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The neural network RTNet exhibits 
the signatures of human perceptual 
decision-making

Farshad Rafiei    1,2 , Medha Shekhar    1,2 & Dobromir Rahnev    1

Convolutional neural networks show promise as models of biological 
vision. However, their decision behaviour, including the facts that they are 
deterministic and use equal numbers of computations for easy and difficult 
stimuli, differs markedly from human decision-making, thus limiting 
their applicability as models of human perceptual behaviour. Here we 
develop a new neural network, RTNet, that generates stochastic decisions 
and human-like response time (RT) distributions. We further performed 
comprehensive tests that showed RTNet reproduces all foundational 
features of human accuracy, RT and confidence and does so better than all 
current alternatives. To test RTNet’s ability to predict human behaviour on 
novel images, we collected accuracy, RT and confidence data from 60 human 
participants performing a digit discrimination task. We found that the 
accuracy, RT and confidence produced by RTNet for individual novel images 
correlated with the same quantities produced by human participants. 
Critically, human participants who were more similar to the average human 
performance were also found to be closer to RTNet’s predictions, suggesting 
that RTNet successfully captured average human behaviour. Overall, RTNet 
is a promising model of human RTs that exhibits the critical signatures of 
perceptual decision-making.

Traditional cognitive models of perceptual decisions1–4 are able to 
account for the major features of human perceptual decision-making 
but do not operate on the level of images. Recently, convolutional 
neural networks (CNNs) have reached and sometimes exceeded 
human-level performance for novel images5,6. In addition, these net-
works naturally handle multi-choice categorization tasks and are 
promising models of the processing related to object recognition in 
the ventral visual stream of the human brain5,7,8. However, traditional 
CNNs’ decision behaviour differs markedly from human decision 
behaviour, thus limiting their applicability as models of human per-
ceptual decision-making. Specifically, unlike humans, traditional CNNs 
are both deterministic (that is, they always give the same response for 
a given stimulus) and static (that is, they are invariant in the amount of 

time spent on processing different images and thus always produce 
the same response time (RT)).

Several lines of work have tried to build mechanisms into neural 
networks to make them stochastic and dynamic9–13. Early research on 
shallow multi-layer perceptron models was able to create models that 
were both stochastic and dynamic. These models were able to explain 
human behaviour on simple cognitive tasks14–16. However, these models 
are not image-computable (that is, they cannot handle complex input 
such as images). More recent work has produced image-computable 
dynamic networks capable of generating RTs via mechanisms that 
allow computational resources used for the decision to increase with 
time9–11, thus allowing responses to evolve through each processing 
step. However, although these networks can mimic the speed–accuracy 
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120 unique images, and each participant made a decision regarding 
each image exactly twice, which allowed us to determine the level of 
stochasticity in human behaviour (Fig. 2b). Overall, each participant 
completed 960 trials.

Having obtained these human data, we compared human behav-
iour to that of RTNet, CNet, BLNet and MSDNet. Both RTNet and MSD-
Net were implemented using the eight-layer AlexNet architecture with 
five convolutional layers followed by three fully connected layers33. 
CNet was based on the architecture of ResNet18 since the implemen-
tation of this model relies on residual blocks and skip connections. 
Finally, for BLNet, we used the original architecture implemented 
by Spoerer et al.10, which consists of seven convolutional layers and a 
fully connected readout layer. Given that humans and deep learning 
models are impacted differently by stimulus noise34,35, we adjusted the 
noise levels of the images seen by each network to match their overall 
accuracy to the accuracy produced by the human participants. In 
addition, to allow the networks to reproduce the SAT observed in the 
human data, we adjusted the threshold value that triggers a decision 
for each CNN to match the human accuracy separately in the speed and 
accuracy focus conditions. To improve the correspondence between 
the model predictions and the human data, we trained 60 instances of 
each model (by changing only the random initialization before train-
ing began) and analysed the data produced by these 60 instances in an 
equivalent manner to those from the 60 human participants.

Signatures of human perceptual decision-making
We examined six foundational signatures of human perceptual 
decision-making that have already been established in studies of 
two-choice tasks: (1) human decisions are stochastic, meaning that 
the same stimulus can elicit different responses on different trials36,37; 
(2) increasing speed stress shortens RTs but decreases accuracy 
(SAT)26,38,39; (3) more difficult decisions lead to reduced accuracy and 
longer RTs26,40,41; (4) RT distributions are right-skewed, and this skew 
increases with task difficulty26; (5) RT is lower for correct trials than 
for error trials41–45; and (6) confidence is higher for correct trials than 
for error trials46. For each of these signatures, we confirmed that the 
signature also occurs for our eight-choice task with naturalistic images, 
and we then tested whether RTNet, CNet, BLNet and MSDNet exhibit 
the same signature.

Stochasticity of human decisions. A central feature of human 
behaviour is that human decisions are stochastic such that the same 
stimulus can elicit different responses on different trials36,37,47. We 
quantified the level of stochasticity in each condition by presenting 
each image twice. We first confirmed that our estimates of human 
stochasticity were robust and reliable by showing that similar esti-
mates are obtained when analysing the odd- versus even-numbered 
participants (Supplementary Fig. 1). On average across all conditions, 
36% of all images received different responses on the two presenta-
tions. A one-sided Wilcoxon signed-rank test showed that this observed 
frequency of stochastic responses is indeed significantly greater than 
zero (Z59 = 32,896; P < 0.001; rank-biserial correlation (effect size), 1) 
(Fig. 3a). A repeated-measures analysis of variance with the factors 
stimulus difficulty (easy versus difficult) and SAT (speed versus accu-
racy stress) revealed that stochasticity increased with both higher 
task difficulty (F1,63 = 871.869, P < 0.001, ηp

2 = 0.933) and higher speed 
pressure (F1,63 = 9.135, P = 0.004, ηp

2 = 0.127).
Since RTNet uses a random sample of weights for each processing 

step, it naturally produces stochastic decisions too. On average across 
all conditions, RTNet produced different responses on the two image 
presentations on 20% of trials (one-sided Wilcoxon signed-rank test: 
Z59 = 2,892; P < 0.001; rank-biserial correlation (effect size), 1; Fig. 3b). 
This level of stochasticity was lower than for human participants and 
stems from the fact that the variability in the weights was fixed a priori 
by training a BNN. However, it is possible for RTNet to match the level 

trade-off (SAT) found in humans, they are deterministic, and their 
internal mechanisms are not well supported by existing models of 
human perception and cognition. Finally, another class of models 
generates RTs using the biologically inspired mechanism of recurrent 
processing17–21, which allows flexible modulation of a finite network’s 
computational power10,22. Nevertheless, these networks are also deter-
ministic and have not been evaluated on the whole range of choice, RT 
and confidence effects shown by humans.

Here we combine modern CNNs with traditional cognitive 
models to create a model that is image-computable, stochastic and 
dynamic and that can reproduce the critical features of perceptual 
decision-making for novel images. The model, which we call RTNet for 
its ability to model human RTs, features a deep CNN with noisy weights 
and processes a given image several times using a different random 
sample of these weights in each processing step (Fig. 1a). These weights 
are sampled from a Bayesian neural network (BNN) that estimates a 
posterior distribution over the best network parameters learned dur-
ing training. By sampling from these noisy weight distributions at each 
processing step, the network’s units produce variable responses to the 
same input that mimic the randomness of neural responses. After each 
processing step, RTNet accumulates the output corresponding to each 
choice until one of the choices reaches a predefined threshold. The 
model therefore has a strong conceptual relationship to race models 
from the cognitive literature on decision-making, which postulate 
a noisy accumulation process with separate accumulators for each 
choice23–25. By combining the image-computability of CNNs with tradi-
tional models of perception, we expect RTNet to be applicable across a 
wide range of perceptual tasks as well as reproduce the basic features 
of human perceptual decision-making.

To assess a model’s ability to make decisions similar to those of 
humans, one needs to test whether it produces the foundational fea-
tures of human decision-making26. Human perceptual decision-making 
has been studied primarily in the context of two-choice tasks using arti-
ficial stimuli such as Gabor patches or random dot motion27 (although 
notable exceptions exist where N-choice tasks are used28–31). We there-
fore first replicated the known decision-making signatures from 
two-choice tasks using an eight-choice task with meaningful images 
(handwritten digits taken from the MNIST dataset32). We manipulated 
(1) task difficulty by adding two different levels of noise to the images 
and (2) the SAT by asking the participants to emphasize either the 
accuracy or the speed of their responses on different trials.

Critically, we tested RTNet under the same conditions and with 
the same images seen by the human participants to explore the mod-
el’s capability to produce behaviour similar to that of human agents. 
Beyond testing whether RTNet can reproduce the basic features of 
human perceptual decision-making, we also explored whether the 
accuracy, RT and confidence produced by RTNet for individual images 
predict the corresponding quantities for humans on the same images. 
Finally, throughout the study, we compared the behaviour of RTNet to 
that of three other popular dynamic CNNs. The first model is Parallel 
Cascaded Network9 (CNet; Fig. 1b), which is currently thought to be 
the best image-computable model that can mimic the SAT charac-
teristics of humans12. The second is BLNet10, which belongs to a class 
of models that use recurrent processing and has been validated on a 
range of perceptual tasks involving manipulations beyond the SAT 
(Fig. 1c). The third is Multi-Scale Dense Networks13 (MSDNet; Fig. 1d), 
which implements one of the most common ways for generating RTs in 
image-computable models. We found that RTNet’s behaviour mimics 
human perceptual decision-making better than all three of these CNNs.

Results
We collected data from 60 human participants who performed a 
digit discrimination task (Fig. 2a). The experiment was a 2 × 2 design 
with factors of task difficulty (easy versus difficult images) and speed 
pressure (speed versus accuracy focus). Each condition consisted of 
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Fig. 1 | Model architectures. a, RTNet architecture. Unlike standard CNNs, 
the connection weights in RTNet are not fixed but chosen from a distribution. 
A stimulus is processed multiple times by the network, each time using a 
different set of weights sampled randomly from a BNN. The evidence from 
each processing step is accumulated, and a decision is made when the evidence 
for one of the choices reaches a threshold. This architecture results in both 
stochastic decisions and variable RTs. b, CNet architecture9. CNet introduces 
propagation delays between residual blocks (each of which consists of two 
convolutional layers). At each time step (t), all residual blocks parallelly receive 
inputs from lower blocks, but due to propagation delays, earlier blocks achieve 
stable activations faster, whereas the later blocks require multiple processing 
steps to receive complete input and achieve stable activations. The network 
can generate a decision via the readout layer at any time step, although if the 
time step is less than the number of residual blocks, the decision will be based 

on partial input in later blocks. c, BLNet architecture10. BLNet is an RCNN with 
bottom-up and lateral recurrent connections. Time steps are defined in terms 
of the number of feedforward sweeps of the network. At each time step, a layer 
receives feedforward input from the previous layer as well as recurrent input 
from its own activations at the previous time step. The readout can be evaluated 
at each time step to generate a response if it exceeds the threshold. The network 
can trade off speed and accuracy as higher thresholds require more feedforward 
and recurrent computations, effectively resulting in a deeper network being 
unrolled across time. d, MSDNet architecture13. In this network, each hidden layer 
features its own classifier, allowing MSDNet to make a separate decision after the 
processing in each layer is completed. This allows the network to stop processing 
an image early if that image can already be decoded from earlier layers of the 
network, thus resulting in different RTs for different images.
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of stochasticity observed in humans by increasing the variability of the 
network’s weights. Indeed, we confirmed that the stochasticity of the 
decisions made by RTNet can be robustly manipulated by changing the 
variability of its weight distributions (Supplementary Fig. 2). Further-
more, the stochasticity in human decisions partially stems from factors 
such as fluctuations in attention, arousal or serial dependence36,37,47,48, 
which we did not attempt to model. Because of these considerations, 
we did not try to match RTNet to the exact level of human decision 
stochasticity observed in the data. Critically, however, RTNet exhibited 
the same features such that stochasticity increased with higher task 
difficulty (F1,59 = 120.124, P < 0.001, ηp

2 = 0.671) and higher speed stress 
(F1,59 = 87.730, P < 0.001, ηp

2 = 0.598).
In contrast, for a fixed level of SAT, CNet, BLNet and MSDNet 

are fully deterministic and do not exhibit any decision stochasticity 
(Fig. 3c–e). We note that it should be possible to add noise in the weights 
of these models to induce stochastic decisions, but such noise would 
decrease their accuracy much more than it affects RTNet given that only 
RTNet is able to average out the noise over repeated processing steps. 
Because RTNet is the only model that incorporates a mechanism for 
generating stochastic responses, these stochasticity analyses a priori 
favour RTNet over the other models. However, the rest of our analyses 
compare the behaviour and predictions of the models across a range 
of stimulus manipulations in which no model is a priori expected to be 
favoured over the others.

SAT. The ability to trade off speed and accuracy against each other is 
a hallmark of decision-making across humans and many other animal 
species38,39. The human data confirmed that increased speed pressure 
led to lower accuracy (F1,59 = 4.274, P = 0.043, ηp

2 = 0.068; Fig. 4a) and 
shorter RTs (F1,59 = 119.29, P < 0.001, ηp

2 = 0.964; Fig. 4b). We also found a 
significant interaction between the SAT and task difficulty for accuracy 
such that the SAT effect was greater for easy images (F1,59 = 5.71, P = 0.020, 
ηp

2 = 0.088). For RTs, however, we observed the opposite pattern, 
where the SAT effect was heightened for difficult images (F1,59 = 22.423, 
P < 0.001, ηp

2 = 0.275). These results replicate findings from a previous 
study examining the effects of SAT manipulations on accuracy and RT as 
a function of stimulus contrast49. Furthermore, as shown before49, these 
findings are also in line with predictions of the drift diffusion model, 
which is currently the standard model for explaining human RTs1,2.

All models were able to replicate the SAT observed in humans. 
Increased speed pressure resulted in lower accuracy for RTNet 

(F1,59 = 9.683, P = 0.003, ηp
2 = 0.141), CNet (F1,59 = 50.025, P < 0.001, 

ηp
2 = 0.459), BLNet (F1,59 = 11.611, P = 0.001, ηp

2 = 0.164) and MSDNet 
(F1,59 = 21.841, P < 0.001, ηp

2 = 0.270). Increased speed pressure also led 
to shorter RTs for RTNet (F1,59 = 3,362.567, P < 0.001, ηp

2 = 0.983), CNet 
(F1,59 = 695.878, P < 0.001, ηp

2 = 0.922), BLNet (F1,59 = 607.093, P < 0.001, 
ηp

2 = 0.911) and MSDNet (F1,59 = 584.081, P < 0.001, ηp
2 = 0.908). We 

note that the SAT manipulation had a relatively small effect on accu-
racy (1.04% for easy and 1.24% for difficult conditions for RTNet; the 
effects for the rest of the networks were of similar magnitude; Fig. 4a). 
However, despite the small effect size, these effects were generally 
consistent across the 60 model instances (for RTNet, 54/60 instances 
showed the effect for easy images, and 42/60 showed the effect for 
difficult images).

The SAT manipulation had a much stronger effect on RTs than 
on accuracy, which may be attributed to the fact that RTs are a more 
sensitive measure of performance. Furthermore, the SAT effect on 
RTs was much stronger for humans, RTNet and BLNet than for the 
other models. The individual RT distributions show a clear separation 
between the speed and accuracy focus conditions for humans, RTNet 
and BLNet but not for CNet and MSDNet (Fig. 4c). Nevertheless, these 
results indicate that the SAT is robustly observed even for a relatively 
complex task with naturalistic images, and that all models examined 
here exhibit this foundational phenomenon.

Difficult decisions lead to reduced accuracy and longer RTs. 
Another ubiquitous feature of decision-making is that more difficult 
stimuli lead to lower accuracy and longer RTs26,50. Our human data 
robustly showed this effect, with more difficult stimuli leading to 
lower accuracy (F1,59 = 1,558.500, P < 0.001, ηp

2 = 0.964; Fig. 4a) and 
longer RTs (F1,59 = 411.154, P < 0.001, ηp

2 = 0.875; Fig. 4b). The same 
pattern was robustly observed for RTNet and BLNet, where diffi-
cult stimuli led to lower accuracy (RTNet: F1,59 = 218.510, P < 0.001, 
ηp

2 = 0.787; BLNet: F1,59 = 200.543, P < 0.001, ηp
2 = 0.773) but longer RTs 

(RTNet: F1,59 = 233.452, P < 0.0001, ηp
2 = 0.798; BLNet: F1,59 = 186.604, 

P < 0.001, ηp
2 = 0.760). However, while CNet and MSDNet also showed 

a very robust effect on accuracy (CNet: F1,59 = 1,116.800, P < 0.001, 
ηp

2 = 0.950; MSDNet: F1,59 = 247.520, P < 0.001, ηp
2 = 0.808), they exhib-

ited a smaller effect for RT (CNet: F1,59 = 11.070, P = 0.016, ηp
2 = 0.158; 

MSDNet: F1,59 = 6.171, P = 0.002, ηp
2 = 0.095). Indeed, of the 60 model 

instances, only 23 CNet instances and 36 MSDNet instances exhibited 
an RT increase for more difficult stimuli, whereas this effect was present 
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Fig. 2 | Experiment task. a, Trial structure. Each trial began with a fixation cross 
presented for 500 to 1,000 ms, followed by an image of a handwritten digit 
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digits 1–8 were used. The participants reported their choice and confidence (on 
a four-point scale) using separate, untimed button presses. Note that the noisy 
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b, Experimental design. The experiment included four conditions such that 

the participants judged easy (low noise) or difficult (high noise) images while 
emphasizing either speed or accuracy. Each condition featured 120 unique 
images that were the same across all participants (for a total of 480 unique 
images in the experiment). In addition, each image was presented twice to allow 
the estimation of the stochasticity of human perceptual choices. Each participant 
thus completed a total of 960 trials. The images in the first and second sets of 
presentation were shown in a different random order.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-024-01914-8

in 60/60 human participants, 58/60 RTNet instances and 59/60 BLNet 
instances. These results indicate that the effect of task difficulty on 
accuracy is exhibited robustly in humans and all networks, but the 
effect of task difficulty on RT is larger for humans, RTNet and BLNet 
than for CNet and MSDNet (Discussion).

Skewness of RT distributions. For simple two-choice decisions, 
human RT distributions are generally positively skewed, and the skew-
ness changes as a function of task conditions2,26. Our eight-choice task 
produced RT distributions that closely resemble what is observed in 

standard two-choice tasks (Fig. 4c). Similar-looking RT distributions 
were produced by RTNet, but CNet and MSDNet produced RT distribu-
tions that, while still right-skewed, exhibited qualitative differences in 
their shapes (Fig. 4c). BLNet, in contrast, produced RT distributions 
that were frequently bimodal and left-skewed.

We further assessed how the skewness of the RT distributions 
changed under different conditions. In humans, we found higher 
skewness for accuracy than for speed focus (F1,59 = 32.837, P < 0.001, 
ηp

2 = 0.358) and higher skewness for easy stimuli than for difficult 
stimuli (F1,59 = 5.098, P = 0.028, ηp

2 = 0.080; Fig. 4d). RTNet exhibited 
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the same pattern, with skewness increasing with a focus on accu-
racy (F1,59 = 19.077, P < 0.001, ηp

2 = 0.244) and with easier stimuli 
(F1,59 = 93.342, P < 0.001, ηp

2 = 0.613). For CNet, we found no differ-
ence in the skewness of RT distributions between the SAT conditions 

(F1,59 = 0.428, P = 0.515, ηp
2 = 0.007), but skewness was higher for easy 

than for difficult stimuli (F1,59 = 8.612, P = 0.005, ηp
2 = 0.127). BLNet 

showed the opposite pattern to CNet, with skewness increasing for the 
speed focus condition (F1,59 = 39.219, P < 0.001, ηp

2 = 0.399) and failing 
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Fig. 4 | Behavioural effects shown by human participants and the models. 
a, Accuracy for humans (n = 60) decreases when response speed is emphasized 
as well as for more difficult decisions. Both effects are exhibited by all the 
networks (n = 60 model instances). b, RT for humans becomes shorter when 
response speed is emphasized, as well as for easier decisions. Both effects are 
also exhibited robustly by RTNet and BLNet. However, while both CNet and 
MSDNet produced a robust effect for the speed manipulation, they exhibited 
much smaller effects for the difficulty manipulation. RT for humans is measured 
in seconds, and RT for the networks is measured in the number of steps over 
which evidence is accumulated (for RTNet), the number of propagation steps 
(for CNet), the number of feedforward sweeps (for BLNet) and the number of 
layers (for MSDNet). c, RT distributions for a representative participant/model. 

d, The skewness of RT distributions changes across conditions. For humans and 
RTNet, the skewness of the RT distributions was higher for easier tasks and for 
accuracy focus. However, CNet, BLNet and MSDNet showed clear deviations from 
the human pattern of results. e, For humans, RTNet, CNet and BLNet, two-sided 
paired t-tests showed that error trials were associated with higher RT than correct 
trials. However, MSDNet showed the opposite pattern such that correct trials 
were associated with longer processing time. f, Confidence for correct trials 
was higher than confidence for error trials for humans and all networks. For all 
panels, the dots represent individual participants, and the error bars show the 
s.e.m. The P values are derived from two-sided Wilcoxon’s signed-rank tests (for 
mean RT comparisons) and two-sided paired t-tests (for all other measures).
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to show a difference in skewness between the easy and difficult stimuli 
(F1,59 = 3.517, P = 0.066, ηp

2 = 0.056). Finally, while MSDNet showed an 
increase in skewness with a focus on accuracy (F1,59 = 64.866, P < 0.001, 
ηp

2 = 0.524), it produced RT distributions that did not significantly 
differ in skewness between the task difficulty conditions (F1,59 = 1.259, 
P = 0.266, ηp

2 = 0.021). Overall, RTNet produced RT distributions that 
reflected the observed patterns in the human data better than all other 
networks. It should be noted that CNet, BLNet and MSDNet can only 
produce distinct RTs that are less than or equal to their layer numbers 
or residual blocks, which may affect their ability to reproduce human 
RT distributions unless a relatively high number of layers is used. In 
contrast, RTNet can go through an arbitrary number of samples regard-
less of the number of layers in its architecture.

RT is faster for correct trials than for error trials. Another ubiquitous 
feature of human behaviour in two-choice tasks is that correct decisions 
are typically accompanied by faster RTs than incorrect decisions41–45. We 
replicated this effect in our eight-choice task (F1,59 = 82.080, P < 0.001, 
ηp

2 = 0.582; Fig. 4e). The same difference between correct and error 
RTs also emerged for RTNet (F1,59 = 831.153, P < 0.001, ηp

2 = 0.934), 
CNet (F1,59 = 83.921, P < 0.001, ηp

2 = 0.587) and BLNet (F1,59 = 286.157, 
P < 0.001, ηp

2 = 0.582). However, MSDNet exhibited the opposite pat-
tern such that RTs were faster for error trials than for correct trials 
(F1,59 = 65.696, P < 0.001, ηp

2 = 0.527). This behaviour is due to the fact 
that errors produced by MSDNet come mostly from decisions made 
in earlier layers. It may be possible to reverse this behaviour by using 
a much more conservative decision threshold in the early than in the 
late layers of MSDNet, though the effectiveness of this strategy and its 
effect on all other behavioural signatures examined here would need 
to be tested. What is clear is that MSDNet in its current form makes a 
qualitatively wrong prediction regarding the difference between cor-
rect and error RTs, whereas RTNet, CNet and BLNet naturally reproduce 
the empirical effect.

Confidence is higher for correct trials than for error trials. Finally, 
a ubiquitous feature of confidence ratings is that they are higher for 
correct than for incorrect decisions46,51. Our human data replicated 
this effect (F1,59 = 472.172, P < 0.001, ηp

2 = 0.889; Fig. 4f). The effect 
was also robustly exhibited by all networks: RTNet (F1,59 = 966.796, 
P < 0.001, ηp

2 = 0.942), CNet (F1,59 = 785.992, P < 0.001, ηp
2 = 0.930), 

BLNet (F1,59 = 374.031, P < 0.001, ηp
2 = 0.864) and MSDNet (F1,59 = 131.923, 

P < 0.001, ηp
2 = 0.691). Therefore, humans and all networks robustly 

showed higher confidence for correct trials than for incorrect trials.

Model predictions of responses for individual images
The above results demonstrate that RTNet naturally reproduces all 
foundational features of human decision-making. In contrast, CNet, 
BLNet and MSDNet fail to exhibit stochastic decisions and skewness 
difference in RT distributions between the SAT/difficulty conditions, 
and MSDNet further fails to account for lower RTs for correct decisions. 
However, RTNet’s ability in those respects can easily be matched by 
traditional cognitive models that do not work on image-level data24,42,52. 
A critical advantage of RTNet over traditional cognitive models would 
therefore be the ability to predict human behaviour for individual, 
unseen images, because traditional models cannot do that. Here 
we tested specifically whether the accuracy, RT and confidence for 
unseen images produced by the networks predict the same quantities 
in humans.

Model predictions for individual participants. In the first set of analy-
ses, we assessed the correlations between the accuracy, RT and confi-
dence for each human participant and the corresponding quantities 
predicted by RTNet, CNet, BLNet and MSDNet across all four conditions 
(easy with speed stress, difficult with speed stress, easy with accuracy 
stress and difficult with accuracy stress). We compared how well the 

data from individual human participants could be predicted by each 
model as well as by the data from the 59 remaining human participants. 
This last quantity, which we call the participant-to-group relationship, 
provides an estimate of the noise ceiling (that is, the performance that 
a true model could achieve given inter-participant variability)10.

We found that all models predicted individual human data 
much better than chance for accuracy, RT and confidence (two-sided 
one-sample t-tests, all P < 0.001, all Cohen’s d > 1.20). The one excep-
tion was BLNet, which had a weak negative correlation with human 
image-by-image accuracy (average r = −0.06; P = 0.002; Cohen’s 
d = 0.410; 95% confidence interval (CI), (−0.09, −0.02)). Critically, RTNet 
provided substantially better predictions than all other models (Fig. 5). 
Specifically, two-sided paired t-tests showed that RTNet produced 
better image-by-image predictions about accuracy (RTNet versus 
CNet: t59 = 30.672; P < 0.001; Cohen’s d = 4.747; 95% CI, (0.24, 0.27); 
RTNet versus BLNet: t59 = 20.842; P < 0.001; Cohen’s d = 3.864; 95% 
CI, (0.37, 0.44); RTNet versus MSDNet: t59 = 30.672; P < 0.001; Cohen’s 
d = 4.747; 95% CI, (0.24, 0.27)), RT (RTNet versus CNet: t59 = 18.638; 
P < 0.001; Cohen’s d = 2.370; 95% CI, (0.29, 0.35); RTNet versus BLNet: 
t59 = 13.135; Cohen’s d = 0.472; 95% CI, (0.06, 0.08), P < 0.001; RTNet ver-
sus MSDNet: t59 = 13.318; P < 0.001; Cohen’s d = 1.152; 95% CI, (0.13, 0.18)) 
and confidence (RTNet versus CNet: t59 = 8.394; P < 0.001; Cohen’s 
d = 0.936; 95% CI, (0.07, 0.11); RTNet versus BLNet: t59 = 6.587; P < 0.001; 
Cohen’s d = 0.391; 95% CI, (0.03, 0.05); RTNet versus MSDNet: t59 = 7.68; 
P < 0.001; Cohen’s d = 0.471; 95% CI, (0.04, 0.06)).

RTNet’s predictions were reasonably close to the noise ceiling in 
all cases (calculated as the average participant-to-group correlation in 
the human data). Specifically, RTNet’s predictions were within 62.5%, 
79.6% and 64.8% of the noise ceiling for accuracy, RT and confidence, 
respectively. These numbers were substantially lower for CNet (16.1%, 
20.3% and 40.5%), BLNet (0%, 64.4% and 54.1%) and MSDNet (16.1%, 50% 
and 51.3%). Thus, by reaching between 62.5% and 79.6% of the noise ceil-
ing, RTNet can provide excellent predictions of the accuracy, RT and 
confidence produced by human participants for images that the model 
was not trained on. We also derived the model predictions for averages 
across the 60 participants across all conditions (Supplementary Fig. 3) 
and found that RTNet still predicts average human accuracy and RT 
better than the other networks.

Model predictions within each condition separately. The above 
analyses explored the correlations between model predictions and 
human behaviour across all experimental conditions. Because different 
conditions vary in their average accuracy, RT and confidence, analyses 
across conditions are likely to produce higher correlations than if the 
same analyses are performed within each condition separately. We 
therefore repeated the analyses but within each of the four conditions 
separately to investigate whether the models can still account for accu-
racy, RT and confidence on individual images. We found that RTNet, 
BLNet and MSDNet produced accuracy, RT and confidence predictions 
that significantly correlate with individual participant data in all condi-
tions (two-sided one-sample t-tests, all P < 0.001; Fig. 6). However, while 
CNet produced accuracy and confidence predictions that significantly 
correlated with individual participant data in all conditions, the cor-
relations for its RT predictions for all conditions except accuracy focus 
with difficult images were either zero or negative (P > 0.62).

RTNet predicted the individual data significantly better than the 
rest of the networks. Specifically, two-sided paired t-tests showed that 
RTNet provided better predictions than CNet in two conditions for 
accuracy (both P < 0.001), in all four conditions for RT (all P < 0.0001) 
and in two conditions for confidence (both P < 0.005). Compared with 
BLNet, RTNet predicted individual data significantly better in three 
conditions for accuracy (all P < 0.0001) and in all four conditions for 
RT (all P < 0.025). Compared with MSDNet, RTNet predicted the indi-
vidual data significantly better in three conditions for accuracy (all 
P < 0.001) and in all four conditions for RT (all P < 0. 02). There was no 
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significant difference in confidence predictions between RTNet and 
BLNet or between RTNet and MSDNet for any of the four conditions 
(all P > 0.05). RTNet was never significantly worse than CNet, BLNet or 
MSDNet in predicting any of the 12 comparisons. Overall, these results 
demonstrate that RTNet predicts human behaviour well across all three 
measures and across different types of analyses (across or within condi-
tions), and it does so better than CNet, BLNet and MSDNet.

Humans more similar to the group are more similar to RTNet
Our participant-to-group analyses revealed substantial variability 
in how well individual participants’ data corresponded to the group 
average (Fig. 5). Since the group average constitutes the best model 
of human behaviour, one would expect that any good, generalizable 
model of behaviour would also be able to capture this relationship 
between individual participants and the group average. In other 
words, the strength of the relationship for an individual participant 
and the group should be linked to the strength of the relationship of 
that same participant and the model. Here we tested whether such 
dependency holds true for RTNet, CNet, BLNet and MSDNet. We found 
that participants who exhibited greater correlation in image-by-image 
accuracy across all conditions with rest of the group also exhibited 
greater correlation with the RTNet predictions (Pearson’s r = 0.685; 
P < 0.001; 95% CI, (0.52, 0.80); Fig. 7a). The same correspondence also 
emerged for RT (Pearson’s r = 0.825; P < 0.001; 95% CI, (0.72, 0.89)) 
and confidence (Pearson’s r = 0.894; P < 0.001; 95% CI, (0.83, 0.94)). 
Similar results were obtained for CNet (accuracy: Pearson’s r = 0.389; 
P = 0.002; 95% CI, (0.15, 0.59); RT: Pearson’s r = 0.432; P < 0.001; 95% CI, 
(0.20, 0.62); confidence: Pearson’s r = 0.639; P < 0.001; 95% CI, (0.46, 
0.77); Fig. 7b) and MSDNet (accuracy: Pearson’s r = 0.389; P = 0.002; 
95% CI, (0.15, 0.59); RT: Pearson’s r = 0.80; P < 0.0001; 95% CI, (0.69, 
0.88); confidence: Pearson’s r = 0.853; P < 0.001; 95% CI, (0.77, 0.91); 
Fig. 7d), demonstrating that all three models better predict the data 
from individuals who behave more similarly to the rest of the group. 
However, BLNet showed no significant correlation for accuracy pre-
dictions (Pearson’s r = −0.029; P = 0.828; 95% CI, (−0.28, 0.23); Fig. 7c), 
while exhibiting high correlations for RT (Pearson’s r = 0.831; P < 0.001; 
95% CI, (0.73, 0.90)) and confidence (Pearson’s r = 0.809; P < 0.001; 95% 
CI, (0.70, 0.88)). All correlations were higher for RTNet than for the 
other three networks. These analyses further support the notion that 
RTNet provides the best model of average human behaviour among 
the existing alternatives.

To better understand these results, we further examined which 
participants had the most similar accuracy, RT and confidence to those 
of the group. We found that different participants had the highest 
similarity to the group for RT than for accuracy or confidence (Sup-
plementary Fig. 4a–c). RTNet and the other models therefore did not 
simply provide a good fit to specific participants but instead provided 
good fits to different groups of participants for different measures. 
Finally, the individuals closest to the group in their mean accuracy 
also tended to be those who had the highest task accuracy, suggest-
ing that RTNet and the other models were better at predicting the 
image-by-image accuracy of participants with higher task performance 
(Supplementary Fig. 4d).

Given the variability in how similar individual participants’ 
data were to the group data, we also explored how well the models 
compared with the ability of individual participants to predict the 
group data. Two-sided paired t-tests showed that RTNet outper-
formed individual human participants in predicting the accuracy 
(t59 = 4.076; P < 0.001; Cohen’s d = 0.526; 95% CI, (0.02, 0.06)), RT 
(t59 = 16.174; P < 0.001; Cohen’s d = 2.088; 95% CI, (0.2, 0.25)) and con-
fidence (t59 = 10.927; P < 0.001; Cohen’s d = 1.411; 95% CI, (0.18, 0.26)) 
of the rest of the group across all conditions (Fig. 8). In fact, RTNet 
outperformed every individual human participant in predicting the 
group RT and confidence results, as well as 73.3% of individual par-
ticipants in predicting accuracy. CNet, by contrast, was significantly 
worse than individual participants in predicting group accuracy and 
RT but not confidence (accuracy: t59 = −42.425; P < 0.001; Cohen’s 
d = 5.477; 95% CI, (−0.4, −0.39); RT: t59 = −25.439; P < 0.001; Cohen’s 
d = 3.284; 95% CI, (−0.38, −0.32); confidence: t59 = −0.361; P = 0.719; 
Cohen’s d = 0.047; 95% CI, (−0.05, −0.03)). BLNet was significantly 
worse than individual participants in predicting group accuracy but 
predicted group RT and confidence better than individuals (accuracy: 
t59 = −68.395; P < 0.001; Cohen’s d = 8.830; 95% CI, (−0.67, −0.63); RT: 
t59 = 7.018; P < 0.001; Cohen’s d = 0.906; 95% CI, (0.07, 0.13); confi-
dence: t59 = 6.170; P < 0.001; Cohen’s d = 0.797; 95% CI, (0.08, 0.16)). 
Finally, MSDNet’s predictions of group accuracy and RT were signifi-
cantly worse than those of human participants, but its predictions of 
group confidence were better than those of individual participants 
(accuracy: t59 = −42.425; P < 0.001; Cohen’s d = 5.477; 95% CI, (−0.42, 
−0.39); RT: t59 = −4.019; P < 0.001; Cohen’s d = 0.519; 95% CI, (−0.08, 
−0.03); confidence: t59 = 5.266; P < 0.001; Cohen’s d = 0.68; 95% CI, 
(0.07, 0.15)). In sum, RTNet was the only network that outperformed 
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Fig. 5 | Image-by-image correlation between human data and each model 
across all experimental conditions for individual participants. Correlations 
between data from individual human participants (n = 60) and the group average, 
and correlations between data from individual participants and the average 
of all 60 instances for RTNet, CNet, BLNet and MSDNet. The correlations were 
computed separately for accuracy, RT and confidence across all conditions. 

The correlation is stronger for RTNet than for CNet, BLNet or MSDNet for each 
measure. The participant-to-group correlation provides an estimate of the noise 
ceiling for the network correlations. The dots represent individual participants; 
the error bars show the s.e.m. The P values are derived from two-sided paired 
t-tests.
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Fig. 6 | Image-by-image correlation between human data and each network 
in each experimental condition. a–d, Correlation between data from individual 
human participants (n = 60) and the group average, as well as the average of all 60 
instances for RTNet, CNet, BLNet and MSDNet. The correlations were computed 
separately for accuracy, RT and confidence in each experimental condition: 
speed focus, easy (a); speed focus, difficult (b); accuracy focus, easy (c); and 

accuracy focus, difficult (d). The correlation is significantly stronger for RTNet 
than for CNet (8/12 comparisons), BLNet (7/12 comparisons) and MSDNet (7/12 
comparisons). RTNet never exhibits significantly weaker correlations than CNet, 
BLNet or MSDNet. In all panels, the dots represent individual participants; the 
error bars show the s.e.m. The P values are derived from two-sided paired t-tests.
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Fig. 7 | Humans who are more similar to the group average are also more 
similar to each model. a, We observed a strong positive correlation between the 
participant-to-group and participant-to-RTNet similarity values for accuracy, 
RT and confidence. This finding indicates that individual participants whose 
behaviour was more similar to the group average on per-image basis were also 

more similar to the predictions made by RTNet. b–d, Similar results were also 
observed for CNet, BLNet (except for accuracy correlations) and MSDNet, 
although these correlations tended to be lower than those for RTNet. The dots 
represent individual participants, the lines depict best-fit regressions and the 
shaded areas depict 95% CIs around the regression estimate.
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most individual participants in predicting all three measures of human 
performance (accuracy, RT and confidence).

Discussion
There is considerable interest in using neural networks as models of 
human visual processing and behaviour, but relatively little work has 
been done on testing the extent to which existing image-computable 
models reproduce the full range of behavioural signatures exhibited 
by humans. Here we show that the current state-of-the-art neural net-
works such as CNet, BLNet and MSDNet diverge in several ways from 
human behaviour. We also develop a new neural network, RTNet, that 
exhibits all the critical features of human perceptual decision-making, 
including effects on accuracy, RT and confidence. Furthermore, RTNet 
predicted human group behaviour for novel images well and did so 
better than CNet, BLNet and MSDNet, as well as better than individual 
human participants. Finally, individual humans who were more similar 
to the group were also more similar to RTNet. Overall, RTNet is a promis-
ing image-computable model of human accuracy, RT and confidence.

Relationship between RTNet and cognitive models of 
perceptual decision-making
RTNet is a neural network that exhibits all the critical signatures of human 
perceptual decision-making. This success, however, is hardly surprising 
given the strong conceptual similarity between RTNet and traditional 
cognitive models of decision-making that also exhibit the signatures of 
human behaviour24,26,40,52,53. These models are often referred to as sequen-
tial sampling models, where (usually noisy) evidence is accumulated 
over time until a threshold is reached. The most common sequential 
sampling models are diffusion models, which are typically only applied 
to two-choice tasks where evidence in favour of one response alternative 
is also evidence against the other alternative1,40. Instead, RTNet is concep-
tually more similar to another subgroup of sequential sampling models 
called race models, in which each choice option has its own accumula-
tion system and evidence for each choice is accumulated in parallel42,54.

Despite their conceptual similarity, RTNet has two important 
advantages over traditional cognitive models. Most importantly, RTNet 
is image-computable and can be applied to actual images, whereas 
traditional models cannot. Traditional models thus cannot replicate 
RTNet’s ability to make accurate predictions regarding human accu-
racy, RT and confidence for individual unseen images. The second 
advantage stems from the inability of traditional cognitive models 
to naturally capture the relationships between the different choice 
options. Specifically, to maintain a low number of free parameters, cog-
nitive models are often fit with the assumption that evidence accumu-
lates at the same rate for all incorrect choice options (but accumulates 

faster for the correct choice)55. However, this assumption ignores the 
fact that some incorrect options may be more similar to the correct 
option and thus are more likely than other options to be chosen. While 
dependencies between the choices can easily be incorporated in cogni-
tive models, that would result in a large number of free parameters that 
would make fitting to data difficult. Conversely, RTNet inherently learns 
all relationships between the choice options during the training of the 
BNN that forms its core. RTNet still requires the fitting of the overall 
signal strength (which we accomplish by adjusting the noise level of 
the images fed to RTNet), but this single free parameter allows it to 
capture all choice option dependencies, something that traditional 
models cannot achieve.

Performance differences between RTNet and other networks
RTNet outperformed all other networks we tested (CNet, BLNet and 
MSDNet) in capturing the signatures of perceptual decision-making. 
Specifically, while MSDNet and CNet show weaker effects of task dif-
ficulty on RTs than humans do, RTNet closely captures the observed 
magnitude of this effect. RTNet is also the only model that mimics 
the observed shape and skewness of RT distributions in response 
to SAT/difficulty manipulations. Finally, RTNet yielded the closest 
image-by-image predictions of human choice, RT and confidence.

We speculate that RTNet’s ability to match observed patterns 
in human behaviour, particularly RTs, is primarily due to its internal 
mechanisms being closer to the true mechanisms that give rise to RTs 
in humans. Specifically, RTNet’s core assumption that RTs are gener-
ated by a process of sequential sampling and evidence accumulation 
is inspired from a long tradition of cognitive modelling1,2. In fact, these 
evidence accumulation models have been tested extensively against 
human data and are currently the best models of human RTs1,2. Models 
such as CNet, BLNet and MSDNet, by contrast, rely on mechanisms 
that, although they can generate RTs, have not been as extensively 
validated by empirical tests and are therefore less likely to capture the 
true mechanisms that generate RTs in humans.

Another reason why CNet and MSDNet may struggle with gen-
erating human-like RTs is that the RTs generated by the models are 
constrained by the number of layers or residual blocks present in the 
networks. In contrast, RTNet’s evidence accumulation mechanism 
allows flexible generation of RTs across a potentially very large number 
of steps, thus allowing the RTs to have higher resolution and sensitivity 
to experimental manipulations.

Biological plausibility of neural network models of RT
Physiological recordings have uncovered several features of the pro-
cessing in the human visual system that are relevant to judging the 
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Fig. 8 | Comparison between individual participants and the models in 
predicting the group data. RTNet significantly outperformed individual 
human participants (n = 60) in predicting group accuracy, RT and confidence. 
In contrast, CNet, BLNet and MSDNet were worse than individual humans in 
predicting accuracy, and CNet and MSDNet were worse in predicting RT. We 
note that the effect sizes are very small for RTNet’s predictions of accuracy and 

MSDNet’s predictions of RT. However, the effect was sufficiently consistent 
across participants to make these results statistically significant (RTNet 
outperformed 44/60 participants in predicting accuracy, and MSDNet did 
worse than 43/60 participants in predicting RT). In all panels, the dots represent 
individual participants; the error bars show the s.e.m. The P values are derived 
from two-sided one-sample t-tests.
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plausibility of the networks examined here. First, the conduction from 
one area to another in the visual cortex (roughly corresponding to 
different layers in neural networks) takes approximately 10 ms56, with 
signals from the photoreceptors reaching the top of the visual hier-
archy in the inferior temporal cortex in 70–100 ms57. A single sweep 
from input to output in a purely feedforward network should therefore 
result in decisions with RTs less than a few hundred milliseconds, even 
though human decisions can range from hundreds of milliseconds 
to a few seconds. Second, neurons in each layer of the visual cortex 
continue to fire action potentials for hundreds of milliseconds after 
the stimulus onset and receive strong recurrent input from later layers 
of processing58. Finally, neuronal processing is known to be noisy such 
that the same image input generates very different neuronal activations 
on different trials37.

MSDNet diverges from these known properties of the human visual 
cortex in several important ways. To generate meaningful RTs, MSDNet 
assumes that classification decisions are made after each layer of pro-
cessing, though there is no evidence that decisions in the brain can be 
directly based on information in the early visual cortex without further 
processing in subsequent layers. Moreover, because it assumes the 
existence of a single feedforward sweep through the network, it cannot 
naturally capture large RT variability between stimuli given the short 
latencies of processing between different layers. Finally, MSDNet does 
not incorporate any recurrent processing, capture the noisiness of the 
responses in the visual cortex or replicate the long periods of activity 
of the neurons in each processing area. These properties strongly limit 
the biological plausibility of MSDNet.

In comparison, the dynamics of CNet are closer to those of biologi-
cal neural networks. Indeed, several of CNet’s features—such as parallel 
and continuous processing of input, and transmission delays between 
layers—were directly inspired by biology. The transmission delays allow 
the network to mimic the processing latencies across cortical layers. 
These features were also found to account for differences in process-
ing efficiency between images such that CNet produced more rapid 
responses for prototypical images with clear backgrounds than for 
unusual or cluttered images. However, CNet includes several features 
that are not biologically plausible, such as its lack of stochasticity of 
decisions and recurrent processing. It also remains unclear how its 
cascaded architecture could map onto brain areas12.

BLNet appears more biologically plausible than both MSDNet and 
CNet, as it features recurrent visual processing. Lateral connections 
in recurrent CNNs (RCNNs) enable a layer’s activations from previous 
time steps to feed back into itself, which allows state dependence 
to naturally emerge in these networks, thus mimicking biological 
networks59. Additionally, RCNNs have been found to generate RTs 
that align closely with human RTs on a range of complex perceptual 
tasks involving scene categorization, perceptual grouping and mental 
simulation22. These findings suggest further similarities in perceptual 
processing between humans and RCNNs. However, in spite of these 
advantages, RCNNs still lack certain features of biological networks, 
such as stochasticity of responses.

It is possible to introduce stochasticity in CNet and MSDNet by 
feeding the outputs of the final softmax layer into a race model. How-
ever, such an architecture would imply that response stochasticity 
arises purely from noise in the decision stage. Although decision noise 
may exist in humans, contributing to noisy motor responses, stochas-
ticity in human responses is thought to predominantly arise from noisy 
inference29 or noisy sensory representations60–62. CNNs with additional 
noise at the decision stage are therefore less biologically plausible than 
RTNet, which includes noise in the evidence-processing stage.

While also not capturing all properties of visual processing, RTNet 
appears more biologically plausible than the other models. First, it 
mimics the noisiness of neuronal responses for repeated presentations 
of the same stimulus. Second, through the process of evidence accu-
mulation, RTNet naturally generates long-lasting neuronal activations. 

Third, the network’s output is inherently stochastic, unlike that of CNet, 
BLNet, MSDNet or standard feedforward networks that are inherently 
deterministic. Finally, the accumulation process implemented in RTNet 
has been observed in multiple regions in the human parietal cortex, 
frontal cortex and subcortical areas63–66. Nevertheless, one critical 
limitation of the biological plausibility of RTNet is its lack of recurrence. 
That being said, the question of how to train recurrent neural networks 
on static images remains open10,57,59,67,68. Furthermore, while the core of 
RTNet does not include recurrence, the evidence accumulation system 
can be thought of as a recurrent network. In fact, several recent studies 
have demonstrated the advantages of combining a standard feedfor-
ward network with a recurrent network in performing a range of tasks 
and extrapolating to solve problems of greater complexity than they 
were trained on69,70. Future studies should explore how to introduce 
recurrence into RTNet’s mechanisms and whether such modifications 
can improve its predictions of human behaviour.

Using noisy weights to generate stochasticity in RTNet’s 
responses
One critical feature of RTNet is that its weights are noisy. Practically, 
there are many ways of generating noise in the weights. In early itera-
tions of RTNet, we attempted to create variability by training a feed-
forward network and then adding the same amount of variability to 
each connection. This approach resulted in variability that was too 
small for some weights and too large for others71, often leading to no 
accuracy gains from the process of evidence accumulation. Indeed, a 
given amount of noise over a specific weight may not change the per-
formance of a network at all, but the same disturbance over another 
weight may have destructive effects72–74. We therefore chose to obtain 
the weight variability by training a BNN so that each weight has an 
appropriate amount of noise. In the future, it may be possible to use 
other methods for setting the noise level for each connection, but we 
are currently unaware of any method besides training a BNN that can 
generate appropriate noise for each weight.

Another alternative to implementing noise in RTNet is to add noise 
only to the weights in the pre-readout layer (which can mimic noise in 
the decision process rather than in the sensory processing). As there 
are many different ways to implement stochasticity in the network, it 
is important for future studies to test how these differences in imple-
mentation affect the model’s performance.

RTNet is built such that every time evidence is sampled from a stim-
ulus, the network’s weights change randomly (according to the BNN’s 
posterior weight distributions). These random moment-by-moment 
fluctuations in the network’s weights lead to noisy activations. How-
ever, in the brain, noisy activations in response to a stimulus are thought 
to arise from random fluctuations in neuronal activity itself. It can 
therefore be argued that a more biologically plausible implementation 
of RTNet would involve noise in unit activations rather than weights75. 
The main reason we chose to add noise in weights rather than activa-
tions is the practical ease of implementing BNNs that can naturally 
generate variability in networks. Mechanistically, however, there may 
be no meaningful distinction between noisy weights and noisy activa-
tions. Indeed, noisy weights lead to noisy activations, which mimic the 
randomness of neural responses.

Limitations
One limitation of RTNet is that its mechanism for stopping the accu-
mulation process is non-optimal. Following a large literature of race 
models in cognitive psychology24,42,55, RTNet makes a decision when any 
one choice option receives sufficient evidence to exceed a threshold. 
However, if another choice option has almost same amount of evidence, 
the observer has little ability to differentiate between the two choices 
and is essentially guessing between them. Previous research has shown 
that guessing can be an appropriate behaviour if the observer knows 
that the task is very difficult76 or if the observer has been deliberating 
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for a long time77. However, in a race model, guessing can happen at any 
time point regardless of task difficulty. Nevertheless, human decisions 
are often suboptimal78,79, and therefore it is unclear whether this sub-
optimal decision-making mechanism should be seen as a drawback if 
the goal is to model human decision-making.

Another limitation of RTNet is that each sweep of the feedforward 
path is independent of the previous states, whereas the current state in 
the human brain is influenced by its previous states59. To address this 
limitation, the sampling process in RTNet can be modified such that 
the current state of the network depends on the previous states. For 
example, during testing, the connection weight at a specific moment 
can be made a function of its previous values, which would make the 
sequential samples dependent on each other. Additional studies are 
needed to investigate the effect of such state dependence on model 
performance.

Conclusion
We developed a new neural network, RTNet, which exhibits the basic 
features of human perceptual decision-making and predicts human 
accuracy, RT and confidence on an image-by-image basis. The net-
work provides a better model of human perceptual decisions than 
the current state-of-the-art networks for generating RTs. RTNet thus 
represents an important step in the use of neural networks as models 
of human decisions.

Methods
All participants signed informed consent and were compensated for 
their participation. The protocol was approved by the Georgia Institute 
of Technology Institutional Review Board (protocol no. H15308). All 
methods were carried out in accordance with the relevant guidelines 
and regulations.

Behavioural experiment
Preregistration. This study’s sample size, experiment design, included 
variables, hypotheses and planned analyses were preregistered on 
the Open Science Framework (https://osf.io/kmraq) prior to any data 
being collected.

Participants. Sixty-four participants (31 female; age, 18–32 years) 
with normal or corrected-to-normal vision were recruited. We had 
preregistered the collection of only 40 participants, but due to less 
time restrictions than we had anticipated, and to further increase the 
statistical power, we collected data from more participants.

Stimulus, task and procedure. The participants performed a digit 
discrimination task where they reported the perceived digit followed 
by rating their decision confidence. Each trial began with the partici-
pants fixating on a small white cross for 500–1,000 ms, followed by 
a presentation of the stimulus for 300 ms. The stimulus was a digit 
between 1 and 8 (the digits 0 and 9 were excluded) superimposed on a 
noisy background. The participants’ task was to report the perceived 
digit using a computer keyboard by placing four fingers of their left 
hand on numbers 1–4 and placing four fingers of their right hand on 
numbers 5–8. This setup allowed the participants to respond without 
looking at the keyboard, thus providing less noisy RTs. Following their 
categorization response, the participants reported their decision 
confidence on a four-point scale (where 1 corresponds to the lowest 
confidence and 4 corresponds to the highest confidence). There was 
no deadline on the response or confidence rating.

The experiment included manipulations of SAT and task difficulty. 
The SAT was manipulated by asking the participants to emphasize 
either the speed or the accuracy of their responses. To facilitate proper 
responding, we organized the experiment into alternating blocks of 
speed and accuracy focus. Task difficulty was manipulated by add-
ing different levels of uniform noise to the stimuli. Specifically, ‘easy’ 

stimuli included average uniform noise of 0.25 (range, 0–0.5), whereas 
‘difficult’ stimuli included average uniform noise of 0.4 (range, 0–0.8). 
To add the noise, the pixel values were first transformed to be between 
0 and 1, and random numbers drawn from the corresponding noise dis-
tributions were added separately to each pixel. We scaled the resulting 
image to be between 0 and 1 again and finally converted the image to a 
uint8 format (scaled between 0 and 255). The noise levels were chosen 
on the basis of pilot testing to produce two different performance 
levels. Easy and difficult images were randomly interleaved.

The task stimuli were selected from a publicly available dataset 
of handwritten digits (MNIST)32. This dataset contains 60,000 train-
ing images and 10,000 testing images. Since the training images were 
used to train the models in this study, we randomly selected images 
from the MNIST test set to include in our experiment. This ensured 
that the selected images for the experiment were novel for both the 
human participants and the trained models. We randomly selected 
480 images for the experiment (120 for each condition). The MNIST 
dataset images are 28 × 28 pixels, which appeared overly small on the 
computer screens we were using. Therefore, before we added noise, 
the selected images were first resized to 84 × 84 pixels (using MATLAB’s 
imresize function), and they were padded with the background colour 
of the MNIST images to size 256 × 256 pixels (visual angle, 6.06°).

The experiment started with three blocks of training, each contain-
ing 50 trials. The first block contained images from the MNIST dataset 
without any noise. This was done to familiarize the participants with 
the experiment. The next two blocks were used to introduce the SAT 
by asking the participants to focus on accuracy in the first block and on 
speed in the second. The noise level of the stimuli in these two training 
blocks was the same as in the main experiment (that is, 0.25 and 0.40 for 
the easy and difficult stimuli, respectively). During the whole training 
session, the experimenter was standing beside the participant quietly 
and was available to answer any questions. None of the images used in 
the training session was used in the main experiment.

Once the participant confirmed that he or she understood the 
task, the experimenter left the room. The participants then completed 
the main experiment, which consisted of 960 trials organized in four 
runs, each containing four blocks of 60 trials. Each block consisted of 
a single SAT condition, and each run included exactly two ‘accuracy 
focus’ and two ‘speed focus’ conditions in a randomized order. At 
the beginning of each block, the participants were given the name 
of the condition for that block (‘accuracy focus’ or ‘speed focus’) and 
asked to adjust their responding policy accordingly. In each block, we 
pseudo-randomly interleaved trials from the two difficulty levels such 
that each was presented exactly 30 times. All 480 images were shown to 
the participants in first two runs, and the procedure was repeated with 
a new random ordering of the stimuli in the last two runs. All images 
were the same for all participants, and each image was assigned only 
to one specific condition.

Apparatus. The experiment was designed in the MATLAB v.2020b envi-
ronment using Psychtoolbox v.3 (ref. 80). The stimuli were presented 
on a 21.5-inch Dell P2217H monitor (1,920 × 1,080 pixel resolution, 
60 Hz refresh rate). The participants were seated 60 cm away from the 
screen and provided their responses using a keyboard.

Behavioural analyses
We followed the data analysis steps outlined in our preregistration. 
All analyses were performed in Python (v.3.10.11) using Google Colab 
(v.2.0). We first excluded participants who did not follow the speed/
accuracy instructions sufficiently well by not providing faster aver-
age RTs in the speed focus than in the accuracy focus condition. This 
resulted in removing two participants (out of 64). We preregistered the 
exclusion of participants with floor or ceiling effects on accuracy, but 
no participant met the criteria for exclusion. However, following our 
preregistration, we excluded two participants because they showed 
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ceiling effects for confidence. Note that our preregistration document 
called for excluding participants who provided average confidence 
of more than 3.7, but because this would have resulted in excluding a 
much larger number of participants than we had anticipated, we only 
excluded participants whose average confidence was above 3.85. There-
fore, 60 participants were used in all subsequent analyses.

We additionally excluded individual trials with extreme RT values 
using preregistered criteria based on Tukey’s interquartile criterion. 
Specifically, for each participant, we computed the 25th and 75th per-
centiles of the RT distributions in each condition. We then removed all 
RTs with values more than 1.5 times the interquartile range such that if 
Q1 is the RT value at the 25th percentile and Q3 is the RT value at the 75th 
percentile, we removed values smaller than Q1 − 1.5 × (Q3 − Q1) and larger 
than Q3 + 1.5 × (Q3 − Q1). This step resulted in removing an average of 
5.46% of the total trials (with a range of 1.35–8.22% for each participant).

Once these preprocessing steps were completed, we computed 
the average accuracy, RT, confidence and skewness of the RT distribu-
tions separately for each condition. The skewness was computed sepa-

rately for each individual participant’s RT distribution as ∑
N
i=1(xi−μ)

3

(N−1)σ3
, 

where μ and σ are the mean and standard deviation of the sample dis-
tribution, respectively. We also computed average RT and average 
confidence scores for error and correct trials across participants to 
examine how RT and confidence change as a function of response 
accuracy. Finally, for visualization purposes, we plotted RT distribu-
tions for one participant in Fig. 4c. The RT distributions were generated 
using kernel density estimation (KDE), which approximates the under-
lying probability density function that generated the data by smooth-
ing the observations with a Gaussian kernel81. The KDE plots were 
created using Seaborn’s KDE plot with a smoothing bandwidth of 1.2 
(ref. 82).

RTNet
Network architecture. The RTNet model consists of two main modules 
(Fig. 1a). The first module is a BNN, which makes predictions regarding 
an image. BNNs are a type of artificial neural network built by introduc-
ing stochastic components into the network to simulate multiple pos-
sible models with their associated probability distribution83. The main 
difference between a BNN and a standard feedforward neural network 
is that in a BNN the weights are distributions instead of point estimates. 
A random sample from these distributions results in a unique feedfor-
ward network. This random sampling enables variability in the output 
of the network, which in turn can be fed into an accumulation process 
that drives a decision. The second module of our model consists of 
exactly such accumulation of the evidence produced on each step by 
the first module. At each processing step, the output of the network 
(in the form of activations of the final layer) is accumulated towards a 
predefined threshold. Evidence for each choice option is accumulated 
separately from the rest, similar to a race model24.

The accumulation process continues until the total amount of 
accumulated evidence for one of the alternatives reaches a predefined 
threshold. The alternative for which the threshold was reached then 
becomes the response of the model. The RT produced by RTNet is sim-
ply the number of samples used to reach the decision threshold. The 
confidence of the model was obtained by taking the difference in evi-
dence scores between the chosen response and the second-best choice.

Implementation. We implemented RTNet using the AlexNet architec-
ture, which has eight layers with learnable parameters33. The AlexNet 
architecture consists of five convolutional layers with a combination 
of max pooling followed by three fully connected layers. We chose to 
implement RTNet within a relatively large-scale CNN such as AlexNet 
(rather than a shallow network, which may have also been able to learn 
to classify the MNIST dataset) because our goal was to eventually com-
pare our model to others such as CNet and MSDNet, which are generally 

based on larger CNNs and work on multiple existing datasets. Addition-
ally, difficulties associated with training BNNs limited us to relatively 
small network structures (rather than VGG or ResNet models). We 
found the AlexNet architecture to be a reasonable compromise in 
this trade-off between model complexity and ease of training BNNs. 
RTNet was implemented in PyTorch84, while the Bayesian networks 
were implemented using Pyro85, which is a probabilistic programming 
library built on PyTorch84.

Training the BNN module of RTNet. BNNs are probabilistic models 
that incorporate uncertainty into their weights and biases, rather than 
treating them as point estimates. Consider a training dataset, x, for 
which we must predict the class labels, y. In traditional neural networks, 
the predicted class label, ̂y, is a function of the network’s weights, w, 
and these weights are tuned to optimize the correspondence between 
the predicted ( ̂y) and true class labels (y). In BNNs, however, weights 
are modelled as probability distributions instead of point estimates. 
Following the rules of Bayesian inference, one can infer the posterior 
distribution of these weights (w) using the formula p(w|x) = p(w,x)

p(x)
.  

However, this computation is intractable for large networks since it 
involves computing the marginal likelihood of the data p(x) across all 
possible configurations of weights. Therefore, computing this poste-
rior distribution is typically done using a method of approximation 
called variational inference. A stand-in distribution, q(w), is specified 
to approximate the posterior, and its parameters are tuned to maximize 
the similarity between the two distributions. The similarity between 
the distributions is quantified by the information theoretical measure 
called Kullback–Liebler (KL) divergence:

KL[q(w)||p (w|x)] = Eq[logq (w) − logp (w, x)] + logp(x) (1)

Although KL[q(w)||p(w|x)] cannot be directly computed since p(x) is 
intractable, one can side-step this computation by defining a surrogate 
objective function called the evidence lower bound (ELBO) function as:

ELBO (q) = Eq[logp (w, x) − logq (w)] (2)

where both p(w, x) and q(w) are tractable, and due to their negative 
relationship, maximizing ELBO(q) thus results in the minimization 
of KL[q(w)||p(w|x)], allowing one to approximate the true posterior 
distribution of the network’s weights.

We trained the network to achieve classification accuracy higher 
than 97% on the MNIST test set. We trained the BNN module of RTNet 
for a total of 15 epochs with a batch size of 500. We used the ELBO loss 
function86 and Adam87 for optimization with a learning rate of 0.001, 
and the default values for weight decay and epsilon (weight decay, 0; 
ε = 10−8). To ensure that each BNN performs better than 97% on the 
MNIST test set, we followed a specific rule for each model instance. 
When testing an image with the BNN module of RTNet, we sampled 
ten times from the posterior distributions learned during training and 
thus obtained ten unique responses for each image. The response with 
the highest frequency among the ten responses was chosen as the final 
decision of the BNN module. Note that there were no RTs generated 
at this step since we only implemented the BNN module of RTNet and 
generated a set of responses that would allow us to evaluate how well 
the BNN’s posterior distributions had been trained. These trained BNN 
models were later used to generate variable activations for the evidence 
accumulation process that resulted in RTs.

We resized the MNIST images to the standard input size to the 
AlexNet model architecture (227 × 227 pixels). We also normalized 
the input images to have a mean of 0.1307 and a standard deviation 
of 0.3081, which is a standard procedure when using AlexNet for clas-
sification of the ImageNet dataset88. We trained 60 instances of RTNet 
using the above procedure but with different weight initializations for 
each network instance. We used a different combination of mean and 
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standard deviation values for each of the 60 instances to maximize 
differences in network initializations. Specifically, different network 
instances of RTNet were initialized such that all means of the weights 
and biases were set to a value between 0.1 and 1.2 with 0.1 increments, 
and all standard deviations of the weights and biases were set to a 
value ranging from 1 to 5 with increments of 1 (for a total of 12 × 5 = 60 
instances).

Generating RTNet’s responses from the evidence accumulation 
module. Sequential sampling models belong to a class of cognitive 
models that assume that observers make decisions by repeated sam-
pling and accumulation of noisy evidence until a threshold is reached1,2. 
In these models, RT reflects the number of sampling steps required to 
reach the threshold. RTNet utilizes this evidence accumulation mecha-
nism to generate RTs. To generate noisy evidence, we used the probabil-
ity distribution of weights in the BNNs to randomly sample one unique 
feedforward network at each time step. At each time step, t, the pre-
sented image results in a feedforward sweep of the sampled network 
and generates a set of activations (at) where at = [a1,t, a2,t…a8,t] are the 
values obtained in the last layer after the softmax function has been 
applied. Each unit in the output layer corresponds to the activation for 
one of the eight choice options, and for each choice, the evidence 
obtained at the current step is added to the sum of evidence collected 
from all previous steps. Thus, a running total of accumulated evidence 

is maintained such that ai =
n
∑
t=1

ai,t, where n refers to the total number 

of steps over which evidence has been accumulated and i ∈ [1,8] refers 
to the response option. When the total evidence in favour of any of the 
options exceeds a predefined threshold k, the corresponding response 
option is chosen such that the network’s response r = argmax(a1, a2…a8) 
at the time step when max(a1, a2…a8) ≥ k.

What are the properties of evidence accumulation? Everything 
else being equal, decisions that are based on fewer evidence samples 
are more likely to be influenced by chance fluctuations in evidence 
that favour incorrect decisions. However, when the model is allowed 
to accumulate evidence over a longer period, these random variations 
are more likely to cancel out, thus increasing the likelihood of a correct 
response. In turn, because a longer period of accumulation leads, on 
average, to stronger evidence, this directly results in higher confidence.

CNet
Network architecture. CNet builds on the architecture of residual 
networks (ResNet) by utilizing skip connections to introduce propaga-
tion delays during input processing (Fig. 1b). At each processing step, 
all units in all layers are updated parallelly. However, due to the propa-
gation delays introduced by each residual block, simpler perceptual 
features get transmitted faster across blocks. For instance, at the first 
time step, only the first residual block receives input, and model predic-
tions at this step are based only on the computations of the first residual 
block. At the second time step, all the other layers receive partial input 
from the first block. Even though the model prediction at this point 
will be based on computations from all blocks, only the first block will 
have received complete input and achieved stable output. The other 
blocks will only contain partial updates from the lower block, and 
therefore their output will not be stable. In general, a residual block, t, 
takes t − 1 time steps to receive complete and stable input. At any point 
during processing, the network can generate a prediction since all the 
residual blocks contribute to the computations. However, if the time 
step (t) is less than the number of residual blocks, the responses will be 
based on unstable representations in the higher blocks. Due to this 
architecture, the network’s responses are subject to a trade-off between 
speed and complexity of processing. Decision time is indicated by the 
processing step at which the decision was made, and decision confi-
dence is derived from the softmax value in the final layer, at the time 
of decision. The softmax values are obtained by transforming the 

activation scores (z) of all nodes in the output layer according to the 

function: ezi
∑n

j e
zj

, where i refers to the node whose output is being trans-

formed and n refers to the number of nodes in the output layer (which 
is equal to the number of classes).

Implementation. CNet was implemented using the architecture of 
ResNet-18 (ref. 9) since it requires networks with skip connections. 
ResNet-18 architecture consists of 17 convolutional layers, where 16 of 
these layers are embedded within eight residual blocks (skip connec-
tions), followed by a final fully connected layer with softmax activation 
to generate the decision. The network was implemented in PyTorch84.

Network training. We trained CNet using the same procedure that was 
used by the original authors since their training protocol was found 
to yield the best network behaviour and performance. The network 
achieved an accuracy of >97% with 12 training epochs and a batch 
size of 500. The models were trained on a temporal-difference learn-
ing procedure along with cross-entropy loss. In the original publica-
tion, temporal-difference learning was found to perform better than 
softmax-based cross-entropy loss in encouraging correct responses to 
emerge faster. The loss function was optimized using an initial learn-
ing rate of 0.01, a weight decay of 0.005 and a momentum of 0.9. The 
images were normalized to a mean of 0.1307 and a standard deviation 
of 0.3081. We trained 60 instances of CNet using the above procedure 
but using a different random seed for initializing the network’s weights 
to allow individual differences in the network’s learning.

BLNet
Network architecture. BLNet is an RCNN consisting of a standard 
feedforward CNN with recurrent connections that connect each layer 
to itself10 (Fig. 1c). A final readout layer computes the network’s output 
at each time step via a softmax function. Time steps are defined as the 
number of feedforward sweeps of the network that have occurred until 
the time at which the readout is evaluated. At each time step, a given 
layer receives input from two sources—the feedforward input from 
the previous convolutional layer and recurrent input from itself in the 
form of activations from the previous time step. The readout is evalu-
ated at each time step such that if it exceeds a predefined threshold, 
the network generates a response. The response corresponds to the 
choice that generates the highest softmax value, and the time step at 
which the response was made indicates the decision time. The softmax 
value associated with the choice at the time of decision indicates the 
decision confidence. The network’s ability to trade off speed and accu-
racy comes from the fact that higher softmax thresholds require more 
feedforward and recurrent computations, which effectively results in 
a deeper network being unrolled across time, which, in turn, leads to 
both higher RT and higher accuracy.

Implementation. BLNet was implemented as a custom-built network 
consisting of seven convolutional layers of increasing size and a final 
readout layer, as defined by the original authors10. Each layer consists 
of two sets of weights—the bottom-up weights that transform the input 
from the previous layer and the lateral weights that act on recurrent 
input that the layer receives from itself. The readout layer is a fully 
connected layer with softmax activation to generate the decision. 
The network was unrolled across time for eight time steps and was 
implemented using TensorFlow.

Network training. We were able to achieve a test accuracy of >97% 
with only three epochs with a batch size of 32 and a sparse categorical 
cross-entropy loss function89. Adam87 was used for optimization with 
a learning rate of 0.001. For testing, the response at the final time step 
was taken as the network’s decision. We resized the MNIST images to 
the standard input size of 128 × 128 pixels defined for the network. We 
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trained 60 instances of BLNet using the above procedure but using a 
different random seed for initializing the network’s weights to allow 
individual differences in the network’s learning.

Testing. Unlike the other networks, BLNet exhibited an overall accuracy 
that was about 5% greater for the 120 images used in the easy, speed 
focus condition than for the 120 images used in the easy, accuracy 
focus condition. This resulted in a lack of the expected accuracy differ-
ence between these two conditions when BLNet was run on all images  
(Supplementary Fig. 5). On further investigation, we found that for each 
condition, the image set contained a small subset of images for which 
the network showed chance-level performance (12.5%). The image set 
for the easy, accuracy focus condition contained more such images 
than the image set for the easy, speed focus condition, explaining the 
observed accuracy differences. Therefore, when testing BLNet on 
the effects reported in Fig. 4, we excluded this subset of images for all 
conditions (10 of 480 images). This exclusion led to BLNet showing the 
expected SAT (Fig. 4a,b).

MSDNet
Network architecture. MSDNet has an architecture similar to a stand-
ard feedforward neural network but with early-exit classifiers after each 
of its layers (Fig. 1d). At each output layer, the evidence for each choice 
is computed using a softmax function, and if the evidence for any 
alternative exceeds a predefined value, the network stops processing 
and immediately produces a response. The layer at which the response 
was made is indicative of the decision time, and the softmax value at 
that layer is indicative of the decision confidence13,89.

Implementation. We implemented MSDNet using the AlexNet architec-
ture, which has eight layers with learnable parameters33. The AlexNet 
architecture consists of five convolutional layers with a combination 
of max pooling followed by three fully connected layers. In addition to 
the standard AlexNet structure, we incorporated additional readout 
layers located right after each layer of processing. The feature map 
size of all these readout layers was set to the number of classes. The 
network was implemented in PyTorch84.

Network training. Due to MSDNet’s deterministic nature, only three 
epochs with a batch size of 500 were enough to achieve a test accuracy 
of more than 97% with the same batch size and a weighted cumulative 
loss function89. Adam87 was used for optimization with a learning rate 
of 0.001. For testing, the response of the last output layer was taken as 
the network’s decision. If a network did not achieve an accuracy greater 
than 97%, we started the training over with the same initial values. 
Since MSDNet is also built on the architecture of AlexNet, we resized 
the MNIST images to the standard input size for AlexNet and normal-
ized the images to have a mean of 0.1307 and a standard deviation of 
0.3081. To make the initializations of MSDNet as similar as possible to 
the initializations of RTNet, for each RTNet instance, we set the initial 
values for the weights and biases of the MSDNet instance by randomly 
sampling from the Gaussian distribution used in the corresponding 
RTNet initialization.

Choosing parameters that allow the models to mimic human 
accuracy
Because the goal of our study was to examine whether the models 
exhibit the signatures of human perceptual decision-making, we 
matched the accuracy of the models across the four experimental 
conditions to the average accuracy in the human data. For all models, 
this was achieved by adjusting the noise level in the images (separately 
for the easy and difficult images) and the threshold parameter (sepa-
rately for the speed and accuracy conditions). Lower noise levels lead 
to higher accuracy, whereas higher threshold parameters lead to longer 
processing and RTs (and contribute to higher accuracy levels).

The parameter values were adjusted using a coarse search fol-
lowed by a fine search. In the coarse search for RTNet, we varied the 
amplitude of uniform noise from 1 to 10 with increments of 1 (where 
the noise amplitude refers to the length of the interval over which the 
noise values are generated) and the threshold value from 2 to 12 with 
increments of 2. The results were closest to the human accuracy levels 
when the noise was in the range 2–3 for easy images and 4–5 for difficult 
images, and the threshold was set to 2–4 for the speed focus condition 
and 6–8 for the accuracy focus condition. We then conducted a fine 
search near those values by changing the noise level from 2 to 5 with 
0.1 increments and changing the threshold values from 2 to 8 with 
0.5 increments. The closest match to human accuracy was achieved 
for noise levels of 2.1 for easy images and 4.1 for difficult images, and 
threshold values of 3 for the speed condition and 6 for the accuracy 
condition. With these threshold and noise parameters, the evidence 
accumulation process in RTNet executed 6.5 sampling steps on average, 
although the distributions were wide such that the actual steps varied 
from 1 to 35. However, the number of processing steps depended on 
the experimental manipulation, with the number of steps increasing 
both for difficult images and with stress on accuracy over speed (the 
average number of steps observed for each condition corresponds to 
the height of the bars for RTNet in Fig. 4b).

We used a similar procedure to tune the parameters of CNet, 
BLNet and MSDNet. Note that the threshold value for CNet is the 
softmax evidence at the output layer. The coarse search was per-
formed using threshold values between 0.5 and 0.9 with increments 
of 0.04. The results were closest to the human accuracy levels when 
the threshold was in the range 0.79–0.83 for the speed focus condition 
and 0.86–0.9 for the accuracy focus condition. We then performed a 
fine search in these ranges by incrementing the threshold by steps of 
0.01. The closest match to human accuracy was achieved for a thresh-
old value of 0.83 for the speed condition and 0.9 for the accuracy 
condition. For noise levels, the best match to human accuracy was 
obtained when the noise levels were set to 1.42 for easy images and 
1.83 for difficult images.

For BLNet, like CNet, the threshold value is the softmax evidence 
at the output layer. The coarse search was performed using threshold 
values between 0.1 and 0.95 with increments of 0.2. The results were 
closest to the human accuracy levels when the threshold was in the 
range 0.4–0.5 for the speed focus condition and 0.9–0.95 for the accu-
racy focus condition. We then performed a fine search in these ranges 
by incrementing the threshold by steps of 0.05. The closest match to 
human accuracy was achieved for a threshold value of 0.4 for the speed 
condition and 0.95 for the accuracy condition. For noise levels, the best 
match to human accuracy was obtained when the noise levels were set 
to 0.55 for easy images and 1.2 for difficult images.

The threshold value for MSDNet is the softmax evidence at 
each early exit. The coarse search was performed using threshold 
values between 0.5 and 0.95 with increments of 0.05. The results 
were closest to the human accuracy levels when the threshold was 
in the range 0.55–0.65 for the speed focus condition and 0.8–0.9 
for the accuracy focus condition. We then performed a fine search 
in these ranges by incrementing the threshold by steps of 0.01. The 
closest match to human accuracy was achieved for a threshold value 
of 0.58 for the speed condition and 0.82 for the accuracy condition. 
For finding the optimal noise levels, the best match was obtained 
when the noise levels were set to 1.9 for easy images and 3.0 for 
difficult images.

Although we tried to closely match each network’s accuracy with 
that of humans for each condition, our ability to do this was limited 
by the fact that a given SAT threshold must predict accuracies for 
both the easy and difficult conditions and a given noise level must 
predict accuracies for both the SAT conditions. We therefore obtained 
parameter estimates that resulted in closely (but not exactly) matched 
accuracies.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The behavioural data have been made publicly available at https://
osf.io/akwty.

Code availability
All code and trained models are publicly available at https://osf.io/
akwty.
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Data collection The experiment was designed in MATLAB_2020b environment using Psychtoolbox 3. This study’s sample size, experiment design, variables, 
hypothesis, and planned analyses were pre-registered on Open Science Framework (https://osf.io/kmraq) prior to any data being collected.

Data analysis All data analyses were done in Python (version 3.10.11) using Google Colab (version 2.0). All the behavioral data, as well as the models and 
codes to generate the simulations are all available at https://osf.io/akwty. 
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Reporting on sex and gender Sixty-four subjects (31 females, age=18-32)

Reporting on race, ethnicity, or 
other socially relevant 
groupings

N/A

Population characteristics Data from 64 healthy participants was collected. Participants were undergraduate students of Georgia Tech, with 31 female 
subjects and the age range was 18-32 years.

Recruitment Participants were recruited through SONA Experiment Management System of School of Psychology at Georgia Tech. 
Participants voluntarily signed up for the study and were not individually selected by the experimenters. They were only 
excluded from participation if they did not have normal or corrected-to-normal vision.

Ethics oversight The protocol was approved by the Georgia Institute of Technology Institutional Review Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design
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Study description In this study, we develop a new neural network, RTNet, that generates stochastic decisions and human-like response time (RT) 
distributions, and also reproduces all foundational features of human accuracy, RT, and confidence. The study is a quantitative 
experimental study.

Research sample Sixty-four subjects (31 female, age=18-32) with normal or corrected to normal vision were recruited. We used convenience sampling 
and our final sample is likely to be representative of the college student population but not of the population as a whole. 

Sampling strategy We used convenience sampling because the goal of our study was to compare the human subjects behavioral data to model 
generated data. We didn't perform sample size calculation. We aimed to include a large number of participants with large number of 
trials per participant. For behavioral studies, we hypothesized that a sample size of 60 can allow us to reliably measure behavioral 
effects. This allowed us to have a good representation of data both in group level and individual level. 

Data collection The experiment was designed in MATLAB_2020b environment using Psychtoolbox_3 (Brainard 1997). The stimuli were presented on 
a 21.5-inch Dell P2217H monitor (1920 x 1080 pixel resolution, 60 Hz refresh rate). Subjects were seated 60 cm away from the screen 
and provided their responses using a keyboard. Two undergraduate research assistants helped the data collection but the 
participants completed the studies alone in the testing room. The study hypothesis was not blinded to the researcher and all 
participants were exposed to all experimental conditions. 

Timing The data collection started on February 1st, 2022 and completed on March 7, 2022.

Data exclusions We followed the data analyses steps outlined in our preregistration. We first excluded subjects who did not follow sufficiently well 
the speed/accuracy instructions by not providing faster average RT in the “speed focus” compared to the “accuracy focus” condition. 
This resulted in removing two subjects (out of 64). We preregistered the exclusion of subjects with floor or ceiling effects on accuracy 
but no subject met the criteria for exclusion. However, following our preregistration, we excluded two subjects because they showed 
ceiling effects for confidence. Note that our preregistration document called for excluding subjects who provided average confidence 
of more than 3.7 but because this would have resulted in excluding a much larger number of subjects than we had anticipated, we 
only excluded subjects whose average confidence was above 3.85. Therefore, 60 subjects were used in all subsequent analyses.

Non-participation No participant dropped out.

Randomization We only have one experimental group in our experiment. The order of stimulus presentation for each subject was pseudo-
randomized.
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Materials & experimental systems
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Plants

Methods
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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