the selection of k trials from each day. As with
the split-half analyses, the obtained correlation coefficients were
then z-transformed, averaged, and the resulting average z value was
transformed back to a correlation coefficient (ICC or r-value) for
reporting and plotting purposes.

Statistical analyses and reporting
All conclusions in the paper are based on effect sizes (Cohen’s d, r, and
ICC values). However, for completeness, I sometimes refer to the
results of null-hypothesis statistical tests. As is standard practice, in
cases where I report the results of multiple tests together, I only
include the p-values. All remaining information, such as test statistics
and degrees of freedom, can be obtained from the provided analysis
codes. All p-values are based on two-tailed statistical tests. Analyses
were performed using MATLAB 2024a (MathWorks).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw data for all six experiments were obtained from the Confidence
Database (https://osf.io/s46pr). The data come from the following
publications: Haddara and Rahnev43, Locke et al.44, Maniscalco et al.45,
Rouault et al.46, and Shekhar and Rahnev27. Processed data files are
available at https://doi.org/10.17605/osf.io/y5w2d.

Code availability
Code for computing all 17 measures of metacognition, as well as data
and analysis code for reproducing all statistical results and plotting all
figures are available at https://doi.org/10.17605/osf.io/y5w2d.
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