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1.  INTRODUCTION

An enduring goal of cognitive neuroscience is to estab-

lish the relationship between brain and behavior. For 

example, studies have linked brain measures to healthy 

aging (Dosenbach et al., 2010; Geerligs et al., 2015), per-

sonality (Yarkoni, 2015), intelligence (Finn et  al., 2015; 

Heuvel et al., 2009), and mood (Smith et al., 2015). Addi-

tionally, there are considerable efforts to use brain mea-

sures for diagnosis (Arbabshirani et  al., 2013; Yahata 

et al., 2016), treatment selection (Williams et al., 2015), 
and prediction of patient outcomes in clinical settings 
(Whelan et al., 2014).

What is the right level at which to study the brain-
behavior relationship? It is increasingly evident that 
this relationship is a complex interplay between group-
level factors, which are shared among individuals,  
and individual-level factors that manifest as unique 
characteristics (Dubois & Adolphs, 2016; Gratton et al., 
2018; Nakuci, Yeon, Xue, et al., 2023). The discernible  
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variation in brain activity among individuals has long 
been recognized for its potential to reveal the intrica-
cies of the differences in behavior between individuals 
(Miller et al., 2012; van Horn et al., 2008). Understand-
ing how the individual differs from the group is critical 
since individual factors may be crucial for diagnosing 
and treating pathology (Gratton et al., 2020; Lebreton 
et  al., 2019). Consequently, it is imperative to under-
stand the complex individual factors shaping the 
brain's role in behavior.

Group-level analyses using both mass univariate 
statistics and multivariate pattern analysis with search-
light have been used to identify brain-behavior signa-
tures across the cortex (Friston et al., 1999; Kriegeskorte 
et  al., 2008). These analyses typically uncovered 
behavioral signatures within constrained sets of brain 
areas. However, in the presence of substantial individ-
ual variability, one may expect that many areas of the 
brain that are not predictive of behavior in the group 
may, nonetheless, predict behavior in certain individu-
als. Nevertheless, it remains unknown how widely 
across cortex one can decode behavioral signatures in 
individual subjects. However, the problem is partly sta-
tistical since one requires both a lot of power (e.g., 
high number of trials) within an individual and a large 
enough sample of individuals for individual differences 
to manifest.

Differences across individuals manifest themselves in 
multiple ways. Previous work has found differences in 
spatial organization among brain regions across individu-
als (Williams et al., 2015). Moreover, there are substantial 
differences in large-scale organization among individuals 
(Braga & Buckner, 2017; Dworetsky et  al., 2024). Cru-
cially, these differences, particularly in spatial organiza-
tion among individuals culminate in decoding across 
individuals being generally much poorer than within an 
individual (Haxby et al., 2011).

Here, we investigate the extent to which two behav-
ioral signatures—reaction time (RT) and confidence—can 
be decoded from across the cortex. Each subject (N = 50) 
completed 700 trials from a perceptual decision-making 
task—a number significantly surpassing standard prac-
tice. The high number of trials empowers us to robustly 
estimate the brain-behavior relationship within individu-
als. To anticipate, we find that when factoring in individual 
differences, RT and confidence can be decoded from 
brain activity across the cortex in stark contrast to group-
level analyses. We replicated these results in a second 
dataset where subjects (N = 36) completed 804 trials of a 
different perceptual decision-making task. These results 
demonstrate that behavior can be predicted from a wider 
set of brain areas than would be suggested by standard 
group analyses.

2.  METHODS

2.1.  Dataset 1 subjects and task

Dataset 1 has been previously published (Nakuci, Yeon, 
Xue, et al., 2023). All details can be found in the original 
publication. Briefly, subjects (N= 50; 25 females; mean 
age = 26; age range = 19–40) completed a task where 
they judged which set of colored dots (red vs. blue) is 
more frequent in a cloud of dots. The stimulus was pre-
sented for 500 ms and subjects made untimed decision 
and confidence decisions using separate button presses. 
Most subjects performed six runs of 128 trials (a total of 
768 trials). Three subjects completed only half of the sixth 
run and another three subjects completed only the first 
five runs due to time constraints. All subjects were 
screened for neurological disorders and MRI contraindi-
cations. The study was approved by Ulsan National Insti-
tute of Science and Technology Review Board, and all 
subjects gave written consent.

2.2.  Dataset 1 MRI recording

The MRI data were collected on a 64-channel head coil 
3T MRI system (Magnetom Prisma; Siemens). Whole-
brain functional data were acquired using a T2*-weighted 
multi-band accelerated imaging (FoV  =  200  mm; TR  = 
2,000 ms; TE = 35 ms; multiband acceleration factor = 3; 
in-plane acceleration factor = 2; 72 interleaved slices; flip 
angle  =  90°; voxel size  =  2.0  x  2.0  x  2.0  mm3). High-
resolution anatomical MP-RAGE data were acquired 
using T1-weighted imaging (FoV  =  256  mm; TR  = 
2,300 ms; TE = 2.28 ms; 192 slices; flip angle = 8°; voxel 
size = 1.0 x 1.0 x 1.0 mm3).

2.3.  Dataset 2 subjects and task

Dataset 2 has been previously published as Experiment 
2 in Yeon et al. (2020). All details can be found in the 
original publication. Briefly, subjects (N = 36, 23 females; 
mean age = 21.5; age range = 18–28) completed a task 
where they indicated whether a moving-dots stimulus 
had an overall coherent motion (always in downward 
direction) or not. The stimulus was presented for 500 ms, 
and subjects made an untimed decision immediately 
after the stimulus. All subjects completed 6 runs of 144 
trials (a total of 864 trials). In the first half of the experi-
ment (runs 1-3), subjects performed the task without 
providing confidence ratings. In the second half of the 
experiment (runs 4-6), subjects reported their confi-
dence level with a separate, untimed button press 
immediately after making their perceptual decision. All 
subjects were screened for neurological disorders and 
MRI contraindications. The study was approved by the 
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Georgia Tech Institutional Review Board, and all sub-
jects gave written consent.

2.4.  Dataset 2 MRI recording

The MRI data were collected on 3 T MRI systems using a 
32-channel head coil. Anatomical images were acquired 
using T1-weighted sequences with a MEMPRAGE 
sequence, FoV = 256 mm; TR = 2,530 ms; TE = 1.69 ms; 
176 slices; flip angle = 7˚; voxel size = 1.0 × 1.0 × 1.0 mm3. 
Functional images were acquired using T2*-weighted 
gradient echo-planar imaging sequences (FoV = 220 mm; 
TR = 1,200 ms; TE = 30 ms; 51 slices; flip angle = 65˚; 
voxel size = 2.5 × 2.5 × 2.5 mm3).

2.5.  MRI preprocessing

MRI data were preprocessed with SPM12 (Wellcome 
Department of Imaging Neuroscience, London, UK). All 
images were first converted from DICOM to NIFTI and 
removed the first three volumes to allow for scanner 
equilibration. We then preprocessed with the following 
steps: de-spiking, slice-timing correction, realignment, 
segmentation, coregistration, normalization, and spatial 
smoothing with 10 mm full width half maximum. Despik-
ing was done using the 3dDespike function in AFNI. The 
preprocessing of the T1-weighted structural images 
involved skull-removal, normalization into MNI anatomi-
cal standard space, and segmentation into gray matter, 
white matter, and cerebral spinal fluid, soft tissues, and 
air and background.

2.6.  Single-trial beta estimation

Single-trial beta responses were estimated with a general 
linear model (GLM) using GLMsingle, a Matlab toolbox 
for single-trial analyses (Prince et al., 2022). The hemody-
namic response function was estimated for each voxel, 
and nuisance regressors were estimated in the same 
manner as described in Allen et  al. (Allen et  al., 2022). 
Additionally, regressors for the global signal and for six 
motion parameters (three translation and three rotation) 
were included. The single-trial betas were estimated in 
three batches. In each batch, the betas for every third 
trial were estimated because the trials in our study were 
temporally close together. Also, trials that were within 
20 seconds from the end of run were removed due to the 
lack of sufficient length of signal from which to estimate 
the trial-specific hemodynamic response function. The 
beta estimates from GLMsingle have been validated in 
our previous work and the results are comparable to what 
standard GLM analyses is SPM12 (Nakuci, Yeon, Kim, 
et  al., 2023). Further, to reduce any differences in the 

modeling training and fitting that might arise from differ-
ence in the number of trials between subjects, when pos-
sible, we opted for a uniform number of trials per subject. 
In total, the analysis was based on 700 trials for Dataset 
1 and 804 trials for Dataset 2; for subjects who had more 
trials than these, we simply removed trials from the end 
of the experiment. (Note that six subjects in Dataset 1 
and two subjects in Dataset 2 had fewer total trials 
because they did not complete all six runs.)

2.7.  Subject-level brain-behavior decoding analysis

For each trial, the activation within each of the 200 
regions of interest (ROIs) from the Schaefer atlas was 
estimated by averaging all voxel in the ROI (Schaefer 
et  al., 2018). Individual trials were randomly separated 
into training and testing bins each containing 350 trials in 
Dataset 1 and 402 trials in Dataset 2. (For the confidence 
analyses in Dataset 2, the training was done on 301 trials 
and testing on the remaining 101 trials.) For each ROI, a 
linear model was trained on training bin and used to pre-
dict behavioral performance on the testing bin. The linear 
model was trained using fitlm.m in Matlab. Additionally, 
we utilized a more advanced model based on Support 
Vector Regression (SVR) to determine if decoding could 
be improved when compared to the simple linear model. 
The SVR model was trained using fitrsvm.m in Matlab 
with default parameters.

Decoding performance for a given ROI was deter-
mined by correlating the empirical and predicted RT and 
confidence. The analysis was repeated 25x to ensure that 
model performance was not dependent on the initial divi-
sion of trials. The decoding performance values in each 
of the 25 iterations were first z-scored using the Fisher 
transformation and then averaged and converted back to 
r-values. Significance was determined by converting 
r-values to t-values.

Decoding analysis was conducted for each individual 
subject separately and compared to a permuted null 
model. A brain region was deemed to significantly decode 
behavioral performance if the correlation between pre-
dicted and empirical RT or confidence exceeded a null 
model based on permutating RT or confidence 1000x at 
P < 0.05, uncorrected for multiple comparison (P

uncor).
However, when conducting an analysis at the individ-

ual level, multiple comparisons is a particularly acute 
issue because comparisons are performed independently 
across many subjects (50 in Experiment 1 and 36 in 
Experiment 2) and across 200 regions within a subject. 
Therefore, a multiple comparison correction is needed. In 
Dataset 1, subject-level decoding performance was eval-
uated at P < 0.05 uncorrected and with three Bonferroni 
multiple comparison corrections of 50 tests (equal to the 
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number of subjects), 200 tests (equal to the number of 
ROIs), and 10,000 tests (the number of subjects times the 
number of ROIs). Similarly, in Dataset 2, subject-level 
decoding performance was evaluated at P < 0.05 uncor-
rected and with three Bonferroni multiple comparison 
corrections of 36 tests (equal to the number of subjects), 
200 tests (equal to the number of ROIs), and 7,200 tests 
(the number of subjects times the number of ROIs).

2.8.  Group-level brain-behavior decoding analysis

Group-level decoding performance was estimated by 
averaging the individual subject decoding performance 
for each ROI. Group-level decoding was Bonferroni cor-
rected for 200 tests (equal to the number of ROIs).

2.9.  Decoding performance and trial number

We developed a test to determine how many trials are 
needed to obtain robust individual-level brain-behavior 
relationships. The test relies on estimating decoding per-
formance on a range of trials in training and testing bins. 
Specifically, for each subject, a whole-brain multilinear 
regression model was trained on a subset of trials that 
ranged from 5% to 95% of trials and tested on the 
remaining trials. The multilinear regression model was 
repeated 25 times training on different subset of data. 
Decoding performance was estimated by averaging 
across the 25 iterations, and decoding performance vari-
ance was estimated by calculating the standard deviation 
across the 25 iterations.

3.  RESULTS

3.1.  Analytical framework for behavior decoding

We investigated the brain-behavior relationship in two 
perceptual decision-making datasets. In the first dataset, 
each subject (N = 50) completed over 700 trials of a per-
ceptual task with confidence. In the second dataset 
(N = 36), each subject completed 804 trials but only half 
of the trials included confidence ratings. We recorded 
subjects’ reaction time (RT) and confidence and investi-
gated how well they can be decoded from different parts 
of the brain. We utilized a recently developed method, 
GLMsingle, to estimate the voxel-wise activation on a 
given trial (i.e., single-trial beta) (Prince et al., 2022). For 
each subject, we performed the decoding analysis on the 
average activation within each of the 200 regions of inter-
est (ROIs) from the Schaefer atlas (Schaefer et al., 2018). 
Specifically, for each trial, we averaged the beta values 
from all voxels within a brain region to obtain a single 
beta value for each ROI. Individual trials were then ran-

domly separated into training and testing bins (Fig. 1A). A 
prediction model was trained on half of the trials (Fig. 1B, 
left) and used to predict behavioral performance on the 
remaining trials from the activation (beta values) sepa-
rately for each ROI (Fig.  1B, middle). Decoding perfor-
mance for a given ROI and subject was determined by 
correlating the empirical and predicted RT and confi-
dence (Fig. 1B, right). The analysis was repeated 25x to 
ensure that model performance did not depend on the 
initial trial split (Fig. 1C).

3.2.  Robust decoding performance requires several 
hundred trials per subject

Our Datasets 1 and 2 included 700 and 804 trials per 
subject, respectively. We first investigated how the 
number of trials used for training and testing affects 
decoding performance. We develop a simple test to 
determine how many trials are needed to obtain robust 
individual-level decoding.

The test relies on estimating decoding performance 
using a range of trials for both training and testing. For 
robustness, we used the data from all 200 ROIs to decode 
both RT and confidence. We trained a linear regression 
model on subsets of trials that ranged from 5% to 95% of 
all trials and tested on the remaining trials. For each per-
centage of trials used, we randomly selected trials for 
training and testing 25 times. We then computed both the 
average decoding performance across the 25 iterations 
and the variance in decoding performance. We then 
determined the percentage of trials that should be 
devoted to training the decoding model to minimize the 
variance in the decoding performance.

For Dataset 1, minimum decoding variance was 
obtained when training/testing each contained 350 of tri-
als (50% of trials) for both RT (Fig. 2A) and confidence 
(Fig. 2B), while average decoding performance increased 
with higher number of training trials. Critically, using fewer 
than 350 trials for training exhibited poor decoding per-
formance. On the other hand, using more than 350 trials 
for training improved performance, but the variance in 
performance increased across iterations. The maximum 
difference between decoding performance and variance 
was obtained when training was performed on 525 trials 
(75% of all trials). We found similar results for Dataset 2. 
Minimum decoding variance was obtained when training 
contained 402 trials (50% of trials) for RT (Fig. 2C) and 
301 trials (75% of trials) for confidence (Fig.  2D), while 
decoding performance increased with higher number of 
training trials. These results suggest that a 50:50 split 
between training and testing bins might produce more 
consistent results compared to 80:20 or 90:10 (5- or 10-
fold) division of trials between training and testing bins. 
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Fig. 1.  Analytical framework for behavior decoding analysis. (A) For each brain region, individual trials were randomly 
separated into training (red) and testing (green) bins. (B) The trials in the training bin were used to train a prediction model 
(left). The model was used to predict the behavioral performance of the trials in the testing bin using the observed brain 
activation (middle). Model performance was estimated using the Pearson correlation between the empirical and predicted 
behavioral performance (right). (C) The analysis was repeated 25x to ensure that model performance was robust and did 
not depend on the initial trial split.

Fig. 2.  Robust decoding of RT and confidence requires several hundred trials. In Dataset 1, the variance in decoding 
performance was minimized when using 350 trials (corresponding to 50% of all trials) for both (A) RT and (B) 
confidence. The black dots present the average decoding performance across subject after 25 repeats for each subject 
(left axis). The red dots present the average subject-level decoding variance across the 25 repeats for each subject 
(right axis). The green boxes indicate the number of trials that minimize the variance in the decoding performance. 
The orange boxes indicate the number of trials that maximize the difference between decoding performance and 
the decoding variance. Error bars show SEM. (C-D) Same as Panels A-B but for Dataset 2. Note that in Dataset 2, 
confidence was measured on only half the trials (402) and correspondingly the decoding variance was minimized for a 
higher percentage of trials (75%).
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Fig. 3.  Group-level RT and confidence decoding in Dataset 1. Brain regions from which (A) RT and (B) confidence 
could be significantly decoded from at the group level after correcting for 200 comparisons. (C, D) Same as panel A and 
B, but using support vector regression (SVR) model to decode RT and confidence, respectively. * Indicates brain region 
that significantly, P < 0.05, Bonferroni corrected. FPN, Frontal Parietal Network; DMN, Default Mode Network; DAN, 
Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral Attention Network; SOM, Somatomotor Network; VIS, 
Visual Network.

All subsequent analyses are based on 50:50 split between 
training and testing bins which exhibited the optimal per-
formance while minimizing the variance across iterations 
compared to other division ratios. Additionally, we 
repeated the analysis using a fixed number of trials during 
testing, 35 (5%), to equate performance across the differ-
ent training sets. The result indicated that decreasing the 
number of trials used in training increased the decoding 
variance across iterations (Fig.  S1). Importantly, these 
results suggest the need of several hundred trials to 
robustly train a decoding model for RT or confidence, 
implying that many previous studies estimating brain-
behavior relationship at the level of the individual may be 
underpowered.

3.3.  RT and confidence can be predicted  
from across the brain

Having examined how the number of trials used for train-
ing and testing affects decoding performance, we pro-
ceeded to investigate how widely across the brain we 
can decode RT and confidence. We first performed 
group-level analyses to decode RT across all subjects for 
each of the 200 ROIs. To identify brain regions from which 
RT and confidence could be significantly decoded at the 
group level, the decoding performance values across 

individual subjects were aggregated and tested against 
zero. We found that RT could be significantly decoded in 
12.0% of all ROIs after correcting for multiple compari-
sons (P  <  0.05, Bonferroni-corrected, one-tailed one 
sample t-tests; Fig. 3A). These standard group-level anal-
yses appear to suggest that RT can be decoded from 
only a handful of ROIs in the brain and that the rest of the 
ROIs cannot be used for decoding RT. We found similar 
results when we attempted to decode confidence instead 
of RT. At the group level, confidence could be decoded 
from only 3.5% of ROIs after correcting for 200 compari-
sons (one for each ROI; Fig. 3B). Moreover, we repeated 
our analysis using support vector regression model (SVR) 
and found similar results for both RT (Fig. 3C) and confi-
dence (Fig. 3D), suggesting that more advanced models 
may only marginally improve decoding. The analyses 
focus on the results obtained with the linear model 
because of challenges associated with interpreting beta 
values from non-linear decoding models (Kriegeskorte 
et al., 2008).

Critically, we asked whether this conclusion holds on 
the level of the individual subject. To address this ques-
tion, we determined for how many ROIs there was at 
least one subject for whom RT could be decoded. We 
found that with no correction for multiple comparisons, 
decoding was significant for at least one subject in every 
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single one of the 200 ROIs (Fig. 4A-B). Moreover, decod-
ing performance at the individual level exceeded group-
level performance. Additionally, as can be observed, 
there was substantial individual variability in decoding 
capabilities of ROIs across subjects (Fig. 4B).

Next, we examined the decoding accuracy for each 
ROI separately and applied Bonferroni correction for the 

presence of 50 tests (equal to the number of subjects). 
We found that RT could be significantly decoded in at 
least one subject from 90% of all ROIs (180 of 200; 
Fig. 4C). These ROIs spanned all seven major brain net-
works associated with the Schaefer atlas. Further, when 
using a more stringent Bonferroni correction for 200 tests 
(equal to the number of ROIs), RT could be significantly 

Fig. 4.  RT can be predicted from across the brain in Dataset 1. (A) Brain regions from which RT could be significantly 
decoded in each subject and region of interest. Significance is shown at four levels of correction: without any correction 
(Puncor), and after correcting for 50 (P50), 200 (P200), and 10,000 (P10K) comparisons. NS, not significant. Colors indicate 
the most conservative threshold at which one can significantly decode RT from a given region (see color legend on the 
right). (B) Decoding performance for which subject and brain region. Performance was estimated using the Pearson 
correlation between empirical and predicted RT. (C) Percentage of ROIs where RT could be significantly decoded 
for at least one subject for four levels of multiple comparison correction. Group-level results have been added for 
comparison. (D) Percentage of ROIs per subject where RT could be significantly decoded at four levels of multiple 
comparison correction. (E) Brain maps plotting percentage of subjects for whom RT could be significantly decoded for 
four levels of multiple comparison correction. (F) Brain maps plotting ROIs for which RT could be significantly decoded 
at the group level after multiple comparison correction. FPN, Frontal Parietal Network; DMN, Default Mode Network; 
DAN, Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral Attention Network; SOM, Somatomotor Network; 
VIS, Visual Network.
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decoded in at least one subject from 78.5% of all ROIs 
(157 of 200; Fig. 4C). Even with the most stringent Bon-
ferroni correction for 10,000 tests (the number of sub-
jects times the number of ROIs), RT could be significantly 
decoded in at least one subject from 50.5% of all ROIs 
(101 of 200, Fig.  4C). (Note, we show all four levels of 
correction because there is no “right” level of correction, 
and no level of correction communicates all relevant 
information.)

Importantly, even though most ROIs permitted the 
decoding of RT in at least one subject, this decoding was 
only significant in a few subjects per ROI. Specifically, the 
average ROI could be used to decode RT in 20.2% with-
out multiple comparison correction, and in 6.6, 4.5, and 
1.9% of subjects after correcting for 50, 200, and 10,000 
comparisons (Fig. 4D). In all four cases, the most predic-
tive ROIs were interspersed across much of the cortical 
surface compared to the group-level which was limited to 
a subset of regions (Fig. 4E-F). These results suggest the 
presence of strong individual differences, such that each 
ROI is only predictive of RT in a handful of subjects.

We found similar results when we attempted to 
decode confidence. Nevertheless, at the individual level, 
many more ROIs could be used to significantly decode 
confidence in at least one subject. Specifically, confi-
dence could be decoded in 99.5% of all ROIs without 
multiple comparison correction, and in 72.5, 59.5, and 
26.5% of ROIs after correcting for 50, 200, and 10,000 
comparisons (Fig. 5). Note that confidence was overall 
less decodable than RT. Overall, the decoding results 
demonstrate that RT and confidence can be decoded 
from across the cortex when individual differences are 
considered.

3.4.  Opposite brain-behavior relationship among 
subjects for the same brain region

Critically, for many ROIs, the relationship between brain 
activity and both RT and confidence often went in the 
opposite direction for different subjects. For example, 
one set of subjects would exhibit higher RT or confidence 
with higher ROI activation, whereas a different set of sub-
jects would exhibit lower RT or confidence with higher 
ROI activation (Fig. 6A-B). Indeed, we found that without 
multiple comparison corrections, high brain activity pre-
dicted higher RT in at least one subject and lower RT in at 
least one subject in 67.0% of all ROIs (Fig. 6C). This per-
centage decreased to 16.5, 8.0, and 1.0% after correct-
ing for 50, 200, and 10,000 comparisons, respectively. 
Interestingly, the dorsal attention network contained the 
most regions with opposite relationship between brain 
activity and RT among subjects, with the default mode 
and visual networks as close second and third, respec-

tively (Fig.  6D). We found similar results for confidence 
with 75.5% of all ROIs showing significant decoding in 
different direction for at least two subjects, and 15.0, 7.5, 
and 0% after correcting for 50, 200, and 10,000 compar-
isons, respectively (Fig. 6E-G). The ROIs from which RT 
and confidence could be decoded at the group level were 
the ROIs from which behavioral performance could be 
decoded in most subjects. These ROIs exhibited oppo-
site brain-behavior relationship in 69.56% of subjects in 
RT and in 85.71% of subjects in confidence. Further, the 
default mode network contained the most regions with 
opposite relationship between brain activity and confi-
dence among subjects (Fig. 6H). In contrast to the find-
ings for RT that lacked large clusters where decoding 
was consistently in the same direction, we found that a 
subset of ROIs associated with somatomotor network 
exhibited consistent relationship between brain activity 
and confidence across subjects. Except for this relatively 
small cluster, our results demonstrate that the relation-
ship between brain activity and behavioral outcomes is 
not universal and that it frequently goes in opposite direc-
tions for different subjects.

3.5.  RT and confidence can be decoded  
from across the brain in Dataset 2

We replicated these results in a second dataset where 
subjects completed a different perceptual decision-
making task with confidence (Yeon et al., 2020). Subjects 
(N  =  36) completed 804 trials but only half of them 
included confidence ratings, thus substantially decreas-
ing the power for the confidence analyses.

Similar to Dataset 1, we found that at the group level, 
RT could be significantly decoded in 13.0% of all ROIs 
after correcting for 200 comparisons in the linear model 
(P  <  0.05, Bonferroni-corrected, one-tailed one-sample 
t-tests; Fig. 7A). Crucially, we determined for how many 
ROIs there was at least one subject for whom RT could 
be decoded. At the individual level, RT could be decoded 
in 100% of all ROIs without multiple comparison correc-
tion, and in 87.0, 72, and 43.5% of ROIs after correcting 
for 36 (number of subjects), 200 (number of ROIs), and 
7,200 (subjects times ROIs) comparisons (Fig. 8). Given 
the lower number of trials that contained confidence, we 
found that with the linear model, confidence could be 
significantly decoded in only 1.5% of all ROIs at the 
group level after correcting for multiple comparisons 
(P  <  0.05, Bonferroni-corrected, one-tailed one-sample 
t-tests; Fig.  7B). Additionally, comparable results were 
obtained when using the SVR model for both RT and 
confidence (Fig. 7C and D). Despite the lower power, at the 
individual level, confidence could still be decoded in 76.5 
% of all ROIs without multiple comparison correction, 
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and in 47.0, 32.5, and 22.5% of ROIs after correcting for 
36, 200, and 7,200 comparisons (Fig. 9). Overall, the results 
from Dataset 2 further support the notion that both the 
RT and confidence can be decoded from across the cor-
tex when individual differences are considered.

3.6.  Opposite brain-behavior relationship among 

subjects for the same brain region in Dataset 2

In Dataset 1, we found that for many ROIs, the relation-

ship between brain activity and both RT and confidence 

Fig. 5.  Confidence can be predicted from across the brain in Dataset 1. (A) Brain regions from which confidence could 
be significantly decoded in each subject and region of interest. Significance is shown at four levels of correction: without 
any correction (Puncor), and after correcting for 50 (P50), 200 (P200), and 10,000 (P10K) comparisons. NS, not significant. Colors 
indicate the most conservative threshold at which one can significantly decode confidence from a given region (see color 
legend on the right). (B) Decoding performance for which subject and brain region. Performance was estimated using 
the Pearson correlation between empirical and predicted confidence. (C) Percentage of ROIs where confidence could be 
significantly decoded for at least one subject for four levels of multiple comparison correction. Group-level results have 
been added for comparison. (D) Percentage of ROIs per subject where confidence could be significantly decoded at four 
levels of multiple comparison correction. (E) Brain maps plotting percentage of subjects for whom confidence could be 
significantly decoded for four levels of multiple comparison correction. (F) Brain maps plotting ROIs for which confidence 
could be significantly decoded at the group level after multiple comparisons correction. FPN, Frontal Parietal Network; 
DMN, Default Mode Network; DAN, Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral Attention Network; 
SOM, Somatomotor Network; VIS, Visual Network.
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often went in the opposite direction for different subjects. 
Here, we show that the same effects also occur in Data-
set 2. Similar to Dataset 1, we found that without multiple 
comparison corrections, high brain activity predicted 
higher RT in at least one subject and lower RT in at least 
one subject in 50.0% of all ROIs and 16.5, 6.5, and 0.5% 
after correcting for 36, 200, and 7,200 comparisons, 
respectively (Fig. 10A-D). Reflecting the lower number of 
trials per subject, confidence showed weaker effects with 

12.0% of all ROIs showing significant decoding in differ-
ent direction for at least two subjects, and 3.0, 1.5, and 
0% after correcting for 36, 200, and 7,200 comparisons, 
respectively (Fig.  10E-H). Interestingly, differences 
emerged between Datasets 1 and 2 when comparing 
which network contained the most regions with opposite 
relationship between brain activity. These results demon-
strate that the relationship between brain activity and 
behavioral outcomes is not universal, and that this oppo-

Fig. 6.  Opposite relationship between brain activity and both RT and confidence among subjects for the same brain region 
in Dataset 1. (A) Beta values for each subject and region of interest. Red and blue dots reflect subjects for whom RT could be 
significantly decoded from a given ROI (P < 0.05, uncorrected for multiple comparison). Gray dots show subjects for whom 
RT could not be significantly decoded from a given ROI. (B) Brain maps showing the ROIs that contained at least one subject 
with both positive and negative beta values for RT. Significance is shown at four levels of correction: without any correction 
(Puncor), and after correcting for 50 (P50), 200 (P200), and 10,000 (P10K) comparisons. (C) Percentage of ROIs that contained 
at least one subject with both positive and negative beta values for RT for each for four levels of multiple comparison 
correction. (D) Percentage of ROIs within each brain network that that contained at least one subject with both positive and 
negative beta values for RT after correcting for 50 comparisons. (E-H) Same as Panels A-D but for confidence.
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site relationship is not limited to a specific set of regions 
but instead depends on the individual subject.

3.7.  No relationship between decoding 
performance and frame displacement

To confirm that these results were not due to motion arti-
facts, we determined if there was an association between 
decoding performance and frame displacement (FD). We 
performed a regression analysis where average FD for a 
subject was used to predict average decoding perfor-
mance for that subject. We found no significant associa-
tion between FD and decoding performance in either 
Dataset 1 (RT: R2  =  0.02, P  =  0.34; Conf: R2  =  0.002, 
P = 0.72; Fig. S2A-B) or Dataset 2 (RT: R2 = 0.05, P = 0.20; 
Conf: R2 = 0.04, P = 0.22; Fig. S2C-D). These results sug-
gest that decoding performance was not driven by 
motion artifacts.

4.  DISCUSSION

Traditionally, the brain-behavior relationship has been 
examined at the group level to identify the commonalities 
among individuals. Group-level analyses have typically 
associated behavioral signatures within a constrained set 
of brain areas. Here, in contrast to the traditional 
approach, we focus on the brain-behavior relationship 
within an individual. We tested how well trial-level RT and 

confidence can be decoded from the activation in each of 
the 200 cortical regions of interest obtained using the 
Schaefer atlas. We showed that RT and confidence can 
be significantly decoded for at least one subject from 
brain activity across most of the cortex. Additionally, we 
were still able to identify differences in the brain-behavior 
relationship among individuals even with the strictest 
multiple comparison corrections, indicating that these 
differences were robust and persistent across individu-
als. These results demonstrate that behavior can be pre-
dicted from a wider set of brain areas than would be 
suggested by standard group analyses.

These findings indicate that individual variability is a 
major factor in the ability to decode behavioral signa-
tures. In fact, we found that most brain regions could pre-
dict RT and confidence in only a small percentage of 
subjects. Therefore, individual-level analyses might be 
more sensitive since group-level analyses aggregate over 
the large degree of within-subject variability (Fisher et al., 
2018; Lebreton et al., 2019).

How meaningful is it to find that an ROI predicts 
behavior in only a small percentage of subjects? For 
example, one may only be interested in finding brain 
regions for which behavior can be decoded in most par-
ticipants. However, the question whether a brain area can 
predict behavior in at least one subject versus whether it 
does so in the majority of subjects are simply different. 
The latter is concerned with what is common across  

Fig. 7.  Group-level RT and confidence decoding in Dataset 2. Brain regions from which RT could be decode from using 
(A) linear and (B) support vector regression (SVR) model at the group level after correcting for 200 comparisons. (C, D) 
same as plane A and B, but for confidence. * Indicates brain region that significantly, P < 0.05, Bonferroni corrected. FPN, 
Frontal Parietal Network; DMN, Default Mode Network; DAN, Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral 
Attention Network; SOM, Somatomotor Network; VIS, Visual Network.
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subjects. This is traditionally the goal of the majority of 
cognitive neuroscience. While this is an important goal, 
here we focus specifically on individual differences. In 
other words, we want to ask how some subjects may dif-
fer in meaningful ways from the group. To answer this 
type of question, one cannot use the traditional approach 

of looking at the group data. Instead, the idea is that 
robust decoding in an ROI for even one subject is some-
thing that is interesting and meaningful, even if the ROI 
cannot be used for decoding in any other subject.

A natural question that might arise is whether these 
individual differences would disappear if the analysis 

Fig. 8.  RT can be decoded from across the brain in Dataset 2. (A) Brain regions from which RT could be significantly 
decoded in each subject and region of interest. Significance is shown at four levels of correction: without any correction 
(Puncor), and after correcting for 36 (P36), 200 (P200), and 7,200 (P7.2 K) comparisons. NS, not significant. Colors indicate the 
most conservative threshold at which one can significantly decode RT from a given region (see color legend on the right). 
(B) Decoding performance for which subject and brain region. Performance was estimated using the Pearson correlation 
between empirical and predicted RT. (C) Percentage of ROIs where RT could be significantly decoded for at least one 
subject for four levels of multiple comparison correction. Group-level results have been added for comparison. (D) 
Percentage of ROIs per subject where RT could be significantly decoded at four levels of multiple comparison correction. 
(E) Brain maps plotting percentage of subjects for whom RT could be significantly decoded for four levels of multiple 
comparison correction. (F) Brain maps plotting ROIs for which RT could be significantly decoded at the group level after 
multiple comparison correction. FPN, Frontal Parietal Network; DMN, Default Mode Network; DAN, Dorsal Attention 
Network; LIM, Limbic Network; VAN, Ventral Attention Network; SOM, Somatomotor Network; VIS, Visual Network.
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used subject-specific parcellation (Kong et al., 2021). As 
observed in Kong et al., using subject-specific parcella-
tion can improve brain-behavior decoding. However, in 
their study, subject-specific parcellation only marginally 
improved group-level decoding, suggesting that the low 

decoding values do not simply reflect parcellation differ-
ences between subjects.

Individual variability in brain-behavior relationship may 
have many sources. Such variation could emerge from 
functional degeneracy, the ability of different brain regions 

Fig. 9.  Confidence can be decoded from across the brain in Dataset 2. (A) Brain regions from which confidence could 
be significantly decoded in each subject and region of interest. Significance is shown at four levels of correction: without 
any correction (Puncor), and after correcting for 36 (P36), 200 (P200), and 7,200 (P7.2 K) comparisons. NS, not significant. Colors 
indicate the most conservative threshold at which one can significantly decode confidence from a given region (see color 
legend on the right). (B) Decoding performance for which subject and brain region. Performance was estimated using 
the Pearson correlation between empirical and predicted confidence. (C) Percentage of ROIs where confidence could be 
significantly decoded for at least one subject for four levels of multiple comparison correction. Group-level results have 
been added for comparison. (D) Percentage of ROIs per subject where confidence could be significantly decoded at four 
levels of multiple comparison correction. (E) Brain maps plotting percentage of subjects for whom confidence could be 
significantly decoded for four levels of multiple comparison correction. (F) Brain maps plotting ROIs for which confidence 
could be significantly decoded at the group level after multiple comparison correction. FPN, Frontal Parietal Network; 
DMN, Default Mode Network; DAN, Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral Attention Network; 
SOM, Somatomotor Network; VIS, Visual Network.
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to perform the same computation (Price & Friston, 2002; 
Sajid et al., 2020; Tononi et al., 1999). Functional degen-
eracy could arise from differences in structural connectiv-
ity among individuals (Bansal et al., 2018; Muldoon et al., 
2016), since structural connectivity has been associated 
with differences in behavioral performance (Kanai & Rees, 
2011).

Despite the heterogeneity among individuals, a few 
brain regions showed relatively high consistency across 
subjects. The lateral frontal cortex and the visual cortex 
were the most consistent regions from which RT could be 
decoded. Similarly, for confidence, the somatomotor 
system was the most consistent area across subjects 
from which confidence could be decoded, suggesting an 

Fig. 10.  Opposite relationship between brain activity and both RT and confidence among subjects for the same brain region 
in Dataset 2. (A) Beta values for each subject and region of interest. Red and blue dots reflect subjects for whom RT could be 
significantly decoded from a given ROI (P < 0.05, uncorrected for multiple comparison). Gray dots show subjects for whom 
RT could not be significantly decoded from a given ROI. (B) Brain maps showing the ROIs that contained at least one subject 
with both positive and negative beta values for RT. Significance is shown at four levels of correction: without any correction 
(Puncor), and after correcting for 36 (P36), 200 (P200), and 7,200 (P7.2 K) comparisons. (C) Percentage of ROIs that contained 
at least one subject with both positive and negative beta values for RT for each for four levels of multiple comparison 
correction. (D) Percentage of ROIs within each brain network that that contained at least one subject with both positive and 
negative beta values for RT after correcting for 50 comparisons. (E-H) Same as Panels A-D but for confidence.
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association between action-related brain signals and 
confidence (Fleming et al., 2015; Kiani & Shadlen, 2009).

In a seminal paper, Marek et al. (2022) showed that 
thousands of subjects are required to robustly estimate 
the brain-behavior relationship. Even if a brain region 
can be used to decode behavioral performance, the 
underlying relationship may not be consistent across 
subjects underscoring the role of individual differences 
and the limitation of group-level analyses. Our results 
suggest that beyond the number of subjects, an argu-
ably even more important factor for brain-behavior rela-
tionships is the high degree of between-subject 
variability. Specifically, if one brain-region is predictive 
of behavior in one direction in some people but in the 
opposite direction in others, then no matter how many 
people a model is trained on, it will always fail to capture 
many of the individual subjects. It has been suggested 
that beta values cannot be interpreted particularly from 
non-linear decoding models using multiple voxels 
because the beta-values may indicate reduction in noise 
(Kriegeskorte et al., 2008). This may well be true in some 
cases, but in the cases where opposite beta values are 
meaningfully different between individuals, individual 
variability becomes a crucial limitation in our under-
standing of how behavior arises from brain activity. Spe-
cifically, most brain-behavior computational models 
assume that there is a uniform relationship between a 
given region and behavior across all individuals, but this 
may simply not be true. Instead, we may need to build 
models that are more flexible and can account for oppo-
site beta values for different subjects.

Finally, we developed a simple test that future studies 
can use to determine the optimal number of trials in the 
training and testing bins. This is a crucial step in all 
decoding analyses, but one that has received little atten-
tion. The test relies on training the model on a subset of 
trials that ranges from 5 to 95% of all trials, with testing 
performed on the remaining trials. In the context of the 
current study, we found that several hundred (~300) trials 
per person are needed to robustly decode the brain-
behavior relationship at the individual level. These results 
suggest that many previous studies estimating brain-
behavior relationship at the individual level may be under-
powered. We suggest that the optimal number of trials 
used in training a decoding model could be based on: (1) 
minimizing the variance in the decoding performance; or 
(2) maximizing the difference between decoding perfor-
mance and the variance in the performance. In the cur-
rent study, we opted to minimize the variance in the 
decoding performance even though it came at the cost of 
a lower decoding performance.

In conclusion, our findings show that behavioral sig-
natures can be decoded from a much broader range  

of cortical areas than previously recognized. These 
results highlight that studying the brain-behavior rela-
tionship should be studied at both the group and the 
individual level.
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