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Abstract 28 

Meaningful variation in internal states that impacts cognition and behavior remains challenging 29 

to discover and characterize. Here we leveraged trial-to-trial fluctuations in the brain-wide signal 30 

recorded using functional MRI to test if distinct sets of brain regions are activated on different 31 

trials when accomplishing the same task. Across three different perceptual decision-making 32 

experiments, we estimated the brain activations for each trial. We then clustered the trials based 33 

on their similarity using modularity-maximization, a data-driven classification method. In each 34 

experiment, we found multiple distinct but stable subtypes of trials, suggesting that the same task 35 

can be accomplished in the presence of widely varying brain activation patterns. Surprisingly, in 36 

all experiments, one of the subtypes exhibited strong activation in the default mode network, 37 

which is typically thought to decrease in activity during tasks that require externally focused 38 

attention. The remaining subtypes were characterized by activations in different task-positive 39 

areas. The default mode network subtype was characterized by behavioral signatures that were 40 

similar to the other subtypes exhibiting activation with task-positive regions. These findings 41 

demonstrate that the same perceptual decision-making task is accomplished through multiple 42 

brain activation patterns.  43 
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Introduction  44 

Brain activity elicited by the same stimulus or task is highly variable1,2. Variation in task-induced 45 

brain activity has been identified in individual neurons3 and large-scale brain networks4 46 

impacting cognition and behavior5,6. Variation in brain activity affects our actions in social 47 

situations7,  economic decisions8, and even low-level perception9. 48 

 49 

Despite the widespread variability in brain activity during a task, standard analyses aim to 50 

identify the task-induced changes in brain activity across all trials10. Such analyses have been 51 

applied to a multitude of tasks such as face perception11, memory12, and navigation13,14. The 52 

prevailing assumption in studies seeking to identify the brain response to a stimulus or a task is 53 

that there is a single pattern of activation. In the case of fMRI, this pattern is typically identified 54 

by performing a standard general linear modeling analysis. Under this assumption, trial-to-trial 55 

variation in brain activity is simply noise. When applied to tasks that require externally focused 56 

attention, this standard analysis has identified a set of regions – termed “task-positive” – that 57 

increase in activity, and another set of regions – termed “task-negative” – that decrease in 58 

activity in response to external demands15.  59 

 60 

However, it is also possible that subsets of trials can produce meaningfully different patterns of 61 

activations that are not well captured by averaging across all trials. Indeed, the blood-oxygen 62 

level-dependent (BOLD) signal in fMRI is both spatially and temporally variable16, with at least 63 

some of this variability likely to stem from meaningful variations in internal processing rather 64 

than simply noise5,6,17,18. Further, it has been hypothesized that a cognitive process can be 65 

accomplished through multiple pathways because of degeneracy19, and supported by work 66 

utilizing theoretical models and patient populations20, but these multiple pathways have not been 67 

explicitly identified in healthy individuals. 68 

 69 

Here, we sought to identify discrete patterns of brain activity associated with the completion of 70 

the same task. To do so, we utilized a data-driven classification method to identify unique 71 

patterns in brain activity among individual trials. Across three perceptual-decision making 72 

experiments, we found multiple different activation patterns, with one of them surprisingly 73 

exhibiting task-negative activations. We further established the behavioral profile associated 74 
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with each subtype. Finally, we replicated the existence of multiple activations patterns in a 75 

working memory task. Overall, our results indicate that multiple brain activation patterns can co-76 

exist in the context of the same task. 77 

 78 

Results   79 

Variation in brain activity across individual trials 80 

We examined the patterns of brain activation produced across three perceptual decision-making 81 

tasks (Experiments 1-3; Table 1). We first performed standard GLM analyses to identify task-82 

related brain activations. In Experiment 1, we observed increased activity in the visual and motor 83 

cortices, as well as decreased brain activity in the orbital frontal cortex and in the posterior 84 

cingulate cortex (Fig. 1A). However, single-trial beta responses estimated with a general linear 85 

model (GLM) using GLMsingle21 deviated substantially from the group map. For example, 86 

unlike the group map, trial 2 for subject 1 showed strong positive activity in both the posterior 87 

cingulate cortex and the orbitofrontal cortex (Fig. 1B). On the other hand, trial 6 for subject 1 88 

produced an activation pattern similar to the group map with negative activity in both the 89 

posterior cingulate cortex and the orbitofrontal cortex (Fig. 1C).  90 

 91 

Table 1. Experiment details. 92 
 

Subjects Total # of Trials 

Experiment 1 50 35,682 

Experiment 2 39 31,024 

Experiment 3 40 9,959 

 93 

 94 
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 95 

Figure 1. Variation in brain activity across individual trials in Experiment 1. (A) In 96 
Experiment 1, standard group analyses identified voxels with strong increases and decreases in 97 
task-induced brain activation across the cortex. The group brain map is thresholded at P < 0.001 98 
for display purposes. Brain activation maps for (B) trial 6 and (C) trial 2 from subject 1 99 
demonstrate substantial variability across trials that is not represented in the standard group brain 100 
map. Brain maps for the individual trials are thresholded at |beta| > 0.25 for display purposes. 101 
Black circles highlight the activation in the posterior cingulate cortex and orbitofrontal cortex. 102 
Panels B and C are shown for illustrative purposes only; formal analyses of the different 103 
activation patterns are shown in Figures 2-8. 104 
 105 

Multiple distinct but stable subtypes of trials during perceptual decision making 106 

While single-trial activations are likely to be noisy and difficult to interpret, the divergence in 107 

brain activity between the two trials and to the group map highlights the possibility that more 108 

than one pattern of brain activation may exist when performing a task. To test for this possibility, 109 

we utilized a data-driven classification method to determine if multiple unique patterns of 110 

activation emerge across trials. For each trial, we estimated the task-induced brain activity in 111 

each voxel and pooled trials across subjects. We estimated the similarity across the activations 112 

between pairs of trials using Pearson correlation and clustered all trials using modularity-113 

maximization to identify consistent activation patterns22. Clustering produced three subtypes of 114 

trials in Experiment 1 (Fig. 2A). Each subtype accounted for a roughly similar proportion of all 115 

trials and each subtype was present in all subjects and in each of the four stimulus conditions in 116 

that experiment (see Methods; Fig. 2B).  117 

 118 

Critically, we examined the pattern of activation present in each subtype. To do so, we averaged 119 

the trials from each subtype within a subject. We then performed a group-level one-sample t-test 120 

on the average beta values to identify voxels with significant positive or negative activations 121 

(using a threshold of FDR-corrected P < 0.01; Fig. 2C). In Experiment 1, we found that Subtype 122 
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1 was characterized by bilateral visual, parietal and left motor activations, as well as medial 123 

frontal, cingulate, temporal, and right motor deactivations. Subtype 2 had many similarities with 124 

Subtype 1 – such as visual and parietal activations couple with medial frontal, cingulate, and 125 

anterior temporal deactivations – but featured strong bilateral activations in the insula (whereas 126 

Subtype 1 had bilateral deactivations in the insula). Subtype 3 had the most surprising profile 127 

with strong activations along the default mode network (DMN) and deactivations in a number of 128 

task-positive parietal and frontal areas. To further confirm these results, we performed a standard 129 

GLM analysis with subtypes as factors in the regression and found similar patterns of activations 130 

(Fig. S1A). We also confirmed these results using a standard cluster-based correction instead of 131 

a voxelwise FDR correction (Fig. S1B). Further, we performed the analysis within each of the 132 

four stimulus conditions separately to ensure that the subtypes do not simply reflect differences 133 

between conditions. We again found multiple activation patterns for each condition separately, 134 

with one of the patterns exhibiting strong DMN activation (Fig. S2).  135 

 136 
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 137 

Figure 2.  Subtypes of trials and activation maps in three perceptual decision-making tasks. 138 
(A-C) Results for Experiment 1. (A) Modularity-maximization based clustering identified three 139 
subtypes of trials. The colored squares correspond to the trials composing each subtype. Pearson 140 
correlation was used to calculate the spatial similarity in activation (betas) among individual 141 
trials. (B) The percent of trials classified as Subtype 1, 2, and 3 for each of the four stimulus 142 
conditions. The dots represent individual subjects. (C) Activation maps for each subtype. Each 143 
activation map was calculated by first averaging the trials for each subtype within a subject, 144 
followed by one-sample t-test to identify regions in which brain activity increased or decreased 145 
in response to the task. Brain maps are thresholded at PFDR-corrected < 0.01. (D-F) Results for 146 
Experiment 2. (D) Modularity-maximization clustering identified three subtypes of trials. (E) 147 
The percent of trials classified as Subtype 1, 2, and 3. (F) Activation maps for each subtype. (G-148 
I) Results for Experiment 3. (G) Modularity-maximization clustering identified two subtypes of 149 
trials. (H) The percent of trials classified as Subtype 1 and 2. Note that Experiment 3 contained 150 
only a single condition. (I) Activation maps for each subtype.  151 
 152 
 153 

To corroborate these findings, we performed the same analysis in two additional experiments 154 

that involved perceptual decision-making tasks – Experiments 2 and 3 (Fig. 2D-I). In 155 
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Experiment 2, the group-level one-sample t-test on the average beta values identified voxels with 156 

significant positive and negative activations (FDR-corrected P < 0.01; Fig. 2F). Similar to 157 

Experiment 1, Subtypes 1 and 2 were characterized by activation across task-positive regions, 158 

whereas Subtype 3 exhibited strong activations in the DMN. In Experiment 3, clustering 159 

identified two subtypes. Similar to Experiments 1 and 2, the Subtype 1 exhibited activation in 160 

task-positive regions, whereas Subtype 2 exhibited strong activations in DMN (FDR-corrected P 161 

< 0.01; Fig. 2I). Taken together, these results confirm the existence of multiple activation 162 

patterns in three different experiments. Critically, in every experiment, one of the patterns 163 

exhibits activation in areas associated with the DMN, brain regions commonly thought to 164 

deactivate during tasks that require externally focused attention.  165 

 166 

One possible reason for observing different patterns of activations is individual differences. That 167 

is, it is possible that each subject only exhibits a single pattern of activations, due to inter-subject 168 

differences, we find several different patterns within each experiment. However, the data do not 169 

support this possibility. As can be seen in Fig.2B,E,H, every subject has a substantial proportion 170 

of trials from each subtype. Focusing specifically on the DMN-associated subtype, we find that it 171 

reflects on average 29.6 ± 8.9 (mean ± SD) of trials in Experiment 1, 35.8 ± 5.2% of trials in 172 

Experiment 2, and 46.5 ± 8.1% of trials in Experiment 3. The relatively small SD values 173 

demonstrate that all subjects have a large proportion of trials reflecting the DMN-associated 174 

subtype. In other words, while there are likely meaningful individual differences in how much 175 

each subtype is represented, the existence of different subtypes is not in itself a function of 176 

individual differences between subjects.  177 

 178 

To further understand the nature of each subtype, we examined the pattern of activation within 179 

established brain networks for each subtype. For each subject we averaged the voxels within 180 

each of the seven brain networks – frontoparietal network (FPN), default mode network (DMN), 181 

dorsal attention network (DAN), limbic network (LIM), ventral attention network (VAN), 182 

somatomotor network (SOM), and visual network (VIS) – defined in the Schaefer Atlas23. We 183 

found that Subtype 3 exhibited the strongest activation in the DMN and LIM networks but 184 

weakest activations in the FPN, DAN, and VIS networks (one-samples t-tests; PFDR-corrected; Fig. 185 

3A). Subtypes 1 and 2 both showed strong activation in the DAN and VIS networks, but differed 186 
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in the activation strength across the FPN, VAN, and SOM networks. We performed the same 187 

analysis in Experiments 2 and 3, and found results broadly similar to Experiment 1 (one-sample 188 

t-test; PFDR-corrected < 0.01; Fig. 3B,C).  189 

 190 

 191 

 192 
 193 
Figure 3. Activation for each of seven large-scale brain networks for each subtype. (A) 194 
Results for Experiment 1. Activation for each of seven large-scale brain networks for each 195 
subtype. The bar graph shows the average change in activation (mean ± sem). The grey dots 196 
show the activation in each subject. (B) Results for Experiment 2. (C) Results for Experiment 3. 197 
Activation changes from baseline were estimated using a one-samples t-test. *** PFDR-corrected < 198 
0.001; ** PFDR-corrected < 0.01; * PFDR-corrected < 0.05. FPN, Frontal Parietal Network; DMN, 199 
Default Mode Network; DAN, Dorsal Attention Network; LIM, Limbic Network; VAN, Ventral 200 
Attention Network; SOM, Somatomotor Network; VIS, Visual Network. 201 
 202 

Subtypes are robust to methodological choices, noise, and experimental factors  203 
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Importantly, we confirmed that the multiple activation patterns identified in each of the different 204 

tasks could not be explained by methodological choices, noise in the data, or experimental 205 

factors.  206 

 207 

First, we checked whether the obtained clusters depend on methodological choices related to the 208 

clustering algorithm we used. Specifically, the number of clusters identified using modularity-209 

maximization depends on the value of the resolution parameter (γ), which was set to its standard 210 

value of 1 in the above analyses24. To determine that the obtained clusters are robust to this 211 

value, we re-ran the analysis using a range of gamma values from 0.8 to 1.2 to determine if this 212 

parameter affects the composition of the clusters. We found the number of clusters was stable for 213 

gamma values in the range of 0.8 to 1.01 for all three experiments (Fig. 4A). Gamma values 214 

higher than 1.01 led to more clusters but without affecting the core subtypes. Instead, these high 215 

gamma values simply led to a small number of trials from each subtype to be separated into new 216 

clusters (Fig. 4B). These results demonstrate that the existence of the core clusters does not 217 

depend on the value of the resolution parameter (γ). 218 
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 219 

Figure 4. Subtypes are independent of methodological choices. (A) Sensitivity of clustering to 220 
resolution parameter. The number of clusters (subtypes) was stable over a range of resolution 221 
parameter (γ) values from 0.8 to 1.01 for each experiment. Higher γ values resulted in a larger 222 
number of clusters. (B) The increased number of subtypes obtained with higher γ levels arise 223 
from separating a few trials from the main subtypes. To demonstrate that, we compared the 224 
clusters obtained with γ = 1 and γ = 1.1. As the figure demonstrates, there is a strong mapping 225 
between the first three (Experiments 1 and 2) or first two (Experiment 3) subtypes obtained with 226 
γ = 1 and γ = 1.1. Thus, higher γ values do not lead to qualitatively different subtypes. (C) SVM 227 
Classification. The SVM classifier correctly labeled on average 87.2% of trials across all tasks.  228 
 229 

Second, we confirmed that our results do not stem from noise in the data. To do so, we 230 

performed a range of analyses. We began by confirming that the clustering remains stable when 231 
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performed on different subjects. Specifically, we split the subjects in half and then repeated the 232 

clustering analysis on each half. We then trained an SVM classifier to predict the labels on the 233 

data from one half of the subjects using the labels for the other half. The SVM classifier correctly 234 

labeled on average 87.2% of trials across Experiment 1-3 (Fig. 4C). By comparison, an SVM 235 

classifier trained to separate trials based on experimental condition performed at chance (Fig. 236 

S3). Importantly, we also confirmed that the clusters were not related to head motion. 237 

Specifically, we found no clear relationship between subtypes and fMRI noise as measured with 238 

Frame Displacement, temporal derivative of the time course (DVARS), or each of the six motion 239 

parameters. To be as sensitive as possible, we conducted a series of pairwise comparisons 240 

between every two subtypes in every measure of subject motion. Focusing on Experiment 1, we 241 

observed no significant differences between each of the motion estimated parameters among the 242 

subtypes (Fig. 5). Extending this analysis to Experiment 2 and 3, when using uncorrected tests, 243 

we obtained two significant differences from a total of 126 tests run across all three experiments, 244 

which is less than the 5% expected rate of significant results assuming no true effects (see 245 

Supplemental Results and Fig. S4-S5). Finally, because voxel-wise estimates can be unstable 246 

and noisy, we repeated the clustering analyses using average activations within 200 brain regions 247 

and still found similar results (see Supplemental Results and Fig. S6).  248 

 249 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2023.04.08.536107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.08.536107
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

 250 
 251 
Figure 5. No differences in head motion between subtypes in Experiment 1. The average (A) 252 
Frame displacement (FD), (B) DVARS, (C) x-, (D) y-, (E) z-, (F) roll-, (G) pitch-, (H) yaw-253 
direction per subtype. For each trial we estimated 14 different motion-associated artifacts. 254 
Estimated motion values were averaged per subtype within a subject and statistical differences 255 
were determined using paired-samples t-test without any correction. For panels C-H, right panels 256 
show the 1st derivatives. ns, not significant. 257 
 258 

 259 
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Third, we confirmed that experimental factors including subject age and sex, trial position, or the 260 

time interval between successive trials were not driving the activation difference between trials 261 

(see Supplemental Results and Fig. S7-S8). Collectively, we found that none of these factors 262 

plays a substantial role in determining the obtained subtypes. Taken together, these results 263 

suggest that the multiple activation patterns are not simply driven by trivial experimental factors, 264 

subject characteristics to various types of noise or experimental factors that might affect trial-by-265 

trial activation patterns over the course of a task. 266 

 267 

Behavioral differences between subtypes 268 

Having identified these three different subtypes of trials in Experiment 1, we investigated how 269 

they affected behavioral performance. We compared how behavioral performance differed 270 

among subtypes using a mixed-effect model to account for the different conditions within the 271 

experiments. The model assessed the effects of subtype and condition with the subject as a 272 

random factor on behavioral performance. For Experiment 1, significant effects of subtype were 273 

present for reaction time (RT) (t(35679) = 2.90, P = 0.004) and confidence (t(35679) = -3.37, P = 274 

0.001), but not accuracy (t(35679) = -1.78, P = 0.07).  275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2023.04.08.536107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.08.536107
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

 276 

 277 

Figure 6. Behavioral differences between subtypes. Differences between subtypes in accuracy, 278 
RT, and confidence for (A) Experiment 1, (B) Experiment 2, and (C) Experiment 3. Statistical 279 
testing was conducted using linear mixed-effect models where the effects of subtype and 280 
condition were fixed effects and subject was a random factor. For post-hoc analysis, first 281 
behavioral measures were averaged within a subject and a paired-samples t-test was used to 282 
determine significant differences. Averaging within a subject result in loss of power compared 283 
the mixed-effected model which was conducted at the trial level. Note that Experiment 3 284 
contained only a single condition and confidence was not measured. Error bars show SEM. ** P 285 
< 0.01; * P < 0.05. 286 
 287 

 288 
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The same analyses for Experiment 2 uncovered significant differences in RT (t(30351) = -4.99, P 289 

= 5.83 x 10-7) and confidence (t(30351) = 4.37, P = 1.25 x 10-5), but not accuracy (t(30351) = 290 

0.33, P = 0.74). Interestingly, and in contrast to Experiment 1, in Experiment 2, the fastest RTs 291 

were associated with Subtype 3, which showed activation in the DMN. Lastly, in Experiment 3, 292 

there were no significant difference in accuracy or RT between subtypes (P > 0.05). (Note that 293 

confidence was not measured in the Experiment 3.) Follow-up pairwise comparison analyses 294 

using paired t-test reflected the results obtained with the mixed-effect model (Fig. 6). Overall, 295 

the differences in accuracy, RT, and confidence were small and their direction was sometimes 296 

inconsistent between studies, suggesting that the subtypes do not simply reflect differences in 297 

task difficulty or other stimulus characteristics. 298 

 299 

Further, we tested if clustering trials improved the brain-behavior relationship estimation. 300 

Focusing on Experiment 1 since it contained the most trials, we estimated the change in 301 

sensitivity in the brain-behavior relationship within each brain region part of the Schaefer 200 302 

brain atlas. Specifically, within each subject, for each region we correlated the trial activation 303 

strength with accuracy, RT and confidence for each subtype of trials and all trials together. We 304 

found that the correlation between behavioral measures (accuracy, RT, and confidence) and brain 305 

activation improved (P < 0.05) for each subtype compared to when all trials were considered 306 

together, suggesting that considering each subtype separately increases the sensitivity in brain-307 

behavior relationship (Fig. 7). 308 

 309 
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 310 

 311 

Figure 7. Subtyping trials improves sensitivity in the relationship between accuracy, RT, 312 
and confidence with activation in Experiment 1. The correlation difference between average 313 
activation strength in a brain region part of the Schaefer 200 atlas and (A) accuracy, (B) RT, and 314 
(C) confidence for each subtype compared to all trials together. Significant differences were 315 
estimated with group level one-sample t-tests. The dot plots on the left show the average increase 316 
in sensitivity in the brain-behavior correlation across subjects (mean ± sem). The bar plots on 317 
right show the percentage of regions that the sensitivity significantly increased without any 318 
correction for multiple comparisons (Puncor) and with a false discovery rate multiple comparison 319 
correction (PFDR). *, Puncor < 0.05. 320 
 321 

 322 

Processes underlying subtype activation 323 

Having established the existence of subtypes that differ in their neural activation patterns and 324 

behavioral correlates, we examined the transitions between different subtypes and potential 325 

mechanisms that can lead to the emergence of these subtypes. We first investigated the transition 326 
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probabilities between subtypes to understand whether the different subtypes were randomly 327 

intermixed or whether their occurrence followed a specific pattern. We found that a trial of a 328 

specific subtype was much more likely to be followed by a trial of the same subtype (Fig. S13). 329 

These results suggest that the subtypes reflect slow changes in underlying cognitive processes. 330 

Additionally, we build a model that can generate the multiple activation patterns from the 331 

structural or functional connectivity, both of which have been shown to be capable of predicting 332 

brain activation25–27. The result from the model suggest that global brain activation is primarily 333 

driven by the stimulus-drive from a few networks (see Supplementary Methods, Supplementary 334 

Results, and Fig. S14-S15). 335 

 336 

Brain regions exhibiting consistent activation across trials 337 

Besides exploring the differences between the trials, we also examined what is common across 338 

them. To identify areas exhibiting consistent activations or deactivations in brain activity across 339 

trials, we identified the voxels in which the sign of activation was always in the same direction. 340 

Specifically, we first binarized the activation the brain maps patters for each trial and identified 341 

the voxels for which the sign of activation always in the same direction for all trials in a given 342 

subject. We then plotted voxels that have the same activation sign in all trials in a large 343 

proportion of all subjects. As may be expected, we found consistent activations in the visual and 344 

left motor cortex, as well as consistent deactivations in medial somatomotor, right motor, and 345 

bilateral temporal cortex (Fig. 8). These results confirm that despite the existence of different 346 

subtypes, expected activation effects remain robust across individual trials. 347 

 348 

 349 

Figure 8. Maps of activations that are consistent across trials. Voxels exhibiting consistent 350 
activation across trials in (A) Experiment 1, (B) Experiment 2, and (C) Experiment 3. We first 351 
binarized the activation in the brain maps patters for each trial and identified the voxels for 352 
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which the sign of activation always in the same direction for a given subject. We then plotted 353 
voxels that have the same activation sign in all trials in a large proportion of all subjects. For 354 
visualization purposes, maps are threshold at 50% of subjects in Experiment 1 and 25% of 355 
subjects in Experiments 2 and 3.   356 
 357 

Extension to a working memory task 358 

Finally, beyond the three perceptual decision-making experiments, we also examined if multiple 359 

activation patterns exist in a different cognitive task. Specifically, we analyzed the n-back task 360 

data from the Human Connectome Project where subjects completed equal number of 0- and 2-361 

back trials28. In the same manner as for Experiments 1-3, for each trial we estimated the task-362 

induced brain activity in each voxel and pooled trials across subjects and n-back conditions, and 363 

then clustered the trials using modularity-maximization. Clustering identified three subtypes 364 

present in both the 0- and 2-back conditions. However, two of these clusters were relatively 365 

similar to each other, while the third one appeared in few trials and may reflect motion artifacts 366 

(see Supplementary Methods and Results for details Fig. S9-S12). These results suggest that 367 

very different patterns of activity may not always emerge in all tasks. 368 

 369 

Discussion 370 

Fluctuations in brain activity are ubiquitous during simple and cognitively demanding tasks16,29 371 

and are often indicative of variation in cognitive processing30. However, meaningful variation in 372 

internal states that impacts cognition and behavior remains challenging to discover and 373 

characterize. Here we examined if distinct patterns of brain activity emerge on different trials 374 

when accomplishing the same task. We utilized a data-driven clustering method based on 375 

modularity-maximation to identify consistent patterns of brain activity on individual trials. 376 

Across three perceptual decision-making experiments, the clustering analysis identified multiple 377 

discrete subtypes of trials. Surprisingly, in each of the three experiments, one of the subtypes 378 

exhibited activations in DMN. To the best of our knowledge, this is the first analysis to report 379 

DMN activation on a subset of trials during a task that requires externally focused attention. 380 

These findings demonstrate that the same task can be accomplished in the presence of widely 381 

varying brain activation patterns. 382 

 383 
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Our most striking finding was that trials from one of the subtypes in Experiments 1-3 showed a 384 

strong increase in DMN activity even though subjects were engaged in a perceptual decision-385 

making task that canonically leads to DMN suppression. Behaviorally, the DMN-associated 386 

subtype was characterized by accuracy, RT, and confidence that were similar to the other 387 

subtypes associated with task-positive regions. These behavioral results are particularly 388 

surprising because DMN activation is usually associated with mind-wandering and being off-389 

task31,32. It is important to note that DMN is known to be activated during task requiring internal 390 

or self-relevant focus33–37 or boredom38. As a result, the activation of the DMN may reflect a 391 

change in attention from externally to internally focused attention or boredom. Yet such 392 

interpretations would presumably predict larger behavioral differences between the DMN-393 

associated subtype and the subtypes associated with increased activation in task-positive regions. 394 

Our findings demonstrate substantial DMN activations even for tasks that canonically should 395 

deactivate the DMN, which challenges the notion that DMN should be viewed as a task-negative 396 

network39.  397 

 398 

Why are multiple qualitatively different patterns of brain activity emerging from different trials 399 

of the same task? One may speculate that a cognitive process can be accomplished through 400 

multiple pathways. In fact, it has been hypothesized that multiple cognitive pathways could exist 401 

because of degeneracy19, and this hypothesis is supported by work utilizing theoretical models 402 

and patient populations20. Similar to a person driving home from work, there may be multiple 403 

routes to get home, and the path taken may depend on various factors such as the extent of traffic 404 

on a specific route. In this interpretation, the subtypes in perceptual decision-making tasks may 405 

be characterized as reflecting decision-making pathways in the presence of endogenous 406 

attention40–42, exogenous attention43,44, or internally focused attention37.  407 

 408 

Instead of discrete pathways, another possibility is that the trial subtypes are part of a gradient in 409 

activation across the brain45,46. In this interpretation, the trial subtypes would indicate the axes of 410 

this space. Specifically, in the perceptual decision-making tasks, the location of an individual 411 

trial within this space could be dependent on the extent of top-down control47,48, the salience of 412 

the stimulus42, and internally oriented attention49,50. Critically, neither interpretation excludes the 413 

existence of shared components. Indeed, we found that the visual regions exhibited similar 414 
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patterns in activation in all subtypes across all experiments. Additionally, this consistent pattern 415 

of activation included regions in the frontal, parietal, and temporal areas, suggesting a core 416 

component across all trials. Future research should examine the underlying processes that lead to 417 

the emergence of these trial subtypes across an array of cognitive functions.  418 

 419 

The current work has several limitations. First, it is currently unclear why the subtypes across the 420 

three experiments showed some important differences. These differences could reflect subtle 421 

differences in the stimuli (e.g., color stimuli in Experiment 1 vs. motion stimuli in Experiments 2 422 

and 3), task (e.g., subjects rated confidence in all runs of Experiment 1, in half the runs of 423 

Experiment 2, and did not rate confidence at all in Experiment 3), or other aspects of the 424 

experimental design. Future studies can examine how the subtypes change in response to specific 425 

experimental factors. Second, while we suspect that the subtypes reflect different cognitive 426 

processes, it is currently difficult to identify what specifically these processes are. Behaviorally, 427 

we could only examine accuracy, RT, and confidence, generally finding only subtle differences 428 

among the subtypes. It is likely that the subtypes reflect other signatures of internal processing 429 

such as pupil dilation, skin conductance, or heart rate variability, but data on these variables was 430 

not available in the current datasets. Future research should examine a wider range of behavioral 431 

and physiological differences between trial subtypes. 432 

 433 

In conclusion, we found that both perceptual decision-making and working memory tasks 434 

featured multiple distinct patterns of brain activation. These results suggest that several 435 

independent pathways may be employed to accomplish a task.  436 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2023.04.08.536107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.08.536107
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

Methods 437 

Experiment 1 Subjects and Task 438 

Fifty healthy subjects (25 females; Mean age = 26; Age range = 19-40) that has been described 439 

elsewhere51. All subjects were screened for any history of neurological disorders or MRI 440 

contraindications. The study was approved by Ulsan National Institute of Science and 441 

Technology Review Board and all subjects gave written consent. 442 

 443 

Subjects had to determine which set of colored dots (red vs. blue) is more frequent in a cloud of 444 

dots. Each trial began with a white fixation dot presented for a variable amount of time between 445 

500-1500 ms. Then, the stimulus was shown for 500 ms, followed by untimed decision and 446 

confidence screens. The stimulus consisted of between 140 and 190 red- and blue-colored dots 447 

(dot size = 5 pixels) dispersed randomly inside an imaginary circle with a radius of 3° from the 448 

center of the screen. Four different dot ratios were used – 80/60, 80/70, 100/80, and 100/90, 449 

where the two numbers indicate the number of dots from each color. The experiment was 450 

organized in blocks of 8 trials each, with each dot ratio presented twice in a random order within 451 

a block. The more frequent color was pseudo randomized so that there were equal number of 452 

trials within a block where red or blue was the correct answer. The luminance between the red 453 

and blue dots was not matched. Subjects performed a total of 768 trials. Three subjects 454 

completed only half of the 6th run and another three subjects completed only the first 5 runs due 455 

to time constraints. The remaining 44 subjects completed the full 6 runs.  456 

 457 

Experiment 1 MRI Recording 458 

The MRI data was collected on a 64-channel head coil 3T MRI system (Magnetom Prisma; 459 

Siemens). Whole-brain functional data were acquired using a T2*-weighted multi-band 460 

accelerated imaging (FoV = 200 mm; TR = 2000 ms; TE = 35 ms; multiband acceleration factor 461 

= 3; in-plane acceleration factor = 2; 72 interleaved slices; flip angle = 90°; voxel size = 2.0 x 2.0 462 

x 2.0 mm3). High-resolution anatomical MP-RAGE data were acquired using T1-weighted 463 

imaging (FoV = 256 mm; TR = 2300 ms; TE = 2.28 ms; 192 slices; flip angle = 8°; voxel size = 464 

1.0 x 1.0 x 1.0 mm3). 465 

 466 

Experiment 2 Subjects and Task 467 
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Thirty-nine subjects (23 females, average age�=�21.5 years, range�=�18–28 years, 468 

compensated $50 for participation) were instructed to indicate whether a moving-dots stimulus 469 

had an overall coherent motion (always in downward direction) or not. Subjects had no history of 470 

neurological disorders and had normal or corrected-to-normal vision. The study was approved by 471 

the Georgia Tech Institutional Review Board. All subjects were screened for MRI safety and 472 

provided informed consent. The study’s method and procedure were carried out according to the 473 

declaration of Helsinki.  474 

 475 

Detailed description can be found in Yeon et. al.,52. In brief, each trial began with a fixation 476 

mark presented randomly for 1, 2, or 3 sec and followed by the stimulus presented for 500 ms. In 477 

the first half of the experiment (runs 1–3), subjects performed the task and were never told to 478 

evaluate their confidence level. In the second half of the experiment (runs 4–6), subjects made 479 

their perceptual decision and immediately after were asked to indicate their confidence level.  480 

 481 

Experiment 2 MRI Recording 482 

The MRI data were collected on 3T Prisma-Fit MRI system (Siemens) using a 32-channel head 483 

coil. Anatomical images were acquired using T1-weighted sequences (MEMPRAGE sequence, 484 

FoV�=�256 mm; TR�=�2530 ms; TE�=�1.69 ms; 176 slices; flip angle�=�7˚; voxel 485 

size�=�1.0�×�1.0�×�1.0 mm3). Functional images were acquired using T2*-weighted 486 

gradient echo-planar imaging sequences (FoV�=�220 mm; TR�=�1200 ms; TE�=�30 ms; 487 

51 slices; flip angle�=�65˚; voxel size�=�2.5�×�2.5�×�2.5 mm3). 488 

 489 

Experiment 3 Subjects and Task 490 

The analysis was based on 40 subjects who performed a motion discrimination task. Subjects 491 

were compensated $20/hour or 1 course credit/hour for a total of 2.5 hours. All subjects were 492 

right-handed with normal hearing, normal or corrected-to-normal vision, had no history of 493 

neurological disorders, brain trauma, psychiatric illness, or illicit drug use. The study was 494 

approved by the Georgia Tech Institutional Review Board. All subjects were screened for MRI 495 

safety and provided written informed consent. 496 

 497 
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Detailed description can be found in Haddara & Rahnev53. In brief, subjects judged the motion 498 

direction (left or right) of white dots (density: 2 dots/degree², speed: 5°/s) presented in a black 499 

circle (3° radius) in front of a grey background. A proportion of dots moved coherently in the 500 

right or left direction while the rest of the dots moved randomly. Each dot motion stimulus was 501 

preceded by a letter cue (“L” = Left, “R” = Right, “N” = Neutral). The letters L and R predicted 502 

the forthcoming stimulus with 75% validity, whereas the letter N was not predictive (both left 503 

and right motion were equally likely). Each trial began with cue presentation for 2, 4, or 6 504 

seconds (chosen randomly), followed by a 3-second dot motion stimulus and an untimed 505 

response. A screen with a fixation dot was then presented between trials for a period of 1 or 2 506 

seconds.  507 

 508 

Experiment 3 MRI Recording 509 

BOLD fMRI signal data was collected on a 3T MRI system (Prisma-Fit MRI system; Siemens) 510 

using a 32-channel head coil. Anatomical images were acquired using T1-weighted sequences 511 

(MEMPRAGE sequence, FoV = 256 mm; TR = 2530 ms; TE = 1.69 ms; 176 slices; flip angle = 512 

7˚; voxel size = 1.0 x 1.0 x 1.0). Functional images were acquired using T2*-weighted gradient 513 

echo-planar imaging sequences (FoV = 220 mm; slice thickness = 2.5, TR = 1200 ms; TE = 30 514 

ms; 51 slices; flip angle = 65˚; voxel size = 2.5 x 2.5 x 2.5, multi band factor = 3, interleaved 515 

slices). 516 

 517 

Experiment 1-3 MRI Preprocessing  518 

MRI data were preprocessed with SPM12 (Wellcome Department of Imaging Neuroscience, 519 

London, UK). We first converted the images from DICOM to NIFTI and removed the first three 520 

volumes to allow for scanner equilibration. Following standard practice, we preprocessed with 521 

the following steps: de-spiking, slice-timing correction, realignment, segmentation, 522 

coregistration, normalization, and spatial smoothing with 10 mm full width half maximum 523 

(FWHM) Gaussian kernel except for Experiment 3 where smoothing was performed with a 6 524 

mm FWHM Gaussian kernel. Despiking was done using the 3dDespike function in AFNI. The 525 

preprocessing of the T1-weighted structural images involved skull-removal, normalization into 526 

MNI anatomical standard space, and segmentation into gray matter, white matter, and cerebral 527 

spinal fluid, soft tissues, and air and background. The segmentation of T1-weighted images was 528 
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conducted in SPM12 with default parameters and normalized to the default MNI template with 2 529 

cm3 voxel dimensions. 530 

 531 

Single-Trial Beta Estimation  532 

Single-trial beta responses were estimated with a general linear model (GLM) using GLMsingle, 533 

a Matlab toolbox for single-trial analyses21. The hemodynamic response function was estimated 534 

for each voxel and nuisance regressors were derived in the same manner as previously described 535 

in Allen et. al., 54. Additionally, regressors for the global signal and for six motion parameters 536 

(three translation and three rotation) were included. The single-trial betas were estimated in three 537 

batches. In each batch, the betas for every third trial were estimated because the trials in our 538 

study were temporally close together. Also, trials that were within 20 seconds from the end of 539 

run were removed. The betas for each voxel represent the estimated trial-wise BOLD response 540 

and are relative to the BOLD signal observed during the absence of the stimulus21.  541 

 542 

Modularity-maximization Based Clustering 543 

The beta maps per trials were pooled among subjects to ensure that there was consistency in 544 

clustering correspondence. A trial-by-trial similarity matrix was created using the Pearson 545 

Product Correlation using all gray-matter voxels, except in the working memory task where all 546 

brain voxels were used. Clustering of the similarity matrix was conducted using modularity-547 

maximization22. Modularity-maximization does not require the number of clusters to be specified 548 

and the resolution of the clusters was controlled with resolution parameter, γ = 1. Modularity-549 

maximization was implemented with the Generalized Louvain algorithm part of the Brain 550 

Connectivity Toolbox55.  551 

 552 

The community detection method used in the analysis is not deterministic and the results can 553 

depend on the specific random seeds. Crucially, as examined by Lancichinetti et al.56, these 554 

limitations can be overcome using consensus clustering to identify stable clusters out of a set of 555 

partitions. Moreover, in our previous work of clustering single trials, we had found that 100 556 

iterations were sufficient to identify stable clusters57. Specifically, consensus clustering identifies 557 

a single representative partition from the set of 100 iterations. This process involves the creation 558 

of a thresholded nodal association matrix which describes how often nodes were placed in the 559 
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same cluster. The representative partition is then obtained by using a Generalized Louvain 560 

algorithm to identify clusters within the thresholded nodal association matrix58. We have 561 

previously utilized this method to identify trial subtypes in brain activity measured with 562 

electroencephalography in a motion discrimination59 task and working memory task57. 563 

 564 

To ensure that the number of clusters was not dependent on the value of the resolution parameter 565 

(gamma), we re-ran the clustering with gamma values ranging from 0.8 to 1.2. A value of 1 for 566 

the resolution parameter is considered standard63, which is why we used it. However, increasing 567 

gamma favors the identification of smaller clusters and lowering gamma favors the identification 568 

of larger clusters. Further, we expected to find a small number of clusters because in previous 569 

work in which we clustered trials in EEG data we found at most three57,59. 570 

 571 

Standard Group-Level Analysis 572 

A standard task-based GLM analysis was conducted to identify voxels in which the beta values 573 

significantly deviated from zero. Specifically, a single activation brain map was created per 574 

subject by averaging the individual beta maps across trials and a one-sample t-tests was 575 

conducted across subjects to identify the regions that deviated from zero. 576 

 577 

Trial Subtype Activation  578 

In a similar manner to the standard group-level analysis, a trial subtype task-based analysis was 579 

conducted to identify voxels in which the beta values for each subtype of trials significantly 580 

deviated from zero. Trials of the same subtype were averaged within each participant resulting in 581 

one average map per subtype for each participant. A group-level one-sample t-test was conduct 582 

for every voxel and p-values were FDR-corrected for multiple comparisons. 583 

 584 

Standard General Linear Modeling 585 

To further corroborate the results, we also performed a standard GLM using SPM12 with 586 

subtypes as factors in the regression and found similar patterns of activations. We fit a GLM that 587 

allowed us to estimate the beta values for each voxel in the brain in each of the trial subtypes. 588 

The model consisted of separate regressors for each of the subtypes, inter-block rest periods, as 589 

well as linear and squared regressors for six motion parameters (three translation and three 590 
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rotation), five tissue-related regressors (gray matter, white matter, and cerebrospinal fluid), 591 

global signal, and a constant term per run.  592 

 593 

Determining the Effect of Preprocessing Choices on Results 594 

Our analysis is based on re-analyzing existing data and pre-processing was done in the original 595 

analysis. The data we are re-analyzing had been smoothed with kernels between 6 and 10 mm 596 

full-width half-max (FWHM), which is standard practice for fMRI studies focusing on task-597 

activation. In our main analyses, we used the previous smoothing values to avoid any flexibility 598 

in the analysis pipeline. To confirm that the smoothing level did not drive the results, we 599 

repeated the clustering analyses using a 4-mm FWHM smoothing kernel, which is less 600 

aggressive than in our main analysis. Additionally, we incorporated WM signal and CSF signal 601 

as nuisance regressors in this analysis to confirm that our results were not dependent on the WM 602 

and CSF. Yet, these control analyses found largely the same subtypes as in the main analyses 603 

(Fig S1C). 604 

 605 

Consistency in Activation Across Subtypes 606 

To identify voxels exhibiting consistent task-induced changes in brain activity, we examined the 607 

consistency of the sign of voxel activations (positive or negative) across subjects. To do so, the 608 

brain maps of each trial were first removed all non-gray matter voxels. We then binarized the 609 

voxel activation values �����������  such that:  610 

 611 

 	���
�� � 
 1, ����������� � 0
�1, ����������� � 0� 

 612 

The consistency of the sign of a voxel’s activation across subtypes (��) was then calculated as 613 

total number of trials for a which voxel � was positively or negatively activated using the 614 

formula: 615 

�� � � 	���
��
�

���

 

 616 

where N is the number of trials completed by a subject. Consequently, ��  can take values 617 

between -N (all trials having negative activation for that voxel) to N (all trials having positive 618 
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activations for that voxel). We then selected voxels where �� � �� for which brain activity 619 

consistently increased or decreased across all trials. The brain maps where then averaged across 620 

subjects.  621 

 622 

Voxel and Brain Network Differences Between Subtypes  623 

Differences in task-based brain activity between subtypes was conducted to identified voxels in 624 

which the beta values between subtypes differed. The analysis was conducted both at the 625 

voxelwise and between large-scale brain networks. For voxelwise analyses, a paired t-test was 626 

used to test for differences between subtypes. For the comparison between large-scale brain 627 

networks, the beta values from voxels associated with one of seven large-scale brain networks 628 

part of the Schaefer Atlas23 were averaged together within a subject and a paired t-test was used 629 

to test for differences between subtypes. All p-values were false discovery rate (FDR) corrected 630 

for multiple comparison.  631 

 632 

Behavioral Performance Differences Between Subtypes  633 

A linear mixed-effect model was used to test for differences in accuracy, RT and confidence 634 

between subtypes. The model assessed the effects of subtype and condition with the subject as a 635 

random factor on behavioral performance. 636 

 637 

Brain-Behavior Relationship Within Each Subtype Compared to Across All Trials 638 

To test if clustering trials improved the brain-behavior relationship estimation, we estimated the 639 

brain-behavior in each subtype and compared it to all trial pooled together. Specifically, we 640 

calculated the average activation in each brain region part of the Schaefer 200 brain atlas. Within 641 

each subject, for each region we correlated the trial activation strength with accuracy, RT and 642 

confidence for each subtype of trials and all trials together. We estimated the change in 643 

sensitivity in the brain-behavior relationship as:  644 

 645 

 ∆ �������	��
�,� � �
����,� ,��	�,�
� � �
����,���,,��	�,���

� 

 646 

where �
����,� ,��	�,�
� is the absolute value of the correlation for trials in subtype � between 647 

activation strength in brain region � and behavioral performance and �
����,���,,��	�,���
� is the 648 
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absolute value in correlation between activation strength in brain region � and behavioral 649 

performance across all trials.  650 

 651 

SVM Classification  652 

To corroborate our findings using modularity-maximization, we performed an analysis using 653 

Support Vector Machine (SVM) classifier using with MATLAB’s fitcecoc.m. For the analysis, 654 

we split the subjects in half and then repeated the clustering analysis on each half and trained an 655 

SVM classifier to predict the labels on the data from the other half of subjects. This analysis tests 656 

whether labels can be predicted on trials that were not included in the clustering. The SVM 657 

analysis was conducted with default parameters. Specifically, the SVM classifier utilized a linear 658 

kernel, with a 3rd order polynomial function, a kernel offset of 0.1 for each element in the Gram 659 

matrix, and the prior distribution from each class is estimated from the relative frequencies of 660 

each class, Karush-Kuhn-Tucker complementarity conditions violation tolerance of 0.01. 661 

  662 

Transition Probabilities 663 

We calculated transition probabilities by computing the probability of a trial from each subtype 664 

to be followed by a trial from any subtype. 665 

 666 

Data and Code Availability  667 

The analysis was based on a combination of publicly available toolboxes, datasets and analysis 668 

specific scripts. Specifically, single-trial betas were estimated using GLMsingle and is available 669 

at https://github.com/cvnlab/GLMsingle. Clustering analysis was based on the Community 670 

Louvain part of the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/).  671 

Consensus clustering was determined using consensus_iterative.m 672 

(http://commdetect.weebly.com/). Unthresholded brain maps for each subtype are available at 673 

NeurVault, while behavioral data and analysis scripts are available at https://osf.io/kpnbs/. 674 

   675 
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