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Abstract 

One of the most important aspects of research on metacognition is the measurement 

of metacognitive ability. However, the properties of existing measures of 

metacognition have been mostly assumed rather than empirically established. Here 

I perform a comprehensive empirical assessment of many common measures (meta-

d’, M-Ratio, M-Diff, AUC2, Gamma, Phi, and ΔConf), as well as two recent model-

based measures (meta-noise and meta-uncertainty). I also develop novel Ratio and 

Diff variants for the measures AUC2, Gamma, Phi, and ΔConf, resulting in a total of 

17 measures of metacognition. To assess the measures, I develop a new method of 

determining the validity and precision of a measure of metacognition. In addition, I 

examine each measure’s dependence on task performance, response bias, and 

metacognitive bias, as well as each measure’s split-half and test-retest reliabilities. 

Finally, I examine the influence of trial number. Reassuringly, I find that all 

measures of metacognition investigated here are valid and most show similar levels 

of precision. Another reassuring finding is that all measures have very high split-half 

reliabilities for trial numbers over 100. However, the test-retest reliabilities are 

often very low with important implications for individual differences research. 

Finally, most measures show only weak dependence on response and metacognitive 

bias but many measures are strongly dependent on task performance. This 

comprehensive assessment paints a complex picture: no measure of metacognition 

is perfect and depending on the details of the experiment, different measures may 

be preferable. Based on these results, I make specific recommendations about the 

use of different measures.  
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Introduction 

Metacognitive ability refers to the capacity to evaluate one’s decisions (Metcalfe & 

Shimamura, 1994). High metacognitive ability allows us to have high confidence 

when we are correct but low confidence when we are wrong. Conversely, low 

metacognitive ability impairs the capacity of confidence ratings to distinguish 

between instances when we are correct or wrong. Metacognition is thus a critical 

faculty in human beings linked to our ability to learn (Guggenmos et al., 2016), make 

good decisions (Desender et al., 2018), interact with others (Pescetelli & Yeung, 

2021), and know ourselves (Fleming, 2021). As such, it is critical that we have the 

tools to precisely measure this faculty in human participants.  

 

Below, I first examine the properties that one may desire in a measure of 

metacognition and then review the known properties of existing measures of 

metacognitive ability. This brief overview demonstrates that there is little we firmly 

know about the properties of existing measures of metacognition. The rest of the 

paper aims to fill this gap by providing a comprehensive test of all critical properties 

of many common measures of metacognition. 

 

The requirements for a measure of metacognition 

Before one can evaluate a given measure of metacognition, it is first necessary to 

determine what properties are important or desirable. Since there is no existing list 

of desirable properties, I start by creating one here (Table 1). I believe that none of 

the properties listed below are controversial. 
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Table 1. Requirements for measures of metacognitive ability. 

Requirement Justification 

High precision 
Manipulations affecting metacognition should have a large effect on the measure 
of metacognitive ability relative to its normal fluctuations. 

Independence from 
task performance 

Giving participants an easier or more difficult task should not affect the measured 
metacognitive ability 

Independence from 
metacognitive bias 

Metacognitive bias (tendency to give high or low confidence ratings) is under 
participants' strategic control. Whether they choose to use the lower or higher 
ends of the confidence scale should not affect the measured metacognitive ability. 

Independence from 
response bias 

Response bias (tendency to choose one category more than the other) is under 
participants' strategic control. Whether they choose to select one stimulus more 
than the other should not affect the measured metacognitive ability. 

High reliability 
For studies of individual differences, it is critical that the measure of 
metacognitive ability has high reliability (e.g., split-half and test-retest reliability). 

 

 

Validity and precision 

The most important property of any measure is that it is valid: namely, it should 

measure what it purports to measure (Clark & Watson, 2019). A related property is 

precision (Luck et al., 2021): the measure should be as sensitive as possible to 

changes in the variable of interest relative to its inevitable fluctuations in repeated 

tests. However, despite the importance of validity and precision, these two 

properties have been largely ignored in the context of measures of metacognition. 

Here I develop a simple and intuitive method for assessing both validity and 

precision of metacognition measures. The method demonstrates that all existing 

measures of metacognition are valid but show some variations in precision. 

 

Independence of nuisance variables 
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Perhaps the most widely appreciated desirable feature in a measure of 

metacognition is that it should be independent of various nuisance variables. Here a 

“nuisance variable” is any property of people’s behavior that is not directly related 

to their metacognitive ability. The nuisance variable that has (rightfully) received 

the most attention is task performance (Fleming & Lau, 2014): a good measure of 

metacognition should not be affected by whether people happened to be performing 

an easy or a difficulty task. Task performance can be computed as d’, which is a 

measure of sensitivity derived from signal detection theory (SDT).  

 

However, two more related features are also important. The first is independence of 

metacognitive bias, that is the tendency of people to be biased towards the lower or 

upper ranges of the confidence scale (Shekhar & Rahnev, 2021b; Xue et al., 2021). 

This variable can be quantified simply as the average confidence across all trials. 

The second is independence of response bias, that is, the tendency to select one 

response category more than another (Fleming & Lau, 2014). For two-choice tasks, 

this variable can be quantified as the decision criterion, c, derived from SDT. Both 

metacognitive and response bias are under the strategic control in that participants 

can freely choose to change them (e.g., they can do that in response of experimental 

manipulations such as expectation or reward, Rahnev & Denison, 2018). As such, 

measures of metacognitive ability should ideally remain independent of both types 

of bias. 

 



 6 

Task performance, metacognitive bias, and response bias are arguably the primary 

nuisance variables that a measure of metacognitive ability should be independent of 

(Table 2). They are also variables that can be measured in any design that also 

allows the measurement of metacognitive ability. It is possible to add more 

variables to this list (e.g., reaction time, Desender et al., 2022) but the current paper 

only examines these three variables. 

 

Table 2. Nuisance variables that can confound measures of metacognitive ability. 
 

Measure Interpretation 

sensitivity (d') Task performance computed using SDT assumptions 

confidence Average confidence (measure of metacognitive bias) 

criterion (c) Response bias computed using SDT assumptions 

 

Reliability 

Validity, precision, and independence of nuisance variables are qualities that are 

important in any study. However, in studies of individual differences, it is also 

crucial that measures have high reliability. This paper examines both split-half and 

test-retest reliability. 

 

Current measures of metacognitive ability 

Several measures of metacognitive ability are relatively widely used. One popular 

measure is the area under the Type 2 ROC function (Clarke et al., 1959), also known 

as AUC2. Other popular measures are the Goodman–Kruskall Gamma coefficient (or 

just Gamma), which is essentially a rank correlation between trial-by-trial 

confidence and accuracy (Nelson, 1984) and the Pearson correlation between trial-
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by-trial confidence and accuracy (known as Phi; Kornell et al., 2007). Another 

simple but less frequently used measure is the difference between average 

confidence on correct trials and the average confidence on error trials (which I call 

ΔConf).  

 

While all four of these traditional measures are intuitively appealing, they are all 

thought to be influenced by the primary task performance (Fleming & Lau, 2014). 

To address this issue, Maniscalco & Lau (2012) developed a new approach to 

measuring metacognitive ability where one can estimate the sensitivity, meta-d’, 

exhibited by the confidence ratings. Because meta-d’ is expressed in the units of d’, 

Maniscalco and Lau then reasoned that meta-d’ can be normalized by the observed 

d’ to obtain either a ratio measure (M-Ratio, equal to meta-d’/d’) or a difference 

measure (M-Diff, equal to meta-d’ – d’). These measures are often assumed to be 

independent of task performance (Fleming & Lau, 2014). 

 

The normalization introduced by Maniscalco & Lau (2012) has only been applied to 

the measure meta-d’ (resulting in the measures M-Ratio and M-Diff), but there is no 

theoretical reason why a conceptually similar correction cannot be applied to the 

traditional measures above. Consequently, here I develop eight new measures 

where one of the traditional measures of metacognitive ability is turned into either a 

ratio (AUC2-Ratio, Gamma-Ratio, Phi-Ratio, and ΔConf-Ratio) or a difference (AUC2-

Diff, Gamma-Diff, Phi-Diff, and ΔConf-Diff) measure. The logic is that a given measure 

(e.g., AUC2) is computed once using the observed data (obtaining, e.g., AUC2observed) 
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and a second time using the predictions of SDT given the observed sensitivity and 

decision criterion (obtaining, e.g., AUC2expected). One can then take either the ratio or 

the difference between the observed and the SDT-predicted quantities. 

 

Finally, one important limitation of all measures above is that they are not derived 

from a process model of metacognition. In other words, none of these measures are 

based on an explicit model of how confidence judgments may be corrupted. 

Recently, Shekhar & Rahnev (2021b) developed a process model of metacognition – 

the lognormal meta noise model – that is based on SDT assumptions but with the 

addition of lognormally distributed metacognitive noise. This metacognitive noise 

corrupts the confidence ratings but not the initial decision and, in the model, takes 

the form of confidence criteria that are sampled from a lognormal distribution 

rather than having constant values. The metacognitive noise parameter (𝜎𝑚𝑒𝑡𝑎, 

referred here as meta-noise) can then be used as a measure of metacognitive ability. 

A similar approach was taken by Boundy-Singer et al. (2023) who developed 

another process model of metacognition, CASANDRE, based on the notion that 

people are uncertain about the uncertainty in their internal representations. The 

second-order uncertainty parameter (meta-uncertainty) thus represents another 

possible measure of metacognitive ability.  

 

This paper examines the properties of all 17 measures of metacognition introduced 

above (for a summary, see Table 3). First, however, I briefly review the previous 

literature on the properties of these measures. 
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Table 3. Measures of metacognition examined in the current paper. 

Measure Calculation 
Based on a 

process model 

meta-d' d' value that provides best fit to Type 2 ROC No 

AUC2 Area under the Type 2 ROC curve No 

Gamma Rank correlation between confidence and accuracy No 

Phi Pearson correlation between confidence and accuracy No 

ΔConf Difference between average confidence for correct and error trials No 

M-Ratio meta-d' divided by d' No 

AUC2-Ratio AUC2 divided by expected AUC2 under SDT assumptions No 

Gamma-Ratio Gamma divided by expected Gamma under SDT assumptions No 

Phi-Ratio Phi divided by expected Phi under SDT assumptions No 

ΔConf-Ratio ΔConf divided by expected ΔConf under SDT assumptions No 

M-Diff meta-d' minus d' No 

AUC2-Diff AUC2 minus expected AUC2 under SDT assumptions No 

Gamma-Diff Gamma minus expected Gamma under SDT assumptions No 

Phi-Diff Phi minus expected Phi under SDT assumptions No 

ΔConf-Diff ΔConf minus expected ΔConf under SDT assumptions No 

meta-noise Metacognitive noise computed using the lognormal meta noise model Yes 

meta-uncertainty Metacognitive uncertainty computed using the CASANDRE model Yes 

 

 

Previous investigations into the properties of measures of metacognition 

Given the importance of using measures with good psychometric properties, it is 

perhaps surprising that the published literature contains very little empirical 

investigation into the properties of the different measures of metacognition. For 

example, no paper to date has examined the precision of any existing measure. 

Several papers have used simulations to investigate some of the properties of 

measures of metacognition (Barrett et al., 2013; Guggenmos, 2021), but this 

approach is potentially problematic because it is a priori unknown how well the 

process models used to simulate data reflect empirical reality. One paper (Azzopardi 

& Evans, 2007) examined the properties of a measure, Type-2 d’, which was 

subsequently shown to be based on faulty assumptions (Galvin et al., 2003) and is 
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therefore not investigated here. Finally, several older papers investigated the 

theoretical properties of several measures independent of any simulations or 

empirical data (Nelson, 1984) but this approach cannot be used to establish the 

empirical properties of the measures under consideration.  

 

Only recently, Shekhar & Rahnev (2021b) examined the dependence on both task 

performance and metacognitive bias for five measures: meta-d’, M-Ratio, AUC2, Phi, 

and meta-noise. They found that meta-d’, AUC2, and Phi were strongly dependent on 

task performance, but M-Ratio and meta-noise were not. On the other hand, meta-d’, 

M-Ratio, AUC2, and Phi had a complex dependence on metacognitive bias, while only 

meta-noise appeared independent of it. Guggenmos (2021) examined both the split-

half reliability and the across-subject correlation between d’ and several measures 

of metacognition (meta-d’, M-Ratio, M-Diff, and AUC2) finding surprisingly low 

reliability and significant correlations with d’ for all measures. Another paper 

developed a new technique to examine dependence on metacognitive bias and 

found that meta-d’ and M-Ratio are not independent of metacognitive bias (Xue et 

al., 2021). Finally, Boundy-Singer et al. (2023) showed that meta-uncertainty 

appears to have high test-retest reliability, and only a weak dependence on task 

performance and metacognitive bias.  

 

Current approach 

As the brief overview above demonstrates, most previous investigations only 

focused on a few measures of metacognition, only examined a few of the critical 
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properties of interest, and often did not make use of empirical data. Here I 

empirically examine each of the critical properties for all 17 measures of 

metacognition introduced above. To do so, I make use of seven large datasets (Adler 

& Ma, 2018; Haddara & Rahnev, 2022; Locke et al., 2020; Maniscalco et al., 2017; 

Rouault et al., 2018; Shekhar & Rahnev, 2021b) all made available on the Confidence 

Database (Rahnev et al., 2020). Details about the seven datasets are included in 

Table 4 and in the Methods. In addition, Table 4 indicates the dataset(s) used for 

each type of analysis. 

 

Table 4. Datasets used in the current paper. The table lists details of each dataset, 
and indicates which analyses each dataset was used for. 
 

Dataset Adler Haddara Locke Maniscalco Rouault1 Rouault2 Shekhar 

# subjects analyzed 19 70 10 22 466 484 20 

# excluded subjects 0 5 0 8 32 13 0 

% excluded subjects 0% 7% 0% 27% 6% 3% 0% 

# trials/subject 1,916 3,000 4,900 1,000 210 210 2,800 

# total trials in experiment 36,396 210,000 49,000 22,000 97,860 101,640 56,000 

# difficulty levels 6  1 1 1 70 staircase 3 

Criterion manipulated — — ✓ — — — — 

Original confidence scale 4-point 4-point 2-point 4-point 11-point 6-point Continuous 

        

Analyses on each dataset        

Precision — ✓ — ✓ — — — 

Dependance on task performance ✓ — — — ✓ ✓ ✓ 

Dependance on metacognitive bias — ✓ — ✓ — — ✓ 

Dependance on response bias — — ✓ — — — — 

Split-half reliability — ✓ — ✓ — — ✓ 

Test-retest reliability — ✓ — — — — — 

 

Overall, I find that no current measure of metacognitive ability is “perfect” in the 

sense of possessing all desirable properties. Based on these results, I make 
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recommendations for the use of different measures of metacognition based on the 

specific analysis goals. 
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Methods 

Datasets 

To investigate the empirical properties of measures of metacognition, I used the 

datasets from the Confidence Database (Rahnev et al., 2020) that are most 

appropriate for each individual analysis. This process resulted in the selection of 

seven different datasets (Table 4), briefly discussed below in alphabetical order. In 

each case, subjects completed a 2-choice perceptual task and provided confidence 

ratings. For each dataset, I only considered trials from the main experiment and 

removed any staircase or practice trials that may have been included. In addition, I 

excluded subjects who had lower than 60% or higher than 95% accuracy, or who 

gave the same object-level or confidence response on more than 85% of trials. These 

exclusions were made because such subjects can have unstable metacognitive 

scores. Overall, these criteria led to excluding 58 out of 1,091 subjects (5.32% 

exclusion rate). Data were collected in a lab setting unless otherwise indicated. 

 

Adler dataset 

The first dataset is a combination of two very similar datasets: Task “A” from 

Adler_2018_Expt1 and Task “A” from Adler_2018_Expt2. The two experiments were 

identical except that in Expt1 subjects provided their decision and confidence with a 

single button press and did not receive trial-by-trial feedback, whereas in Expt2 

subjects provided their decision and confidence with separate button presses and 

received trial-by-trial feedback. All experimental details can be found in the original 

publication (Adler & Ma, 2018). Briefly, the task was to determine the orientation 
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(left vs. right) of drifting Gabor patches or ellipses. Adler_2018_Expt1 included 11 

subjects and Adler_2018_Expt2 included eight subjects. Critically, each experiment 

featured six difficulty levels created by manipulating contrast for Gabor patches and 

elongation (eccentricity) for the ellipses. The combined dataset (named simply 

“Adler” here) consisted of 19 subjects, a total of 36,396 trials. No subjects were 

excluded from this dataset.  

 

Haddara dataset 

The second dataset is named “Haddara_2022_Expt2” in the Confidence Database 

(simplified to “Haddara” here) and consists of 75 subjects each completing 3,350 

trials over seven days. Because Day 1 consisted of a smaller number of trials (350) 

compared to Days 2-7 (500 trials each), I only analyzed the data from Days 2-7 

(3,000 trials total). All experimental details can be found in the original publication 

(Haddara & Rahnev, 2022). Briefly, the task was to determine the more frequent 

letter in a 7x7 display of X’es and O’s. Confidence was provided on a 4-point scale 

using a separate button press. The data collection was conducted online and half the 

subjects received trial-by-trial feedback (all subjects are considered jointly here). 

Five subjects were excluded from this dataset (6.67% exclusion rate). 

 

Locke dataset 

The third dataset is named “Locke_2020” in the Confidence Database (simplified to 

“Locke” here) and consists of 10 subjects each completing 4,900 trials. All 

experimental details can be found in the original publication (Locke et al., 2020). 
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Briefly, the task was to determine if a Gabor patch was tilted to the left or right of 

vertical. Confidence was provided on a 2-point scale using a separate button press. 

There were seven conditions with manipulations of both prior and reward. Rewards 

were manipulated by changing the payoff for correctly choosing category 1 vs. 

category 2 (e.g., R = 4:2 means that 4 vs. 2 points were given for correctly identifying 

categories 1 and 2, respectively), whereas priors were manipulated by informing 

subjects about the probability of category 2 (e.g., P = .75 means that there was 75% 

probability of presenting category 2 and 25% probability of presenting category 1). 

The seven categories were as follows (1) P = .5, R = 3:3, (2) P = .75, R = 3:3, (3) P = 

.25, R = 3:3, (4) P = .5, R = 4:2, (5) P = .5, R = 2:4, (6) P = .75, R = 2:4, and (7) P = .25, 

R = 4:2. There were equal number of trials (700) per condition. No subjects were 

excluded from this dataset. 

 

Maniscalco dataset 

The fourth dataset is named “Maniscalco_2017_expt1” in the Confidence Database 

(simplified to “Maniscalco” here) and consists of 30 subjects each completing 1,000 

trials. All experimental details can be found in the original publication (Maniscalco 

et al., 2017). Briefly, the task was to determine which of two patches presented to 

the left and right of fixation contained a grating. A single difficulty condition was 

used throughout. Confidence was provided on a 4-point scale using a separate 

button press. Eight subjects were excluded from this dataset (26.67% exclusion 

rate). 
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Rouault1 and Rouault2 datasets 

The fifth and sixth datasets are named “Rouault_2018_Expt1” and 

“Rouault_2018_Expt2” in the Confidence Database (simplified to “Rouault1” and 

“Rouault2” here). They consist of 498 and 497 subjects, respectively, each 

completing 210 trials. All experimental details can be found in the original 

publication that describes both datasets (Rouault et al., 2018). Briefly, the task was 

to determine which of two squares presented to the left and right of fixation 

contained a more dots and then rate confidence using a separate button press. The 

Rouault1 dataset had 70 difficulty conditions (where the difference in dot number 

between the two squares varied from 1 to 70) with 3 trials each. It collected 

confidence on a 11-point scale that goes from 1 (certainly wrong) to 11 (certainly 

correct). However, because the first six confidence ratings were used very 

infrequently, I combined them into a single rating, thus transforming the 11-point 

scale into a 6-point scale. On the other hand, Rouault2 used a continuously running 

staircase that adaptively modulated the difference in dots. It collected confidence on 

a 6-point scale that goes from 1 (guessing) to 6 (certainly correct), which is 

equivalent to the modified scale from Rouault1 and thus did not require additional 

modification. Data collection for both studies was conducted online. Thirty-two 

subjects were excluded from Rouault1 and 13 subjects were excluded from 

Rouault2 (6.43% and 2.62% exclusion rates, respectively). 

 

Shekhar dataset 
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The final dataset is named “Shekhar_2021” in the Confidence Database (simplified to 

“Shekhar” here) and consists of 20 subjects each completing 2,800 trials. All 

experimental details can be found in the original publication (Shekhar & Rahnev, 

2021b). Briefly, the task was to determine the orientation (left vs. right) of a Gabor 

patch presented at fixation. Subjects indicated their confidence simultaneously with 

the perceptual decision using a single mouse click. Confidence was provided on a 

continuous scale (from 50 to 100) but was binned into six levels as in the original 

publication. The dataset featured three different difficulty levels (manipulated by 

changing the contrast of the Gabor patch), which were analyzed separately. No 

subjects were excluded from this dataset. 

 

Computation of each measure of metacognition 

Previously proposed measures of metacognition 

I computed a total of 17 measures of metacognition and provide Matlab code for 

their estimation. I first discuss nine of these measures that have been previously 

proposed: AUC2, Gamma, Phi, ΔConf, meta-d’, M-Ratio, M-Diff, meta-noise, and meta-

uncertainty.  

 

The first four of these measures have the longest history. AUC2 was first proposed in 

the 1950’s (Clarke et al., 1959) and measures the area under the Type 2 ROC 

function that plots Type 2 hit rate vs. Type 2 false alarm rate. Gamma is perhaps the 

most popular measure in the memory literature and measures are the Goodman–

Kruskall Gamma coefficient, which is essentially a rank correlation between trial-by-
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trial confidence and accuracy (Nelson, 1984). Phi is conceptually similar to Gamma 

but measures the Pearson correlation between trial-by-trial confidence and 

accuracy (Kornell et al., 2007). Finally, ΔConf (my terminology) measures the 

difference between average confidence on correct trials and the average confidence 

on error trials. ΔConf is perhaps the simplest and most intuitive measure of 

metacognition, but is used very infrequently in the literature.  

 

The next three measures were developed by Maniscalco & Lau (2012). The 

researchers devised a new approach to measuring metacognitive ability where one 

can estimate the sensitivity, meta-d’, exhibited by the confidence ratings. Because 

meta-d’ is expressed in the units of d’, Maniscalco and Lau then reasoned that meta-

d’ can be normalized by the observed d’ to obtain either a ratio measure (M-Ratio, 

equal to meta-d’/d’) or a difference measure (M-Diff, equal to meta-d’ – d’). These 

measures are often assumed to be independent of task performance (Fleming & Lau, 

2014) but empirical work on this issue is scarce (though see Guggenmos, 2021). 

 

Finally, recent years have seen a concerted effort to build models of metacognition 

derived from explicit process models of metacognition. Two such measures 

examined here were developed by Shekhar & Rahnev (2021b) and Boundy-Singer et 

al. (2023). Shekhar and Rahnev proposed the lognormal meta noise model, which is 

an SDT model with the additional assumption of lognormally distributed 

metacognitive noise that affects the confidence criteria. The metacognitive noise 

parameter (𝜎𝑚𝑒𝑡𝑎, referred here as meta-noise) can then be used as a measure of 
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metacognitive ability. The fitting of model to data is rather expensive because it 

requires the computation of many double-integrals that do not have numerical 

solutions. Consequently, the fitting method from Shekhar & Rahnev (2021b) takes 

substantially longer than other measures examined here, making the measure less 

practical. To address this issue, I make substantial modifications to the original code 

including many improvements in the efficiency of the algorithm and creating a 

lookup table so that values of the double integral do not need to be computed anew 

but can be simply loaded. These improvements reduce the computation of meta-

noise from minutes to a few seconds, thus making the measure easy to use in 

practical applications. The measure developed by Boundy-Singer et al. (2023) - 

meta-uncertainty – is based on a different process model of metacognition, 

CASANDRE, that implements the notion that people are uncertain about the 

uncertainty in their internal representations. The second-order uncertainty 

parameter, meta-uncertainty, represents another possible measure of 

metacognition. The code for estimating meta-uncertainty was provided by Zoe 

Boundy-Singer. 

 

New measures of metacognition 

In addition to the already established measures mentioned above, I develop several 

new measures that conceptually follow the normalization procedure introduced by 

Maniscalco & Lau (2012). That normalization procedure has previously only been 

applied to the measure meta-d’ (to create M-Ratio and M-Diff), but there is no 

theoretical reason why a conceptually similar correction cannot be applied to other 
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traditional measures of metacognition. Consequently, here I develop eight new 

measures where one of the traditional measures of metacognitive ability is turned 

into either a ratio (AUC2-Ratio, Gamma-Ratio, Phi-Ratio, and ΔConf-Ratio) or a 

difference (AUC2-Diff, Gamma-Diff, Phi-Diff, and ΔConf-Diff) measure. The logic is to 

compute an observed and an expected value for any given measure (e.g., AUC2), and 

then use the expected value to normalize the observed value. First, a measure is 

computed using the observed data, thus producing what may be called, e.g., 

AUC2observed. Critically, the measure is then computed again using the predictions of 

SDT given the observed sensitivity (d’) and criteria, thus obtaining what may be 

called, e.g., AUC2expected. One can then take either the ratio (e.g., 

AUC2observed/AUC2expected) or the difference (e.g., AUC2observed – AUC2expected) between 

the observed and the SDT-predicted quantities to create the new measures of 

metacognition. 

 

I computed the SDT expectations in the following way. First, I estimated d’ using the 

formula: 

 

𝑑′ = 𝑧(𝐻𝑅) − 𝑧(𝐹𝐴𝑅) 

 

where HR is the observed hit rate and FAR is the observed false alarm rate. Then, I 

estimated the location of all confidence and decision criteria using the formula: 

 

𝑐𝑖 = −
𝑧(𝐻𝑅𝑖) + 𝑧(𝐹𝐴𝑅𝑖)

2
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In the formula above, 𝑖 goes from −(𝑘 − 1) to 𝑘 − 1, for confidence ratings collected 

on an k-point scale. Intuitively, one can think of the confidence ratings 1,2,… 𝑘 for 

category 1 being recoded to −1,−2,…− 𝑘, such that confidence goes from −𝑘 to 𝑘 

and simultaneously indicates the decision (negative confidence values indicating a 

decision for category 1; positive confidence values indicating a decision for category 

2). 𝐻𝑅𝑖 and 𝐹𝐴𝑅𝑖 are then simply the proportion of times this rescaled confidence is 

higher or equal to 𝑖 when category 2 and category 1 are presented, respectively.  

 

Once the values of d’ and 𝑐𝑖 are computed, they can be used to generate predicted 

𝐻𝑅𝑖 and 𝐹𝐴𝑅𝑖 values (which would be slightly different from the empirically 

observed ones). The measures AUC2, Gamma, Phi, and ΔConf can then be 

straightforwardly computed based on the predicted 𝐻𝑅𝑖 and 𝐹𝐴𝑅𝑖 values, thus 

enabling the computation of the new Ratio and Diff measures. 

 

Assessing validity and precision 

Any measure of metacognition should be valid and precise (Clark & Watson, 2019; 

Luck et al., 2021; Mueller & Knapp, 2018). However, there is no established method 

to assess either validity or precision of measures of metacognition. Here I develop a 

method to jointly assess validity and precision. The underlying idea is to artificially 

alter confidence to be less in line with accuracy and then assess how measures of 

metacognition change.  
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Specifically, the method corrupts confidence by decreasing confidence ratings for 

correct trials and increasing them for incorrect trials. For a given set of trials, the 

method loops over the trials starting from the first and (1) if the trial has a correct 

response and confidence higher than 1, then it decreases the confidence on that trial 

by 1 point, and (2) if the trial has an incorrect response and confidence lower than 

maximum (that is k on an k-point scale), then it increases the confidence on that 

trial by 1 point. If neither of these conditions apply, the trial is simply skipped. The 

method then continues to corrupt subsequent trials in the same manner until a pre-

set proportion of corrupted trials is achieved. Then, all measures of metacognition 

are computed based on the corrupted confidence ratings. A given dataset is first 

split into 𝑛 bins of a given trial number, and the procedure above is performed 

separately for each bin. Finally, to compute a measure of precision that can be 

compared across different measures of metacognition, I use the following formula: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑂𝑟𝑖𝑔𝑖 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑𝑖
𝑆𝐷

𝑛

𝑖=1

 

 

where 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑂𝑟𝑖𝑔𝑖  and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑𝑖 are the values of a specific measure 

computed on the original (uncorrupted) and corrupted confidence ratings, 

respectively, 𝑛 is the number of bins analyzed, and 𝑆𝐷 is the standard deviation of 

all 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑂𝑟𝑖𝑔𝑖  for 𝑖 = 1,2,… , 𝑛. Positive values of the variable 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 indicate 

valid measures of metacognition and higher values indicate more precise measures 
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(e.g., measures more sensitive to corruption in confidence compared to background 

fluctuations). 

 

I computed the precision of all 17 measures of metacognition for two datasets from 

the Confidence Database: Maniscalco (1 day; 1,000 trials per subject) and Haddara 

(6 days; 3,000 trials per subject). I separately examined the results of altering 2, 4, 

and 6% of all trials and computed metacognitive scores based on bins of 50, 100, 

200, and 400 trials. I split the Maniscalco dataset into 20 bins of 50 trials, 10 bins of 

100 trials, five bins of 200 trials, and two bins of 400 trials (by taking into 

consideration only the first 800 trials in this last case). I split the 500 trials from 

each of the six days in the Haddara dataset into 10 bins of 50 trials, five bins of 100 

trials, two bins of 200 trials, and one bin of 400 trials (by taking into consideration 

only the first 400 trials for the 200- and 400-trial bins). Across the six days, this 

process resulted in 60 bins of 50 trials, 30 bins of 100 trials, 12 bins of 200 trials, 

and six bins of 400 trials.  

 

Assessing dependence on task performance 

To assess how task performance affects measures of metacognition, I examined 

whether each measure of metacognition changed across different difficulty levels in 

the same experiment. Specifically, I tested whether each of the 17 measures of 

metacognition increases or decreases for more difficult conditions. If only two 

difficulty conditions were present in a given dataset, I performed a paired t-test. If 

multiple difficulty conditions were present in a given dataset, I performed a linear 
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regression on the values of each measure and then ran a one-sample t-test against 0 

on the resulting slopes. This approach allowed me to determine which measures 

significantly vary with difficulty level.  

 

This process requires datasets with (1) several difficulty conditions and (2) a large 

number of trials. Consequently, I selected datasets from the Confidence Database 

that meet these two criteria but do not include any other manipulations. This 

resulted in the selection of four datasets: Adler (6 difficulty levels, 19 subjects, 1,916 

trials/subject, 36,404 total trials), Shekhar (3 difficulty levels, 20 subjects, 2,800 

trials/subject, 56,000 total trials), Rouault1 (70 difficulty levels, 466 subjects, 210 

trials/subject, 97,860 total trials), and Rouault2 (many difficulty levels, 484 

subjects, 210 trials/subject, 101,640 total trials). I analyzed the Adler and Shekhar 

datasets using the regression approach. Because the two Rouault datasets included 

very few trials from each difficulty level, I instead used a median split to classify 

them in easy vs. difficult, and used a t-test for the analysis. In both cases, I also 

assessed effect sizes by computing Cohen’s d. Because the most difficult conditions 

in some datasets produced chance-level performance for some subjects, several 

measures of metacognition exhibited outlier values. Consequently, for each difficulty 

level and each measure of metacognition, I excluded any values that deviated by 

more than 3*SD from the mean of that difficulty level. Finally, as a reference, I 

performed all of the above analyses on the measures d’, c, and average confidence.  

 

Assessing dependence on metacognitive bias 
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To assess how metacognitive bias affects measures of metacognition, I applied the 

method developed by Xue et al. (2021). In this method, confidence ratings are 

recoded in two different ways as to artificially induce metacognitive bias towards 

lower or higher confidence ratings. Specifically, an n-point scale is transformed into 

an (n-1)-point scale in two ways. In the first recoding, the ratings from 2 to n are all 

decreased by one, resulting in a bias towards low confidence. In the second 

recoding, only the rating of n is decreased by one, resulting in a bias towards high 

confidence. A measure of metacognition can then be computed for the newly 

obtained confidence ratings. Comparing the obtained values for the two recodings 

allows the assessment of whether each measure of metacognition is independent of 

metacognitive bias. 

 

This process would ideally be applied to datasets with (1) a single experimental 

condition and (2) a large number of trials. Consequently, I selected the same two 

datasets used to quantify precision: Haddara (3,000 trials per subject) and 

Maniscalco (1,000 trials per subject). In addition, I also used the Shekhar dataset (3 

difficulty levels, 2,800 trials per subject) but analyzed each difficulty level in 

isolation and then averaged the results across the three difficulty levels. The values 

of each measure of metacognition for the two recodings were compared using a 

paired t-test.  

 

Assessing dependence on response bias 
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To assess how response bias affects measures of metacognition, I compared the 

values of each measure of metacognition in conditions that differed in their decision 

criterion. To do so, I analyzed the Locke dataset – the only dataset in the Confidence 

Database where response criterion is experimentally manipulated. I computed each 

measure of metacognition for each of the seven conditions in that dataset and 

conducted repeated measures ANOVAs to examine whether each measure of 

metacognition varied with condition. In addition, I conducted a more sensitive 

analysis designed to check whether stronger response bias affects each measure of 

metacognition. For that analysis, I averaged the obtained values for conditions 2-7 

(where the criterion was experimentally biased) and compared it to the obtained 

value in condition 1 (where the criterion was not experimentally biased) using 

paired t-tests. 

 

Assessing split-half reliability 

To assess split-half reliability, I examined the correlation between the values 

obtained for different measures of metacognition on odd vs. even trials (Guggenmos, 

2021). As with assessing precision, I estimated split-half correlations for different 

sample sizes, so researchers can make informed decisions about the sample sizes 

needed in future studies. Specifically, I used bin sizes of 50, 100, 200, and 400 trials. 

Note that a bin size of 𝑘 here means that 2𝑘 trials were examined with both the odd 

and even trials having a sample size of 𝑘. These computations are best performed 

using datasets with (1) a single condition, and (2) a large number of trials per 

subject. Consequently, I selected the same three datasets used to examine the 
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dependence of measures of metacognition on metacognitive bias: Haddara (3,000 

trials per subject), Maniscalco (1,000 trials per subject), and Shekhar (3 difficulty 

levels, 2,800 trials per subject). As before, I analyzed each difficulty level in the 

Shekhar dataset in isolation and then averaged the results across the three difficulty 

levels. For a bin size of 𝑘, the computations were performed on as many as possible 

non-overlapping bins of 2𝑘 trials. The obtained r-values were then z-transformed, 

averaged, and the resulting average z value was transformed back to an r-value for 

reporting and plotting purposes. 

 

Assessing test-retest reliability 

To assess test-retest reliability, I examined the correlation between the values 

obtained for different measures of metacognition on different days. As with split-

half reliability, I estimated test-retest correlations for sample sizes of 50, 100, 200, 

and 400 trials. Because test-retest computations require data from multiple days 

and a large number of trials per subject per day, I selected the Haddara dataset as it 

is the only dataset in the Confidence Database to meet these criteria. I computed 

test-retest correlations between all pairs of days for as many as possible non-

overlapping bins. Note that, unlike for split-half analyses, analyses of bin size of 𝑘 

involved the selection of 𝑘 trials from each day. As with the split-half analyses, the 

obtained r-values were then z-transformed, averaged, and the resulting average z 

value was transformed back to an r-value for reporting and plotting purposes. 

 

Data and code 
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Code for computing all 17 measures of metacognition, as well as data and analysis 

code for reproducing all statistical results and plotting all figures are available at 

https://osf.io/y5w2d/. This study was not preregistered.  

  

https://osf.io/y5w2d/
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Results 

Here I assess the properties of 17 measures of metacognition. Specifically, I focus on 

each measure’s (1) validity and precision, (2) dependence on nuisance variables, 

and (3) reliability. To examine each of these properties, I use seven existing datasets 

(Table 4) from the Confidence Database. For each property, I analyze the data from 

between one and four of these seven datasets. In addition, I compute precision and 

reliabilities using 50, 100, 200, or 400 trials at a time to clarify how these measures 

behave for different amounts of underlying data. 

 

Validity and precision 

Perhaps the most important requirement for any measure is that it is both valid and 

precise (Clark & Watson, 2019; Luck et al., 2021; Mueller & Knapp, 2018). In other 

words, a measure should reflect the quantity it purports to measure and it should do 

so with a high level of sensitivity. However, despite the importance of both of these 

criteria, there has been no method to assess the validity and precision of measures 

of metacognition.  

 

Here I develop a simple method for assessing both of these properties. The method 

selects a small proportion of trials and decreases confidence by 1 point for each 

correct trial and increases confidence by 1 point for each incorrect trial. This 

manipulation artificially decreases the informativeness of confidence ratings. A valid 

measure of metacognition should therefore show a drop when applied to these 

altered data. The size of the drop relative to the normal fluctuations of the measure 
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quantifies the precision of the measure (i.e., if the drop is large relative to 

background fluctuations, this indicates that the measure has a high level of 

precision). 

 

To quantify the precision of existing measures of metacognition, one would ideally 

use a dataset with very large number of trials coming from a single experimental 

condition because mixing conditions can strongly impact metacognitive scores 

(Rahnev & Fleming, 2019). Consequently, I selected the two datasets from the 

Confidence Database with the largest number of trials per subject that also had a 

single experimental condition: Haddara (3,000 trials per subject) and Maniscalco 

(1,000 trials per subject). In each case, I examined the results of altering 2, 4, and 

6% of all trials and computed metacognitive scores using bins of 50, 100, 200, and 

400 trials.  

 

The results showed that all 17 measures are valid in that metacognitive scores 

decreased when confidence ratings were artificially corrupted (Figure 1). The 

decrease in each measure is roughly a linear function of the percent of trials 

corrupted. For example, in the Haddara dataset, the values of meta-d’ decreased 

from an average of 1.14 without any corruption to averages of .98, .84, and .72 when 

2%, 4%, and 6% of trials were corrupted, respectively (for an average drop of about 

.14 for every 2% of trials corrupted). However, this drop is difficult to compare 

between measures because different measures are on different scales (e.g., meta-d’ 

takes values between 0 and ∞, whereas AUC2 takes values between .5 and 1). 
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Therefore, to obtain values that are easy to interpret and compare, one can 

normalize the average drop after corruption by the standard deviation (SD) of the 

observed values across different subsets of trials in the absence of any corruption. 

Because the SD value is larger for smaller bin sizes – reflecting the larger noisiness 

of each measure when few trials are used – the results show that larger bin sizes 

lead to greater precision of the measures (Figure 1A). Indeed, across the 17 

measures, corrupting 2% of the trials led to an average decrease of .35, .50, .70, and 

1.04 SDs in the measured metacognitive ability value for bins of 50, 100, 200, and 

400 trials, respectively. 
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Figure 1. Validity and precision of each measure. Results of an artificial 
corruption of the confidence ratings where confidence for correct trials was 
decreased by 1, and confidence for incorrect trials was increased by 1. (A) Detailed 
results for the Haddara dataset. Each one of the 17 measures of metacognition 
showed a decrease with this manipulation. The plot shows the decrease in units of 
the standard deviation of the measure’s fluctuations across different bins. The 
decrease was computed for bin sizes of 50, 100, 200, and 400 trials, as well as for 2, 
4, and 6% of trials being corrupted. (B,C) Average precision in SD units for each 
measure in the Haddara and Maniscalco datasets averaged across the four bin sizes 
and the three levels of corruption. Error bars show SEM.  
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This technique allows us to compare the precision of different measures. To simplify 

the comparison, I averaged the decreases across the four different bin sizes and the 

three levels of corruption (2, 4, and 6%). The results revealed that most measures of 

metacognition had comparable levels of precision (Figure 1B,C). The one exception 

was meta-uncertainty, which had substantially lower average precision score in 

both the Haddara (meta-uncertainty: 0.37; average of other measures: 0.67) and the 

Maniscalco datasets (meta-uncertainty: 0.30; average of other measures: 0.53). 

Moreover, pairwise comparisons showed that the precision for meta-uncertainty 

was lower than every one of the other 16 measures in both datasets (p < .05 for all 

32 comparisons). The differences between the remaining measures were much 

smaller and sometimes inconsistent across the two datasets. It should be noted that 

the precision scores were overall higher in the Haddara compared to the Maniscalco 

datasets. This difference is likely due to differences in variables such as sensitivity 

and metacognitive bias that are likely to vary across datasets. Therefore, the 

technique introduced here is useful for comparing between different measures but 

is unlikely to be useful if one wants to compare values across different datasets. 

Overall, these analyses suggest that all measures of metacognition investigated here 

are valid, and that most have comparable level of precision with the exception of 

meta-uncertainty, which appears to be noisier than the remaining measures. 

 

Dependence on nuisance variables 

Beyond validity and precision, another important feature for good measures of 

metacognition is that they should not be influenced by nuisance variables. Here I 
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examine three nuisance variables – task performance, metacognitive bias, and 

response bias – and test how much each of these variable affects each of the 17 

measures of metacognition. 

 

Dependence on task performance 

The most widely recognized nuisance variable for measures of metacognition is task 

performance (Fleming & Lau, 2014). The reason that task performance is a nuisance 

variable is that an ideal measure of metacognition should not be affected by whether 

a subject happened to be given an easier or a more difficult task. That is, the 

subject’s estimated ability to provide informative confidence ratings should not 

change based on the difficulty of the object-level task that they are asked to perform. 

 

To quantify how task performance affects measures of metacognition, one needs 

datasets with multiple difficulty conditions and a large number of trials (either 

because of including many subjects or many trials per subject). I selected the four 

datasets from the Confidence Database that best meet these characteristics: Adler (6 

difficulty levels, 19 subjects, 1,916 trials/sub, 36,404 total trials), Shekhar (3 

difficulty levels, 20 subjects, 2,800 trials/sub, 56,000 total trials), Rouault1 (70 

difficulty levels, 466 subjects, 210 trials/sub, 97,860 total trials), and Rouault2 

(many difficulty levels, 484 subjects, 210 trials/sub, 101,640 total trials). Both 

Rouault datasets have a large range of difficulty levels which I split into low/high by 

taking a median split. I then computed each measure separately for each difficulty 

level and compared them using regression slopes or t-tests. 
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The results showed that all traditional measures that are not normalized in any way 

(i.e., meta-d’, AUC2, Gamma, Phi, and ΔConf) are strongly dependent on task 

performance: they all substantially increase as the task becomes easier (p < .001 for 

all five measures and four datasets except the Adler dataset for AUC2 and Phi; Figure 

2). Further, the increase across the five measures from the most difficult to the 

easiest had a very large effect size (Cohen’s d = 2.41, 2.24, 2.64, 1.53, and 1.80 for 

each of the five measures after averaging across the four datasets).  
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Figure 2. Dependence on task performance. Estimated metacognitive ability for 
all 17 measures, as well as d’, criterion, and confidence for different difficulty levels 
in four datasets (Adler, Shekhar, Rouault1, and Rouault2). Traditional measures of 
metacognition (top row) all showed a strong positive relationship with task 
performance, whereas all Diff measures (third row) show a strong negative 
relationship. Ratio measures (second row) and the two model-based measures 
(meta-noise and meta-uncertainty) performed much better but still showed weak 
relationships with task performance. Note that higher numbers on the x axis 
indicate easier conditions. ***, p < .001; **, p < .01; *, p < .05; ns, not significant. 
 

Having established that these five measures strongly depend on task performance, I 

then examined whether normalizing them removes this dependence. The more 

popular method of normalization – the ratio method – indeed performed well. The 

one exception was the measure AUC2-Ratio, which decreased significantly for easier 

conditions (p < .01 for all four datasets). The reason why AUC2-Ratio does not 

perform well is that AUC2, unlike the other four measures here, has a lower 

boundary of 0.5 rather than 0. None of the remaining ratio measures (M-Ratio, 

Gamma-Ratio, Phi-Ratio, and ΔConf-Ratio) varied significantly with difficulty level in 

the Adler and Shekhar datasets (all p’s > .05), though each of them showed a 

decrease for the Rouault2 dataset (all p’s < .01). Phi-Ratio and ΔConf-Ratio 

additionally showed a decrease for the Rouault1 dataset (both p’s < .01). Overall, all 

ratio measures showed a trend towards decreasing from the most difficult to the 

easiest condition after averaging across the four datasets. However, these effects 

were associated with very small Cohen’s d effect sizes, except for AUC2-Ratio (M-

Ratio: -0.08; AUC2-Ratio: -0.46; Gamma-Ratio: -0.11; Phi-Ratio: -0.16; ΔConf-Ratio: -

0.20). 
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The five difference measures (M-Diff, AUC2-Diff, Gamma-Diff, Phi-Diff, and ΔConf-

Diff) were all ineffective in removing the dependence on task performance. They all 

exhibited an over-correction where easier conditions led to lower scores across all 

five measures and four datasets (p < .001 for 17/20 tests; p < .05 for the remaining 3 

tests). The Cohen’s d effect sizes were medium-to-large (M-Diff: -0.61; AUC2-Diff: -

0.54; Gamma-Diff: -0.45; Phi-Diff: -0.38; ΔConf-Diff: -0.58). These results 

demonstrate that the difference measures uniformly fail at their main purpose, 

which is to remove the dependence of metacognitive measures on task 

performance. 

 

Finally, the two model-based measures (meta-noise and meta-uncertainty) showed 

relatively weak but still systematic relationships with task difficulty. Specifically, 

meta-noise tended to decrease for easier conditions (with the effect reaching 

significance for the Shekhar and Rouault1 datasets but not for Adler and Rouault2), 

whereas meta-uncertainty tended to increase for easier conditions (with the effect 

reaching significance for Rouault2 but not for the other three datasets). However, 

both of these effects were associated with small Cohen’s d effect sizes that were 

comparable to what was observed for the ratio measures (meta-noise: -0.27; meta-

uncertainty: 0.13). As such, both of the model-based measures perform as well as 

the ratio measures in controlling for task performance. Given that meta-uncertainty 

corrected in the opposite direction of the other viable measures (the four ratio 

measures and meta-noise), studies that feature task performance confounds may 
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benefit from performing analyses using both meta-uncertainty and at least one more 

measure. 

 

Dependence on metacognitive bias 

A less appreciated nuisance variable is metacognitive bias: the tendency to give low 

or high confidence ratings for a given level of performance. Metacognitive bias can 

be measured simply as the average confidence in a condition. Recently, Shekhar & 

Rahnev (2021b) developed a method that involves recoding the original confidence 

ratings to examine how measures of metacognition depend on metacognitive bias. 

The method was further improved by Xue et al. (2021). The Xue et al. method 

consists of recoding confidence ratings as to artificially induce metacognitive bias 

towards lower or higher confidence ratings. Comparing the obtained values for a 

given measure of metacognition applied to the recoded confidence ratings allows us 

to evaluate whether the measure is independent of metacognitive bias. 

 

Similar to quantifying precision, to quantify how metacognitive bias affects 

measures of metacognition, one would ideally use datasets with very large number 

of trials coming from a single experimental condition. Consequently, I selected the 

same two datasets used to quantify precision since they have the largest number of 

trials per subject while also featuring a single experimental condition: Haddara 

(3,000 trials per subject) and Maniscalco (1,000 trials per subject). In addition, I also 

used the Shekhar dataset (3 difficulty levels, 2,800 trials per subject) but analyzed 

each difficulty level in isolation and then averaged the results across the three 
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difficulty levels. For that dataset, the continuous confidence scale was first binned 

into six levels as in the original publication (Shekhar & Rahnev, 2021b). 

 

The results demonstrate that meta-d’, AUC2, Phi, and ΔConf tend to increase with 

higher average confidence, whereas Gamma tends to decrease (trend in the same 

direction for all three datasets and p < .05 for at least one of them). In other words, 

all five non-normalized measures of metacognition depend on metacognitive bias. 

Further, the average (across the three datasets) Cohen’s d effect size was in the 

medium-to-large range for all five measures (M-Ratio: 0.49; AUC2-Ratio: 0.62; 

Gamma-Ratio: -0.64; Phi-Ratio: 0.95; ΔConf-Ratio: 0.74). All five ratio measures had a 

positive relationship with metacognitive bias but with smaller Cohen’s d effect sizes 

(M-Ratio: 0.39; AUC2-Ratio: 0.08; Gamma-Ratio: 0.06; Phi-Ratio: 0.34; ΔConf-Ratio: 

0.62). Difference measures performed similarly to ratio measures (M-Diff: 0.48; 

AUC2-Diff: 0.07; Gamma-Diff: 0.25; Phi-Diff: 0.10; ΔConf-Diff: 0.33). Finally, the two 

model-based measures also performed well with no statistically significant effects 

for any of the three datasets (all six p’s > .05) and with low-to-medium effect sizes 

that again went in opposite directions of each other (meta-noise: -0.30; meta-

uncertainty: 0.34). Overall, researchers who want to control for metacognitive bias 

would appear to do best if they used M-Ratio, AUC2-Ratio, Gamma-Ratio, Phi-Ratio, 

meta-noise, or meta-uncertainty, with AUC2-Ratio and Gamma-Ratio performing the 

best. Given that meta-noise corrected in the opposite direction of the other five 

measures, it may be advisable for any result to be reproduced both meta-noise and 

at least one more measure from the list above. 
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Figure 3. Dependence on metacognitive bias. Estimated metacognitive ability for 
all 17 measures, as well as d’, criterion, and confidence for data recoded to have 
lower or higher confidence in three datasets (Haddara, Maniscalco, and Shekhar). 
Traditional measures of metacognition (top row) showed a medium-to-large 
positive relationship with metacognitive bias (except for Gamma, which showed a 
negative relationship). Ratio measures (second row) and the two model-based 
measures (meta-noise and meta-uncertainty) performed the best. ***, p < .001; **, p 
< .01; *, p < .05; ns, not significant. 
 

Dependence on response bias 

The final nuisance variable examined here is response bias. Response bias can be 

measured simply as the decision criterion c in signal detection theory. To 

understand how response bias affects measures of metacognition, one needs 

datasets where the response criterion is experimentally manipulated and 

confidence ratings are simultaneously collected. Very few such datasets exist and 

only a single such dataset is featured in the Confidence Database. The dataset – 
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named here Locke (Locke et al., 2020) – features seven conditions with 

manipulations of both prior and reward. Rewards were manipulated by changing 

the payoff for correctly choosing category 1 vs. category 2 (e.g., R = 4:2 means that 4 

vs. 2 points were given for correctly identifying categories 1 and 2, respectively), 

whereas priors were manipulated by informing subjects about the probability of 

category 2 (e.g., P = .75 means that there was 75% probability of presenting 

category 2 and 25% probability of presenting category 1). The seven categories 

were as follows (1) P = .5, R = 3:3, (2) P = .75, R = 3:3, (3) P = .25, R = 3:3, (4) P = .5, R 

= 4:2, (5) P = .5, R = 2:4, (6) P = .75, R = 2:4, and (7) P = .25, R = 4:2. The Locke 

dataset included many trials per condition (700) but relatively few subjects (N = 10) 

and collected confidence on a 2-point scale. 

 

The results suggested that none of the 17 measures of metacognition are strongly 

influenced by response bias (Figure 4). Indeed, while a repeated measures ANOVA 

revealed a very strong effect of condition on response criterion (p = 1.3 x 10-8), it 

showed no significant effect of condition on any of the measures of metacognition 

(all p’s > .13). Even a more sensitive analysis that compared the average value 

across all biased conditions (conditions 2-7) to the unbiased condition (condition 1) 

found no significant difference for any of the measures (all p’s > .087). While these 

results should be interpreted with caution given the small sample size and the fact 

that a 2-point confidence scale may be noisier for estimating metacognitive scores, 

they nonetheless suggest that response bias may not have a large biasing effect on 

measures of metacognition.  
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Figure 4. Dependence on response bias. Estimated metacognitive ability for all 17 
measures, as well as d’, criterion, and confidence for the seven conditions in the 
Locke dataset. While condition strongly modulated response bias, it did not 
significantly modulate any of the 17 measures of metacognition. ***, p < .001; ns, not 
significant. 
 

 

Reliability 

Measures of metacognition are often used in studies of individual differences to 

examine across-subject correlations between metacognitive ability and many 

different factors such as brain activity and structure (Allen et al., 2017; Fleming et 

P
=.5

0,
 R

=3
:3

P
=.

75
, R

=3:
3

P
=.

25
, R

=3
:3

P
=.5

0,
 R

=4
:2

P
=.

50
, R

=2
:4

P
=.

75
, R

=2
:4

P
=.

25
, R

=4
:2

0.5

1

meta-d'

ns

P
=.

50
, R

=3
:3

P
=.

75
, R

=3
:3

P
=.

25
, R

=3
:3

P
=.

50
, R

=4:
2

P
=.

50
, R

=2
:4

P
=.7

5,
 R

=2
:4

P
=.2

5,
 R

=4
:2

0.55

0.6

AUC2

ns

P
=.5

0,
 R

=3
:3

P
=.

75
, R

=3:
3

P
=.

25
, R

=3
:3

P
=.5

0,
 R

=4
:2

P
=.

50
, R

=2
:4

P
=.

75
, R

=2
:4

P
=.

25
, R

=4
:2

0.2

0.4

0.6

Gamma

ns

P
=.

50
, R

=3
:3

P
=.7

5,
 R

=3
:3

P
=.

25
, R

=3:
3

P
=.

50
, R

=4
:2

P
=.5

0,
 R

=2
:4

P
=.

75
, R

=2
:4

P
=.

25
, R

=4
:2

0.1

0.15

0.2

Phi

ns

P
=.5

0,
 R

=3
:3

P
=.

75
, R

=3:
3

P
=.

25
, R

=3
:3

P
=.5

0,
 R

=4
:2

P
=.

50
, R

=2
:4

P
=.

75
, R

=2:
4

P
=.

25
, R

=4
:2

0.1

0.15

0.2

Conf

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

0.6

0.8

1

M-Ratio

ns

P=.
50

, R
=3

:3

P=.
75

, R
=3

:3

P=.
25

, R
=3

:3

P=.
50

, R
=4:

2

P=.
50

, R
=2

:4

P=.7
5,

 R
=2

:4

P=.2
5,

 R
=4

:2
0.9

0.95

1

AUC2-Ratio

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

0.5

1

Gamma-Ratio

ns

P=.
50

, R
=3

:3

P=.7
5,

 R
=3

:3

P=.
25

, R
=3:

3

P=.
50

, R
=4

:2

P=.5
0,

 R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

0.5

1

Phi-Ratio

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2:

4

P=.
25

, R
=4

:2

0.5

1

Conf-Ratio

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

-0.4

-0.2

0

M-Diff

ns

P=.
50

, R
=3

:3

P=.
75

, R
=3

:3

P=.
25

, R
=3

:3

P=.
50

, R
=4:

2

P=.
50

, R
=2

:4

P=.7
5,

 R
=2

:4

P=.2
5,

 R
=4

:2

-0.05

0

AUC2-Diff

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

-0.2

-0.1

0

Gamma-Diff

ns

P=.
50

, R
=3

:3

P=.7
5,

 R
=3

:3

P=.
25

, R
=3:

3

P=.
50

, R
=4

:2

P=.5
0,

 R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

-0.1

-0.05

0

Phi-Diff

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2:

4

P=.
25

, R
=4

:2

-0.1

-0.05

0

Conf-Diff

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

Condition

0

1

2

meta-noise

ns

P=.
50

, R
=3

:3

P=.
75

, R
=3

:3

P=.
25

, R
=3

:3

P=.
50

, R
=4:

2

P=.
50

, R
=2

:4

P=.7
5,

 R
=2

:4

P=.2
5,

 R
=4

:2

Condition

0

1

2

meta-uncertainty

ns

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

Condition

1

1.2

d'

ns

P=.
50

, R
=3

:3

P=.7
5,

 R
=3

:3

P=.
25

, R
=3:

3

P=.
50

, R
=4

:2

P=.5
0,

 R
=2

:4

P=.
75

, R
=2

:4

P=.
25

, R
=4

:2

Condition

-0.5

0

0.5

Criterion

***

P=.5
0,

 R
=3

:3

P=.
75

, R
=3:

3

P=.
25

, R
=3

:3

P=.5
0,

 R
=4

:2

P=.
50

, R
=2

:4

P=.
75

, R
=2:

4

P=.
25

, R
=4

:2

Condition

1.4

1.5

1.6

Confidence

ns

Dependence of each measure on response bias



 43 

al., 2010; Zheng et al., 2021), metacognitive ability in other domains (Faivre et al., 

2018; Mazancieux et al., 2020), psychiatric symptom dimensions (Rouault et al., 

2018), cognitive processes such as confidence leak (Rahnev et al., 2015), etc. These 

types of studies require that measures of metacognition have high reliability. (Note 

that within-subject studies of metacognition do not require high reliability – a 

measure that inherently depends on a large spread of scores across subjects – and 

instead requires high precision.) 

 

Perhaps surprisingly, relatively little has been done to quantify the reliability of 

measures of metacognition (but see Guggenmos, 2021). Here I examine split-half 

reliability (correlation between estimates obtained from odd vs. even trials) and 

test-retest reliability (correlation between estimates obtained on different days).  

 

Split-half reliability 

To examine split-half reliability for different sample sizes, one needs datasets with a 

large number of trials per subject and a single condition (or large number of trials 

per condition if multiple conditions are present). Consequently, I selected the same 

three datasets used to examine the dependence of measures of metacognition on 

metacognitive bias: Haddara (3,000 trials per subject), Maniscalco (1,000 trials per 

subject), and Shekhar (3 difficulty levels, 2,800 trials per subject). As before, I 

analyzed each difficulty level in the Shekhar dataset in isolation and then averaged 

the results across the three difficulty levels. For each dataset, I computed each 

measure of metacognition based on odd and even trials separately and correlated 
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the two. To examine how split-half reliability depends on sample size, I performed 

the procedure above for bins of 50, 100, 200, and 400 trials separately. Because the 

datasets contained multiple bins of each size, I averaged the results across all bins of 

a given size. 

 

The results showed that measures of metacognition had good split-half reliability as 

long as the measures are computed using at least 100 trials (Figure 5). Indeed, bin 

sizes of 100 trials produced split-half correlations of r > .837 for all 17 measures 

when averaged across the three datasets with an average split-half correlation of r = 

.861. These numbers increased further for bin sizes of 200 (all r’s > .938, average r = 

.946) and 400 trials (all r’s > .961, average r = .965). Further, these numbers were 

only a little lower than the split-half correlations for d’ (100 trials: r = .913; 200 

trials: r = .958; 400 trials: r = .970). However, the split-half correlations strongly 

diminished when the measures of metacognition were computed based on 50 trials 

with an average r = .424 and no measure exceeding r = .6. It should be noted that 

while performing better, d’ also had a relatively low split-half reliability of r = .685 

when computed based on 50 trials. These results suggest that individual difference 

studies should employ 100 trials per subject at a minimum and that there is little 

benefit in terms of split-half reliability for using more than 200 trials.  
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Figure 5. Split-half reliability. Correlations between each measure computed 
based on odd vs. even trials for sample sizes of 50, 100, 200, and 400 trials. The 
figure shows that split-half correlations are high when at least 100 trials are used 
for computations but become unacceptably low when only 50 trials are used. The x 
axis shows the results for three different datasets: Hadda (Haddara), Shekh 
(Shekhar), and Manis (Maniscalco).  
 

 

Test-retest reliability 

Split-half reliability is a useful measure of the intrinsic noise present in the across-

subject correlations that can be expected in studies of individual differences. 

However, they do not account for fluctuations that could occur from day to day. 

These fluctuations can be examined by computing measures of metacognition 

obtained from different days, thus estimating what is known as test-retest 

reliability. Such estimation requires datasets with multiple days of testing and a 
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large number of trials per subject per day. Only one dataset in the Confidence 

Database meets these criteria: Haddara (6 days; 3,000 total trials per subject; 70 

subjects). I computed test-retest correlations between all pairs of days and then 

averaged across the different pairs. 

 

The results showed very low test-retest reliability values (Figure 6). Even with 400 

trials used for estimation, no measure of metacognition exceeded an average 

correlation of r = .8 and none of the measures outside of the five non-normalized 

and non-model-based measures (i.e., meta-d’, AUC2, Gamma, Phi, and ΔConf) reached 

correlation of r = .5. For example, the widely used measure M-Ratio had average test 

reliability of r = .168 (for 50 trials), .235 (for 100 trials), .293 (for 200 trials), and 

.422 (for 400 trials). The measure with highest test-retest correlation was ΔConf 

with r = .389 (for 50 trials), .538 (for 100 trials), .650 (for 200 trials), and .753 (for 

400 trials). Notably test-retest correlations were not much higher for d’ or the 

criterion c compared to ΔConf (average difference of about .1) and was only robustly 

high for confidence (above r = .86 regardless of sample size). These results suggest 

that correlations between measures of metacognition and measures that do not 

substantially fluctuate on a day-by-day basis (e.g., structural brain measures) are 

likely to be particularly noisy such that very large sample sizes may be needed to 

find reliable results. 
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Figure 6. Test-retest reliability. Test-retest correlations in the Haddara dataset (6 
days, 500 trials per day, 70 subjects) show generally low test-retest reliability. The 
correlations were low-to-moderate for the measures meta-d’, AUC2, Gamma, Phi, 
and ΔConf and very low for the remaining measures. 
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Discussion 

Despite substantial interest in developing good measures of metacognition, there 

has been surprisingly little empirical work into the psychometric properties of 

current measures. Here I investigate the properties of 17 measures of 

metacognition, including eight new variants. I develop a method of determining the 

validity and precision of a measure of metacognition and also examine each 

measure’s dependence on nuisance variables and its split-half and test-retest 

reliability. The results paint a complex picture. No measure of metacognition is 

“perfect” in the sense of having the best psychometric properties across all criteria. 

Researchers need to make informed decisions about which measures to use based 

on the empirical properties of the different measures. The results are summarized 

in Figure 7. 

 

 
 
Figure 7. Summary of results. The figure lists, the values obtained for each 
measure of metacognition for various criteria. Precision is the measure developed in 
this paper and the values listed are the average of the values in Figures 1B and 1C. 

Measure Precision
Dependence on 

task performance

Dependence on 

metacognitive bias

Dependence on 

response bias

Split-half 

reliability

Test-retest 

reliability
Unique limitations

Unique 

advantages

meta-d' Pr = .65 d = 2.41 d = 0.49 r = -.04 r = .89 r = .72

AUC2 Pr = .54 d = 2.24 d = 0.62 r = .18 r = .89 r = .73 Continuous

Gamma Pr = .65 d = 2.64 d = -0.64 r = .12 r = .88 r = .72 Continuous

Phi Pr = .61 d = 1.53 d = 0.95 r = .11 r = .87 r = .64 Continuous

ΔConf Pr = .50 d = 1.8 d = 0.74 r = .18 r = .90 r = .75 Continuous

M-Ratio Pr = .61 d = -0.08 d = 0.39 r = .07 r = .85 r = .42 Unstable for low d'

AUC2-Ratio Pr = .60 d = -0.46 d = 0.08 r = .13 r = .85 r = .36

Gamma-Ratio Pr = .61 d = -0.11 d = 0.06 r = .08 r = .84 r = .27 Unstable for low d'

Phi-Ratio Pr = .62 d = -0.16 d = 0.34 r = .01 r = .84 r = .35 Unstable for low d'

ΔConf-Ratio Pr = .58 d = -0.2 d = 0.62 r = .11 r = .84 r = .34 Unstable for low d'

M-Diff Pr = .56 d = -0.61 d = 0.48 r = -.002 r = .87 r = .47

AUC2-Diff Pr = .59 d = -0.54 d = 0.07 r = .12 r = .85 r = .29

Gamma-Diff Pr = .65 d = -0.45 d = 0.25 r = .06 r = .85 r = .43

Phi-Diff Pr = .62 d = -0.38 d = 0.1 r = .001 r = .85 r = .35

ΔConf-Diff Pr = .53 d = -0.58 d = 0.33 r = .12 r = .85 r = .31

meta-noise Pr = .63 d = -0.27 d = -0.297 r = .03 r = .84 r = .30 Cannot be negative Model-based

meta-uncertainty Pr = .34 d = 0.13 d = 0.34 r = .13 r = .86 r = .23 Cannot be negative Model-based
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Higher precision values are better. For dependence of task performance and 
metacognitive bias, the figure lists the average Cohen’s d values reported in the 
paper. For dependence on response bias, the figure lists the average correlation 
between each measure of metacognition and the absolute value of response bias 
(|𝑐|). Lower absolute value of these dependencies is better. The reported split-half 
reliability is the average value across datasets obtained for a bin size of 100, 
whereas the reported test-retest reliability is the average value obtained for a bin 
size of 400. Higher reliability values are better. Color coding is meant as a general 
indicator but should be interpreted with caution. Green indicates very good 
properties, yellow indicates good properties, orange indicates problematic 
properties, and red indicates unacceptable properties. Colors were assigned based 
on the following thresholds: .5 for precision, .3 and 1 for Cohen’s d, .5 for test-retest 
reliability. Green was not used in any of the columns regarding dependence on 
nuisance variables as to not give the impression that any measure is certainly 
independent of any of the nuisance variables. The figure also lists several unique 
advantages and disadvantages of each measure discussed in the main text. 
 

Validity and precision 

I found that all 17 measures of metacognition examined here are valid. With the 

exception of meta-uncertainty, all measures seem to have comparable level of 

precision. This result is rather surprising and suggests that precision may be limited 

by measurement error such that it is unlikely that any new measure of 

metacognition can substantially exceed the precision level found for the first 16 

measures here. Nevertheless, new measures can be noisier and therefore it is 

critical to demonstrate their level of precision. Note that less precise measures can 

also appear to depend less on nuisance factors not because of their better 

psychometric properties but due to their noisiness.  

 

Dependence on task performance 

Task performance is arguably the most important and best appreciated nuisance 

variable for measures of metacognition. As has been previously suspected (Fleming 
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& Lau, 2014), the results here show that all traditional measures of metacognition 

are strongly dependent on task performance. However, the ratio method does a very 

good job of correcting for this dependence with M-Ratio, Gamma-Ratio, Phi-Ratio, 

and ΔConf-Ratio showing only very weak dependence on task performance. On the 

other hand, the difference method performed poorly in removing the dependence of 

task performance. The model-based measures meta-noise and meta-uncertainty also 

performed well.  

 

Dependence on metacognitive bias 

Previous research has shown that meta-d’ and M-Ratio are positively correlated 

with metacognitive bias such that a bias towards higher confidence also leads to 

high values for these measures (Shekhar & Rahnev, 2021b; Xue et al., 2021). The 

current investigation replicated these previous results and showed that similar 

effects are observed for many other measures. Nevertheless, the dependence was of 

low to medium effect size for M-Ratio and comparable to newer measures such as 

meta-noise and meta-uncertainty.  

 

Dependence on response bias 

The results for response bias should be considered as preliminary because they are 

based on a single dataset that consists of 10 subjects. As such, the results should not 

be taken as strong evidence for an absence of dependence on response bias (hence, 

all measures are colored in yellow rather than green in Figure 7). Yet, it does appear 



 51 

that any dependencies are unlikely to be particularly strong, at least for a 

reasonable range of response bias strengths.  

 

Split-half reliability 

A recent paper examined many datasets in the Confidence Database and concluded 

that split-half reliability for M-Ratio is relatively poor (r ~ .7 for bin sizes between 

400 and 600) (Guggenmos, 2021). (Note that the paper computes split-half 

reliability but it calls it test-retest reliability.) One issue with the approach by 

Guggenmos is that many of the analyzed datasets in the Confidence Database feature 

a variety of conditions, manipulations, and sample sizes. These factors may reduce 

the observed split-half reliability. Indeed, focusing on a select number of large 

datasets with a single condition at a time, the current paper finds much higher split-

half reliabilities (between .84 and .9 for a bin size of 100). These results suggest that 

for sample sizes of 100 or more, one can expect reliable estimates of metacognition 

for every measure when using a single experimental condition. It is likely that 

studies that mix different conditions and estimate metacognitive scores across all of 

them would produce lower split-half reliability in line with the results of 

Guggenmos. Note that sample sizes of 50 produced unacceptably low reliabilities, so 

100 should be considered as a rough lower boundary for the necessary number of 

trials when estimating metacognition in studies of individual differences.  

 

Test-retest reliability 
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One of the most striking results here is the very low test-retest reliabilities 

observed. Besides the first five measures (meta-d’, AUC2, Gamma, Phi, and ΔConf), no 

other measure showed test-retest reliability exceeding r = .5 even for sample sizes 

of 400 trials. However, these five measures are strongly dependent on task 

performance, and thus their higher reliability may be partly (or wholly) due to the 

higher reliability of task performance itself (test-retest reliability of d’ was .85 for a 

sample size of 400). Therefore, studies that match d’ for all subjects may result in 

test-retest reliability values for these five measures of metacognition that are as low 

as the remaining measures. Nevertheless, these results are based on a single dataset 

and should therefore be replicated between very strong recommendations are made 

based on them. In the meantime, however, researchers who study individual 

differences in metacognition should be aware of the potential low test-retest 

reliability of measures of metacognition, which may explain previous failures to find 

significant correlations between metacognitive abilities across domains. 

 

Unique advantages and disadvantages of different measures 

Several measures feature unique advantages and disadvantages (Figure 7). For 

example, four of the Ratio measures (M-Ratio, Gamma-Ratio, Phi-Ratio, and ΔConf-

Ratio) become unstable for difficult conditions because they include division by 

variables (d’, expected Gamma, expected Phi, and expected ΔConf, respectively) that 

are very close to 0 in such conditions. These measures should therefore be used 

preferentially when performance levels are relatively high (e.g., one should aim for 

d' values above 1, which roughly corresponds to accuracy values above 69%).  
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An advantage of AUC2, Gamma, Phi, and ΔConf is that they all work well with 

continuous confidence scales. All other measures rely on SDT-based computations 

that necessitate that continuous scales are binned before analyses. Such binning 

may lead to loss of information but it is currently unclear how much signal-to-noise 

ratio may be lost by different binning methods. 

 

The two model-based measures – meta-noise and meta-uncertainty – have unique 

advantages and disadvantages. Their main advantage is that all of their underlying 

assumptions are explicitly known. Conversely, other measures must necessarily 

include hidden assumptions that are difficult to reveal without linking them to a 

process model of metacognition (Rahnev, 2021). Another unique advantage of these 

measures is that they can in principle be applied much more flexibly. For example, 

when an experiment contains several conditions, other measures do not allow the 

estimation of a single measure of metacognition and simply ignoring the different 

conditions can lead to inflated scores (Rahnev & Fleming, 2019). Conversely, both 

meta-noise and meta-uncertainty allow different conditions to be modeled as part of 

their underlying process models and thus a single metacognitive score can be 

computed in a principled way across many conditions. That said, a possible 

disadvantage of both measures is that they can only take positive values and 

therefore cannot be used for situations where metacognition may contain more 

information than the decision itself. 
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Is M-Ratio still the gold standard for measuring metacognition? 

In the last decade, M-Ratio has become the dominant measure of metacognition due 

to its assumed better psychometric properties (Fleming & Lau, 2014; Maniscalco & 

Lau, 2012, 2014). This status has naturally attracted greater scrutiny and many 

recent papers have criticized some of the properties of M-Ratio (Bang et al., 2019; 

Guggenmos, 2021; Rausch et al., 2023; Shekhar & Rahnev, 2021b; Xue et al., 2021). 

However, such criticisms are only meaningful in the context of how alternative 

measures perform on the same tests. The results here demonstrate that across all 

examined dimensions, there are no measures that clearly outperform M-Ratio. 

Three measures – meta-noise, Gamma-Ratio, and Phi-Ratio – showed very similar 

performance to M-Ratio, while all other measures appear inferior to M-Ratio in at 

least one critical dimension: they strongly depend on task performance (11 

measures), have low precision (meta-uncertainty), or strong dependence on 

metacognitive bias (ΔConf-Ratio). The present author sees no strong argument in 

the present data to choose either Gamma-Ratio or Phi-Ratio over M-Ratio, especially 

given how established M-Ratio is contrary to Gamma-Ratio and Phi-Ratio. There are 

good arguments for using meta-noise in addition to M-Ratio as a way of controlling 

for metacognitive bias given that the two measures depend on metacognitive bias in 

opposite directions. Similarly, meta-uncertainty can also be used in addition to M-

Ratio or meta-noise to control for task performance given that it depends on task 

performance in the opposite direction than the other two measures. 
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There are strong reasons for the field to eventually transition to model-based 

measures of metacognition (Rahnev, 2021) since model-based measures are 

uniquely positioned to properly capture the influence of metacognitive inefficiencies 

(Shekhar & Rahnev, 2021a). The measure meta-noise is especially promising given 

its good performance on the current tests and the fact that its associated model is 

currently the best fitting model of metacognition (Shekhar & Rahnev, 2022). That 

said, meta-noise is currently only implemented in Matlab (see codes associated with 

the current paper) and is more computationally intensive. Thus, although meta-

noise or other model-based measures of metacognition should eventually supplant 

M-Ratio, for the time being it is hard to justify abandoning M-Ratio as the gold 

standard for the field.  

 

Limitations 

The present work has several limitations. First, despite the attempt to be 

comprehensive, several measures of metacognition have been omitted including 

recent model-based measures (Desender et al., 2022; Mamassian & de Gardelle, 

2022), different variants of M-Ratio (Guggenmos, 2021), and legacy measures such 

as Type-2 d’ (Azzopardi & Evans, 2007). Nevertheless, the current work should make 

it much easier for researchers to establish the properties of other measures of 

metacognition and compare them to the ones examined here. Second, while I have 

attempted to use multiple large datasets for each analysis, two of the analyses only 

included a single dataset (dependence on response bias and test-retest reliability) 

and should be interpreted with caution. Even in cases where multiple datasets were 
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used, it is clear that adding more datasets would alter the values in Figure 7. As 

such, the values there should be understood as rough estimates that are bound to be 

improved upon by future work that analyzes additional large datasets. 

 

Conclusion 

The current work represents a critical step towards establishing the empirical 

properties of measures of metacognition. The results can help researchers make 

informed decisions when choosing how to measure metacognition. Overall, there 

are good arguments to continue to use M-Ratio as the gold standard in the field, but 

several confounds can be addressed by confirming the results using newer, model-

based measures. The future of assessing metacognitive ability may lie with such 

model-based measures. 
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