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The notion that feedback improves performance has 
been a mainstay of experimental psychology for more 
than a century ( Judd, 1905; Wright, 1906). Indeed, as 
Pritchard and colleagues (1988) put it, “The positive 
effect of feedback on performance has become one of 
the most accepted principles in psychology” (p. 338). 
However, despite the large amount of research on this 
topic, the mechanisms through which feedback affects 
performance are still unclear.

One long-standing view about the mechanism of 
feedback is that it allows for stimuli and responses to 
become associated via automatic reinforcement mecha-
nisms. For example, an early version of this theory, 
dubbed the “law of effect” (Thorndike, 1927), proposed 
that feedback directly and automatically strengthens 
internal connections and thus leads to improvements in 
both animals and humans independent of any cognitive 

strategies adopted by the organism. Similar theories 
regarding automatic mechanisms of feedback remain 
popular to this day (Petrov et al., 2005). On the other 
hand, a competing view is that feedback is effective only 
to the extent to which it improves one’s strategy for 
completing the task (Vollmeyer & Rheinberg, 2005). Sur-
prisingly, these two accounts of the mechanisms of feed-
back have never been distinguished. In fact, adjudicating 
between these two theories is particularly challenging 
because both direct changes to observer sensitivity and 
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It is widely believed that feedback improves behavior, but the mechanisms behind this improvement remain unclear. 
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indirect strategy adjustment could result in identical out-
comes of improved performance.

Fortunately, these two possibilities can be differenti-
ated in the context of simple two-choice perceptual 
tasks. Behavior in such tasks can be fully captured by 
two different parameters derived from signal detection 
theory: perceptual sensitivity (d′) and response crite-
rion (c; Green & Swets, 1966). Perceptual sensitivity is 
determined by sensory processing outside of a partici-
pant’s conscious control, whereas response criterion is 
under one’s control and can be influenced by a deliber-
ate change in strategy (Macmillan & Creelman, 2005). 
Therefore, by examining whether feedback affects per-
ceptual sensitivity or response criterion, we can distin-
guish between a direct effect (based on automatic 
reinforcement) and an indirect effect (based on strategy 
change) of feedback on behavior.

However, previous research with perceptual tasks 
has been surprisingly inconsistent; some studies have 
reported feedback-related performance enhancements 
(Ball & Sekuler, 1987; Fahle & Edelman, 1993; Herzog 
& Fahle, 1997; Seitz et  al., 2006), whereas others  
have shown no difference between feedback and no- 
feedback groups (Goldhacker et al., 2014; Petrov et al., 
2006; Rouault et al., 2019; Shibata et al., 2009). Consid-
ering the small sample sizes used in most of these 
studies (6–36 participants split into two or more groups; 
except Shiu & Pashler, 1992, N = 59), the inconsistency 
is not surprising because such designs are likely to lead 
to both false positives and false negatives while also 
reflecting the prevailing bias rather than true effects 
(Ioannidis, 2005).

In addition to simple perceptual tasks, tasks that 
assess people’s metacognition can also be used to 
investigate the mechanisms of feedback (Metcalf &  
Shimamura, 1994). Such tasks collect confidence ratings 
regarding the perceived accuracy of the primary deci-
sion and can provide a complementary test of whether 
feedback has a direct impact on sensitivity or an indi-
rect strategy-mediated influence that can be seen only 
in one’s confidence calibration (Rahnev & Denison, 
2018). However, although a relatively sizable literature 
has at least examined how feedback affects perceptual 
sensitivity, no studies to date have examined the effects 
of trial-by-trial feedback on metacognitive sensitivity 
(although block feedback was examined by Rouault 
et al., 2019, and Carpenter et al., 2019, and a neuro-
feedback paradigm was used by Cortese et al., 2016).

Here, we investigated the impact of trial-by-trial feed-
back on both perceptual and metacognitive judgments 
in two experiments. Experiment 1 included a single day 
of training in a sample (N = 443) much larger than those 
used in previous studies. On the other hand, Experiment 
2 (preregistered) employed a much longer training 

period (7 days, N = 75). In both experiments, each par-
ticipant was randomly assigned to a feedback or no-
feedback group. We found that feedback had no effect 
on perceptual or metacognitive sensitivity, but it reduced 
both perceptual and metacognitive biases, suggesting 
that it affected performance via strategy adjustments 
rather than direct reinforcement. These findings reveal 
the mechanisms of feedback in perceptual decision-
making and metacognition and have potential implica-
tions for the use of feedback in applied settings.

Method

Participants

Participants for both experiments were adults recruited 
on Amazon’s Mechanical Turk and were compensated 
$7.25 per hour. For Experiment 1, we chose a sample 
size (N = 443) much larger than those used in previous 
studies examining the role of feedback in perceptual 
decision-making to ensure sufficient power for our 
analyses. For Experiment 2, we preregistered a sample 
size of 60 after exclusions. The preregistration can be 
accessed at https://osf.io/efymg/ and was completed 
after data from Experiment 1 were analyzed. A total of 
75 new participants completed all 7 days of Experiment 
2 (participants from Experiment 1 were not allowed to 
participate in Experiment 2); 15 of them were excluded 

Statement of Relevance

How can we help people improve their perfor-
mance? It is often thought that across a variety of 
domains from education to work settings to sports 
achievements to various cognitive tasks, perfor-
mance can be improved by simply providing feed-
back. However, it remains unclear when and why 
feedback helps. To address this question, we per-
formed two large experiments in which adult par-
ticipants made perceptual and metacognitive judg-
ments. We found that trial-by-trial feedback had 
no effect on perceptual or metacognitive sensitiv-
ity but reduced both perceptual and metacognitive 
bias. These results suggest that, contrary to popular 
beliefs, feedback may not have direct, automatic 
effects on performance. Instead, the beneficial ef-
fects of feedback could be exclusively driven by 
the fact that it allows participants to change their 
strategy for performing the task. If so, feedback can 
be expected to be effective only if people are will-
ing and able to change the way they perform a 
specific task.

https://osf.io/efymg/
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on the basis of predetermined criteria. Participants in 
Experiment 2 received a bonus for completing all 7 
days of the experiment; they gained $0.01 for every 
three correct trials (average bonus = $8.70). Recruiting 
Mechanical Turk research participants is considered a 
form of convenience sampling. All participants reported 
normal or corrected-to-normal vision and provided 
written informed consent. Experimental procedures 
were approved by the Georgia Institute of Technology 
Institutional Review Board.

Procedure

In Experiment 1, each participant was randomly assigned 
to either a feedback group or no-feedback group and 
completed two separate perceptual tasks adapted from 
the study by Rahnev et al. (2015). In Task 1, participants 
made a perceptual judgment by pressing a key to indi-
cate whether the letter X or O occurred more frequently 
in a 7 × 7 grid presented for 500 ms. Participants were 
given an untimed response period for the perceptual 
decision. After indicating their response, participants 
were prompted to rate their confidence in the accuracy 
of their decision on a 4-point scale (1 = low confidence, 
4 = high confidence; untimed response). After the  
confidence rating, the feedback group received feed-
back concerning the accuracy of their perceptual judg-
ment (“correct” or “wrong”; 500 ms), whereas the 
no-feedback group just saw a fixation cross for 500 ms, 
thus keeping the time between the confidence response 
and the onset of the next trial the same between the 
two groups (Fig. 1). Participants completed 11 blocks 
of 30 trials each (330 total trials) and were given the 
opportunity to take a break at the end of each block. 
The first trial of each block began with a longer 2-s 
fixation to give participants time to focus their attention, 
and each subsequent trial began with a shorter 500-ms 
fixation.

Task 2 was designed to be very similar to Task 1; the 
only difference was the perceptual dimension being 
discriminated. Unlike Task 1, in which participants dis-
criminated between Xs and Os, Task 2 featured a dis-
crimination between red and blue circles and consisted 
of five blocks of 30 trials (150 total trials with oppor-
tunities for breaks after each block). Critically, in Task 
2, no participant received performance feedback. This 
was done to determine whether any putative feedback-
related improvements in Task 1 would generalize to a 
new task.

The dominant stimulus class (X or O in Task 1, red 
or blue in Task 2) was randomly determined on each 
trial, and the proportion of the dominant stimulus within 
the 7 × 7 grid was fixed at 30/49 for Task 1 and 27/49 
for Task 2. The proportions were different for the two 

tasks to ensure that the two tasks had similar difficulty 
levels because our pilot data suggested that the red/
blue discrimination was easier for participants. The aver-
age accuracy was 80% for Task 1 and 78% for Task 2.

Experiment 2 employed Task 1 from Experiment 1 
(Fig. 1), but participants performed the task over 7 days. 
Each day of the experiment included 20 blocks of 25 
trials each (for a total of 500 trials per day and 3,500 in 
total). The first six blocks of Day 1 were used to adjust 
the task difficulty for each participant. We ran a stan-
dard two-up, one-down staircase procedure that started 
with 30 (of 49) characters from the dominant stimulus. 
The final difficulty for each participant was determined 
as the average of the number of dominant items at the 
time of staircase reversals (ignoring the first four rever-
sals; Bang et al., 2018, 2019), rounded to the nearest 
integer. The resulting difficulty value was then fixed for 
the remainder of the experiment (14 blocks on Day 1 
and all trials in subsequent days). After completing Day 
1, participants who passed quality checks (see the 
Analyses section) were invited to complete the remain-
der of the experiment. The average accuracy across all 
days of the experiment was 75%.

The experiments were designed using the jsPsych 
library (Version 5.0.3; de Leeuw, 2015), and grid stimuli 
were created using in-house JavaScript code. To ensure 
that the stimulus size was similar for participants who 
completed the experiment on different screens, we 
used a procedure previously established in our lab 
(Bang et al., 2019) in which participants were asked to 
adjust the stimuli on the screen to match the size of 
real-life objects (a credit card or a quarter).

Sensitivity and bias measures

We computed the signal detection theory (Green & 
Swets, 1966; Macmillan & Creelman, 2005) parameters 
stimulus sensitivity (d′) and response criterion (c) to 
determine participants’ performance and degree of 
response bias on the tasks. These measures were cal-
culated on the basis of the observed hit rate and false-
alarm rate as follows:

 d′ φ φ= – –( ) – ( )1 1hit rate false alarm rate-

and

 c =− +( ( ) ( )),– – hit rate false alarm rate1 11

2
φ φ -

where φ–1 is the inverse of the cumulative standard nor-
mal distribution that transforms hit rate and false-alarm 
rate into z scores. Hit rate and false-alarm rate were 
defined by treating the letter X in Task 1 and blue circles 
in Task 2 as the target. Therefore, negative c values 
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indicate a bias for the letter X (Task 1) or the color blue 
(Task 2), whereas positive c values indicate a bias for 
the letter O (Task 1) or the color red (Task 2). The 
appropriateness of applying signal detection theory to 
the data here was ascertained by examining individual 
and group-level receiver operating characteristic (ROC) 
curves (see Fig. S1 in the Supplemental Material avail-
able online).

We further computed metacognitive sensitivity, 
which is a measure of one’s ability to distinguish between 
one’s own correct and incorrect judgments (Fleming & 

Lau, 2014). Similar to perceptual sensitivity, which 
reflects the strength of the relationship between one’s 
choices and the stimulus, metacognitive sensitivity 
reflects the strength of the relationship between one’s 
confidence ratings and the accuracy of the perceptual 
decisions. Higher metacognitive sensitivity implies that 
one’s confidence ratings are more informative regarding 
the accuracy of one’s judgments. We quantified meta-
cognitive sensitivity using the measure meta-d′ devel-
oped by Maniscalco and Lau (2012), which was derived 
on the basis of a signal detection model and is expressed 

Response
(Untimed)

Stimulus
(500 ms)

Confidence
(Untimed)

Feedback or Fixation
(500 ms)

Fixation
(500 ms)

Feedback Group

No-Feedback Group

Task 1

Task 2

Time

Fig. 1. Experimental tasks. Experiment 1 consisted of two tasks conducted in a single session. For both tasks, participants were required to 
indicate which of two stimulus classes occurred more frequently in a 7 × 7 grid (Task 1: dominant shape [O or X], Task 2: dominant color [red 
or blue]). After providing their response, participants were prompted to give confidence ratings on a scale from 1 to 4. In Task 1, approxi-
mately half of the participants received trial-by-trial feedback (feedback group), whereas the rest of the participants received no feedback 
at all (no-feedback group). In Task 2, neither group received feedback; this second task was used to investigate which effects of feedback 
would generalize to a new task. Experiment 2 consisted of only Task 1 but was conducted over 7 days.
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in the same units as the measure d′. Finally, we com-
puted metacognitive bias as one’s tendency to have 
confidence ratings that are too low or too high relative 
to one’s level of perceptual sensitivity (Fleming & Lau, 
2014). Metacognitive bias was calculated as the across-
participants Pearson’s correlation between d′ and aver-
age confidence for each participant. This measure was 
used to indicate the degree of confidence bias across 
participants; higher correlation coefficients are indica-
tive of better confidence calibration.

Analyses

All statistical analyses for both experiments were con-
ducted in MATLAB (The MathWorks, Natick, MA), and 
figures were generated in MATLAB and the R software 
environment (Version 4.0.2; R Core Team, 2020).

Experiment 1. Participants who performed at less than 
55% correct or greater than 95% correct were excluded 
from the analyses. These exclusions were made sepa-
rately for each of the two perceptual tasks; 48 participants 
were excluded from Task 1, and 47 were excluded from 
Task 2 (~11% exclusion rate in each task). Additionally, 
trials with reaction times (RTs) that were either too fast  
(< 200 ms) or too slow (> 2,000 ms) were excluded from 
the analyses (12.7% of individual trials were excluded 
from Task 1 and 12.5% were excluded from Task 2).

To determine the effect of feedback on perceptual 
sensitivity, we performed independent-samples t tests 
comparing d′ for the feedback and no-feedback groups. 
Response bias was assessed by comparing the across-
participants variability of the criterion c for each of the 
two groups using a two-tailed F test for equality of 
variances. (Note that because the equality-of-variances 
F test is two tailed whereas a standard analysis-of-
variance [ANOVA] F test is one tailed, the p value asso-
ciated with an F statistic from an equality-of-variances 
test with F > 1 is 2 times higher than the p value for 
the same F statistic obtained from an ANOVA.) Because 
strong bias results in very large positive or negative 
values of the criterion c, a distribution with low vari-
ability in the criterion values indicates the presence of 
smaller bias in the group, whereas a distribution with 
high variability in the criterion values indicates the 
presence of larger bias.

To determine the effect of feedback on metacogni-
tive sensitivity, we compared the feedback and no-
feedback groups using independent-samples t tests to 
assess differences in meta-d′ (i.e., metacognitive sensi-
tivity). On the other hand, to compare the size of meta-
cognitive bias between the two groups, we computed 
the d′–confidence correlation coefficient for each 
group, and the two values were compared using a 

standard z test for comparing two independent r values 
as follows:
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coefficient (r) and Ni is the sample size for the corre-
sponding group (i = 1 2, ).

We further investigated whether there were any feed-
back-related changes in decision and confidence RTs by 
conducting independent-samples t tests. In the analysis 
of confidence RTs, we additionally excluded trials with 
confidence RTs outside the range of 200 ms to 2,000 ms. 
In a separate analysis, we checked whether the differ-
ence in decision and confidence RTs for the feedback 
and no-feedback groups changed from Task 1 to Task 
2; for that analysis, we included participants with greater 
than 55% and less than 95% accuracy for both tasks and 
performed an independent-samples t test.

One limitation of our main signal detection theory 
analyses is that they do not take RT into account. There-
fore, it is possible that the feedback manipulation 
affected perceptual sensitivity but also resulted in 
emphasizing speed over accuracy (via a speed/accuracy 
trade-off), thus resulting in no d′ difference between 
the two feedback groups. To check for such a possibil-
ity, we fitted the drift-diffusion model (Ratcliff, 1978) 
to the response and RT data and computed the param-
eters drift rate (v), boundary separation (a), and non-
decision time (Ter) separately for the feedback and 
no-feedback groups. Note that the drift rate (v) reflects 
the perceptual sensitivity, the boundary (a) reflects the 
speed/accuracy trade-off, and the nondecision time 
(Ter) reflects the sensory and motor delays involved in 
the decision process. Therefore, comparing these three 
parameters between the two feedback groups allowed 
us to determine whether perceptual sensitivity was truly 
matched even when controlling for speed/accuracy 
trade-off. We used a simple version of the drift-diffusion 
model without variability parameters (Wagenmakers 
et al., 2007) in which the starting point of the accumu-
lation (z) is kept constant at a/2. This version has been 
previously found to better recover parameter changes 
in the drift-diffusion model (van Ravenzwaaij et  al., 
2017) and provides good fits to the data here (see Fig. 
S2 in the Supplemental Material).

We also computed d′ and meta-d′ in a hierarchical 
estimation framework that is more robust to small sam-
ple sizes and edge effects. We employed the HMeta-d 
toolbox (Fleming, 2017), which uses Markov chain 
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Monte Carlo sampling to estimate posterior distribution 
over model parameters. To assess the existence of group 
differences in d′ and meta-d′, we calculated the 95% 
highest-density intervals (HDIs) of the posteriors.

Finally, in addition to using frequentist statistics, we 
performed Bayesian analyses using JASP (Version 0.9.2; 
JASP Team, 2020) and MATLAB. When comparing 
groups, we report either the Bayes factor (BF) that 
denotes support for the null over the alternative hypoth-
esis (BF01) or the BF that denotes support for the alter-
native over the null hypothesis (BF10); higher values 
indicate stronger evidence in both cases (Masson, 
2011). For ANOVAs, we report BFinclusion, which indicates 
whether the observed data are more probable under 
models that include a particular factor. For all Bayesian 
analyses, the default priors in JASP were used.

Experiment 2. All analyses for Experiment 2 were con-
ducted in accordance with our preregistration and largely 
followed the analysis steps from Experiment 1. We first 
excluded participants and trials on the basis of our prereg-
istration criteria. We removed the data from the first six 
blocks of Day 1 for all participants because these blocks 
contained the trials from our staircase procedure. After 
completion of Day 1, data quality for each participant was 
assessed using the remaining data from that day, and we 
excluded participants from participating in Days 2 to 7 if 
they had (a) accuracy lower than 60% correct, (b) accuracy 
higher than 85% correct, or (c) more than 10% of decision 
RTs that were less than 200 ms or more than 2,000 ms. A 
total of 75 participants successfully completed all 7 days of 
the experiment, and 15 participants were excluded from 
analyses on the basis of the predetermined criteria, which 
included (a) performing at less than 55% correct across all 
7 days or (b) having more than 15% of decision RTs less 
than 200 ms or more than 2,000 ms. Lastly, as in Experi-
ment 1, individual trials with decision RTs considered too 
short (< 200 ms) or too long (> 2,000 ms) were excluded 
from the analyses (4.9% of individual trials).

To assess whether the feedback group had increased 
perceptual and metacognitive sensitivity compared with 
the no-feedback group over the 7 days of the experi-
ment, we conducted independent-samples t tests on the 
average d′ and meta-d′ across all seven sessions. Addi-
tionally, we performed a linear regression on task accu-
racy (percentage correct) as a function of block over 
the time course of the experiment for each participant, 
followed by an independent-samples t test comparing 
the slope of the regression between the feedback and 
no-feedback groups. We also conducted mixed ANOVAs 
with a between-subjects factor of group (feedback and 
no feedback) and a within-subjects factor of session 
(1–7) on d′ and meta-d′. Similar analyses on decision 

and confidence RTs are reported in Supplementary 
Results and in Fig. S3 (both in the Supplemental Mate-
rial). Lastly, Bayesian analyses were implemented to 
determine the strength of the evidence in support of 
the null hypothesis for all relevant nonsignificant effects.

Data and code

All data and codes for the analyses are freely available 
online at https://osf.io/94r87/. In addition, the complete 
data sets for both experiments have been uploaded to 
the Confidence Database (Rahnev et al., 2020).

Results

Experiment 1

To uncover whether feedback acts via automatic rein-
forcement mechanisms or deliberate changes in strat-
egy, we examined the effect of trial-by-trial feedback 
on participants’ sensitivity and bias in both perceptual 
and metacognitive judgments. Participants completed 
a perceptual task that required them to indicate whether 
more Xs or Os were presented in a 7 × 7 grid (Fig. 1). 
Each participant was randomly assigned to a feedback 
or no-feedback group; the former group received trial-
by-trial feedback, and the latter did not receive any 
feedback. To investigate how the effects of feedback 
generalize to a novel task, we had all participants com-
plete a second perceptual task where no feedback was 
given, in which they judged whether more red or blue 
circles appeared in a 7 × 7 grid (Fig. 1). We first exam-
ined the effects of feedback in Task 1 and later explored 
which of these effects generalized to Task 2.

Trial-by-trial feedback has no effect on perceptual 
or metacognitive sensitivity. We first sought to deter-
mine whether trial-by-trial feedback can affect behavior 
via automatic reinforcement mechanisms, which would 
be manifested in feedback increasing perceptual sensitiv-
ity. To do so, we compared d′ values for the feedback 
and no-feedback groups. We found that perceptual sen-
sitivity computed over all trials was virtually identical 
across the two groups (feedback: d′ = 1.79, no feedback: 
d′ = 1.80), t(392) = −0.16, p = .87, Cohen’s d = −0.02 (Fig. 
2a). We further investigated whether this null effect was 
due to a lack of power or whether our data can provide 
positive evidence for a lack of difference between the two 
groups. We therefore conducted a Bayesian independent-
samples t test, which showed that the data strongly sup-
ported the null hypothesis of no difference between the 
two groups (BF01 = 8.9). We also replicated the lack of d′ 
difference in the two groups using a hierarchical estimation 

https://osf.io/94r87/
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framework (feedback: d′ = 1.78, no feedback: d′ = 1.72; 
95% HDI = [–0.33, 1.03]).

Despite the absence of overall differences in percep-
tual sensitivity between the feedback and no-feedback 
groups, it could be argued that trial-by-trial feedback 
may still have had a beneficial effect on perceptual 
accuracy. Specifically, it is possible that the effects of 
trial-by-trial feedback take time to manifest, and there-
fore, analyzing all 330 task trials together may mask the 
beneficial effects of feedback on perceptual sensitivity 
that may emerge only later in the task. To investigate 
this possibility, we considered the data only from the 
second half of the task and again found no difference 
between the two groups (feedback: d′ = 1.88, no feed-
back: d′ = 1.84), t(388) = 0.59, p = .56, Cohen’s d = 0.06, 
BF01 = 7.6. Similar results were further obtained if d′ 
for the last n blocks of 30 trials were analyzed for n 
between 1 and 10 (all ps > .72; all BF01s > 8.4). We also 
considered the rate of learning by performing a linear 
regression using trial number to predict task accuracy 
(percentage correct) and found that the rate of learning 
correlated with both perceptual and metacognitive sen-
sitivity (see Fig. S4 in the Supplemental Material). Criti-
cally, there was significant learning, as indicated by a 
positive regression slope for both the feedback group 
(slope = 1 2 10 3. × − ), t(199) = 6.65, p = 2 8 10 10. × − , Cohen’s 
d = 0.47, and no-feedback group (slope = 1.1 × 10−3), 
t(193) = 4.49, p = 1 2 10 5. × − , Cohen’s d = 0.33; there was 
no difference between the two groups, t(392) = 1.45,  
p = .15, Cohen’s d = 0.15, BF01 = 3.3 (Fig. 3).

Finally, it is possible that a gain in sensitivity for the 
feedback group was obscured by faster responding 
driven by an altered speed/accuracy trade-off. To check 
for this possibility, we fitted the drift-diffusion model 
to the data and found no difference between the feed-
back and no-feedback groups in drift rate v (feedback: 
v = .110, no feedback: v = .106), t(392) = 0.89, p = .37, 
Cohen’s d = 0.09, BF01 = 6.1. Overall, our results show 
that trial-by-trial feedback had virtually no effect on 
perceptual sensitivity regardless of how sensitivity was 
assessed, thus suggesting that feedback does not affect 
choice behavior via direct reinforcement mechanisms.

However, even if feedback does not affect the  
perceptual decisions via automatic reinforcement mech-
anisms, it is possible that it affects higher level meta-
cognitive judgments via such mechanisms. Such an 
effect would be manifested in trial-by-trial feedback 
improving participants’ metacognitive sensitivity. To 
investigate this possibility, we computed the measure 
of metacognitive sensitivity meta-d′ (Maniscalco & Lau, 
2012) and compared it between the feedback and no-
feedback groups. We again found no effect of feedback 
(feedback: meta-d′ = 1.23, no feedback: meta-d′ = 1.33), 
t(392) = −1.29, p = .20, Cohen’s d = −0.13, BF01 = 4.0 
(Fig. 2b). Similar effects were again obtained for the 
second half of the task (feedback: meta-d′ = 1.21, no 
feedback: meta-d′ = 1.30), t(388) = −1.12, p = .26, 
Cohen’s d = −0.11, BF01 = 4.9, as well as when using  
a hierarchical estimation framework to estimate meta-
cognitive efficiency (M-ratio = meta-d′/d′; feedback: 

a b
Perceptual Sensitivity (d ′) Metacognitive Sensitivity (Meta-d ′)

Feedback

No Feedback

Meta-d ′
−1 0 1 3 420 1 32

d ′

Fig. 2. Effects of feedback on perceptual and metacognitive sensitivity in Task 1, Experiment 1. Density distributions and box plots for each 
of the two feedback groups are shown separately for (a) perceptual sensitivity (d′) and (b) metacognitive sensitivity (meta-d′). Box plots show 
the median (vertical line) and the interquartile (25%–75%) range, and the whiskers indicate the 2% to 98% range. Dots indicate individual 
participant data. Raincloud plots were adapted from the study by Allen et al. (2019).
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M-ratio = .73, no feedback: M-ratio = .75; 95% HDI = 
[–0.09, 0.06]). Taken together, these findings demon-
strate that trial-by-trial feedback did not affect either 
perceptual or metacognitive sensitivity in our task and 
therefore did not act via direct reinforcement mecha-
nisms at the level of either the perceptual or metacogni-
tive judgments.

Trial-by-trial feedback reduces bias in perceptual 
and metacognitive judgments. The results so far demon-
strate that feedback does not act via automatic reinforce-
ment mechanisms but do not elucidate whether feedback 
affects participants’ strategies. To examine how feedback 
affects participants’ strategic behavior, we analyzed how the 
presence of trial-by-trial feedback influenced bias in percep-
tual and metacognitive judgments.

We quantified the bias in the perceptual task using 
the signal detection theory measure c, which indicates 
the location of the response criterion. Large negative 
values of c indicate a strong bias toward the letter X, 
large positive values indicate a strong bias toward the 
letter O, and values close to zero indicate a lack of bias. 
Both the feedback and no-feedback groups had a mean 
value of c close to zero and were not different from 
each other (feedback: c = −.03, no feedback: c = −.02), 
t(392) = −0.50, p = .62, Cohen’s d = −0.05, BF01 = 8.0, 
indicating that neither group as a whole had a bias 
toward a particular stimulus category (neither the Os 
nor the Xs were preferred in the whole sample of 
participants).

Critically, we tested for a reduction in bias due to 
feedback, which should manifest as criterion values in 

the feedback group becoming less extreme and there-
fore having smaller variance. This is exactly what we 
found: The feedback group (SD = .21) had smaller 
variability of criterion scores than the no-feedback 
group (SD = .25), and the difference was statistically 
significant, F(199, 193) = 0.74, p = .035, F test of equal-
ity of variances (Fig. 4). An alternative way to test for 
a decrease in bias is to examine whether the absolute 
value of the criterion c decreased with feedback. How-
ever, the absolute values are not normally distributed 
(given that they are bound by zero), which necessitates 
the use of the less powerful Wilcoxon signed-rank test. 
Consequently, we found that although the absolute 
value of the bias was smaller for the feedback group 
(0.165) than for the no-feedback group (0.194), the 
difference was only marginally significant (z = −1.85,  
p = .065). Control analyses in which bias was analyzed 
via the variance of the distribution of criterion values 
in mini blocks of 10 trials suggested that this reduction 
in bias emerged very quickly and could already be 
detected by the end of the first block of 30 trials (see 
Fig. S5 in the Supplemental Material). These results are 
consistent with the notion that trial-by-trial feedback 
allowed participants to adjust their response strategy, 
thus reducing bias.

Given that trial-by-trial feedback induced a strategic 
change in bias in the perceptual judgment, we investi-
gated whether a similar strategic change would also 
occur for the metacognitive judgment. Conceptually, 
metacognitive bias is the propensity of the overall 
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confidence ratings of a given participant to deviate from 
the overall sensitivity of that same participant (Fleming 
& Lau, 2014). For example, participants with a high 
metacognitive bias may have either low perceptual sen-
sitivity but high average confidence or high perceptual 
sensitivity but low average confidence. Conversely, par-
ticipants with low metacognitive bias would have both 
high perceptual sensitivity and high average confidence 
or low perceptual sensitivity and low average confi-
dence. Note that because confidence was collected on 
a scale ranging from 1 to 4, in which the different 
options on the confidence scale were not directly asso-
ciated with different accuracy levels, it is impossible to 
quantify an individual participant’s metacognitive 
bias in isolation. However, it is possible to determine 

whether the feedback and no-feedback groups differ 
in how strongly average perceptual sensitivity and aver-
age confidence are related across participants; a weaker 
relationship would indicate the presence of larger meta-
cognitive biases (note that this measure captures rela-
tive bias across participants but not other possible 
biases such as overconfidence or underconfidence 
within each group).

We therefore investigated the presence of metacogni-
tive bias in the feedback and no-feedback groups by 
correlating the perceptual sensitivity (d′) and the aver-
age confidence across participants for each group. We 
found no significant correlation between d′ and average 
confidence in the no-feedback group (r = .006, p = .94; 
Fig. 5a) but a significant positive correlation in the 

a b

c
p = .008 

0.6

0.5

0.4

0.3

0.2

0.1

−0.1

−0.2

0
r = .006

r = .27

r = .27 

4

3

2

1

2 31 2 31

4

3

2

1 p = .0001 
r = .006 
p = .94 

d ′ d ′

Co
nfi

de
nc

e

Co
nfi

de
nc

e

Co
rr

el
at

io
n 

(r
)

No Feedback Feedback

No-Feedback Group Feedback Group

Fig. 5. Effects of feedback on metacognitive bias in Task 1, Experiment 1. The scatterplots show the correlation between 
d′ and average confidence for the (a) no-feedback group and (b) feedback group. Each point represents a single partici-
pant; the dark gray line indicates the line of best fit. The bar graph (c) shows the correlation coefficients (r values) in 
each of the two feedback groups, together with the p value from a statistical test that compares their magnitude. Error 
bars depict standard errors of the mean.



268 Haddara, Rahnev

feedback group (r = .27, p = .0001; Fig. 5b). Critically, 
the difference between the r values of the two feedback 
groups was statistically significant (p = .008, z test for 
comparing r values; Fig. 5c). These results are again 
consistent with the notion that participants in the feed-
back group were able to strategically reduce their meta-
cognitive biases, which led to a stronger across-participants 
association between sensitivity and confidence in that 
group.

Trial-by-trial feedback decreases RTs. Beyond exam-
ining the effect of trial-by-trial feedback on sensitivity and 
bias in perceptual and metacognitive judgments, we also 
explored the effect of feedback on RTs. We first verified 
that decision RTs were faster for trials with correct 
responses than trials with errors, t(393) = 19.6, p = 3.5 × −10 60,  
Cohen’s d = 0.98, and for high compared with low confi-
dence ratings, t(393) = −21.8, p = 1.5 10 69× − , Cohen’s d = 
−1.097, thus confirming that we could replicate known 
effects from the literature. Critically, we found that partici-
pants in the feedback group exhibited faster decision RTs 
(mean RT = 607 ms) than participants in the no-feedback 
group (mean RT = 699 ms), which is a highly significant 
difference, t(392) = −5.57, p = 4 7 10 8. × − , Cohen’s d = 
−0.56, BF10 = 2 2 105. ×  (Fig. 6a). Additional analyses with 
the drift-diffusion model (which found no difference in 
drift rate between the groups; see above) suggested that 
this effect was driven primarily by a feedback-induced 
decrease in nondecision time Ter (feedback: Ter = .23, no 
feedback: Ter = .30), t(392) = −5.05, p = 6 7 10 7. × − , Cohen’s 
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Fig. 6. Effects of feedback on both decision and confidence reaction times (RTs) in Task 1, Experiment 1. Density distributions and box 
plots for each of the two feedback groups are shown separately for (a) decision RTs and (b) confidence RTs. Box plots show the median 
(vertical line) and the interquartile (25%–75%) range, and the whiskers indicate the 2% to 98% range. Dots indicate individual participant data.

d = −0.51, BF10 = 1 8 104. × , although there was also a 
small effect on boundary separation a (feedback: a = 
.133, no feedback: a = .137), t(392) = −2.81, p = .005, 
Cohen’s d = −0.28, BF10 = 4.9. Moreover, we found a simi-
lar effect for the RTs for the confidence response; specifi-
cally, the feedback group had lower confidence RTs 
(mean confidence RT = 443 ms) than the no-feedback 
group (mean confidence RT = 501 ms), t(392) = −4.54,  
p = 7 4 10 6. × − , Cohen’s d = −0.46, BF10 = 1 9 103. ×  (Fig. 6b), 
demonstrating that the feedback-induced response 
speedup was present for both the perceptual and confi-
dence judgments.

Generalization of the effect of feedback to a second 
task. Beyond establishing the effects of trial-by-trial 
feedback on different variables of interest, we wanted to 
explore whether any of these effects would generalize to 
a new task. For this reason, we included a second task 
that was designed to be very similar to the first one while 
tapping into a different perceptual dimension. We there-
fore chose a task that requires participants to discrimi-
nate color rather than shape. Specifically, participants 
indicated whether more circles were red or blue (other 
aspects of the task were identical to the first; Fig. 1). 
None of the participants received feedback in Task 2.  
All analyses tested whether the effects of feedback in 
Task 1 extended to Task 2 in the absence of task-specific 
feedback.

Given that trial-by-trial feedback had no effect on 
perceptual or metacognitive sensitivity in Task 1, the 
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feedback and no-feedback groups from Task 1 also 
predictably did not differ significantly in Task 2 in either 
perceptual sensitivity (feedback: d′ = 1.74, no feedback: 
d′ = 1.67), t(393) = 1.31, p = .19, Cohen’s d = 0.13,  
BF01 = 4.0, or metacognitive sensitivity (feedback: meta-
d′ = 1.15, no feedback: meta-d′ = 1.20), t(393) = −0.57, 
p = .57, Cohen’s d = −0.06, BF01 = 7.7 (Figs. 7a and 7b). 
Unlike in Task 1, we did not observe significant learn-
ing over the course of the 150 trials in Task 2, poten-
tially because of the smaller number of trials in that 
task. Interestingly, the accuracy in Task 2 was slightly 
higher in the initial trials for the feedback group, but 
this effect was not statistically significant (see Fig. S6 
in the Supplemental Material). Thus, trial-by-trial feed-
back in Task 1 had no effect on perceptual or meta-
cognitive sensitivity in either Task 1 or Task 2.

More importantly, the presence of trial-by-trial feed-
back in Task 1 also had no effect on bias in the per-
ceptual and metacognitive judgments in Task 2. 
Specifically, we found no difference in the variability 
of response criterion c (feedback: SD = .37, no feed-
back: SD = .36), F(200, 193) = 1.03, p = .81, F test of 
equality of variances (Fig. 7c), or in the absolute value 
of the criterion c (z = .53, p = .6) between the two 
feedback groups in Task 2. Similarly, the d′–confidence 
correlation that was modulated by feedback in Task 1 
did not differ between the two groups in Task 2 (feed-
back: r = .002, p = .98; no feedback: r = −.08, p = .30; 
difference between the two r values: p = .45; Fig. 7d). 
Therefore, trial-by-trial feedback appears to allow  
participants to reduce their bias in the specific task  
in which such feedback is provided but does not  
allow for generalization even to a very similar task as 
long as the new task employs a different perceptual 
dimension.

Despite the lack of generalization of the effects of 
trial-by-trial feedback on bias, we found such general-
ization for RT. Indeed, participants who received feed-
back in Task 1 were significantly faster on Task 2 even 
though participants in Task 2 did not receive feedback 
(feedback: RT = 610 ms, no feedback: RT = 657 ms), 
t(393) = −2.69, p = .007, Cohen’s d = −0.27, BF10 = 3.6 
(Fig. 7e). However, it is worth noting that the decision-
RT difference between the two groups was 92 ms in 
Task 1 and decreased by almost half to 47 ms in Task 
2, and the difference in the RT effect in the two tasks 
was significant, t(376) = −4.93, p = 1 2 10 6. × − , Cohen’s  
d = −0.51. The effects of feedback on decision RTs in 
Task 2 also extended to confidence RTs (feedback: RT = 
392 ms, no feedback: RT = 434 ms), t(393) = −3.49, p = 
.0005, Cohen’s d = −0.35, BF10 = 37.2 (Fig. 7f). Thus, 
receiving trial-by-trial feedback allows participants to 
respond faster not only on the task in which feedback 

is given but also on a new task in which the perceptual 
dimension changes.

Experiment 2

Experiment 1 demonstrated that trial-by-trial feedback 
provided over the course of 330 trials did not improve 
either perceptual or metacognitive sensitivity. Neverthe-
less, it is possible that the effects of feedback take 
longer to manifest and possibly require exposure over 
multiple days. Therefore, in Experiment 2, we examined 
the effects of feedback over the course of 7 days of 
training with 500 trials per day. As noted in our prereg-
istration, because Experiment 2 included only 60 par-
ticipants (after exclusions), it did not have sufficient 
power to examine bias effects, and our goal was solely 
to test whether feedback affected perceptual and meta-
cognitive sensitivity. Nevertheless, for completeness, 
we examine criterion variability and RT in Supplemen-
tary Results and also explore whether initial perfor-
mance during the thresholding was related to the  
rate of improvement (see Fig. S7 in the Supplemental 
Material).

To determine whether feedback enhanced percep-
tual sensitivity over the course of training, we con-
ducted a mixed ANOVA with a between-subjects factor 
of group (feedback and no feedback) and a within-
subjects factor of day (1–7). We found no significant 
difference in d′ between the feedback and no-feedback 
groups, F(1, 58) = 0.43, p = .51, ηp

2 = .007, BF01 = 1.9 
(Fig. 8a). Critically, the feedback group exhibited 
slightly lower d′ values, and a directed, one-sided 
Bayesian independent-samples t test that specifically 
tested whether trial-by-trial feedback increased d′ found 
substantial evidence for the null hypothesis (BF01 = 5.8). 
Further, perceptual sensitivity d′ increased over the 
course of the 7 days of training—main effect of day: 
F(6, 348) = 8.31, p < .0001, ηp

2 = .13, BF10 = 4 3 105. ×
—but this increase was similar for both groups—inter-
action between group and day: F(6, 348) = 1.50, p = 
.18, ηp

2 = .03, BFinclusion = .21. Examining the rate of 
increase over the course of training again showed that 
there was no difference between the two groups (feed-
back: slope = .026, no feedback: slope = .044), t(58) = 
−1.14, p = .26, Cohen’s d = 0.30, BF01 = 2.2, and the 
slope for the no-feedback group was numerically 
higher. Conducting a directed, one-sided test confirmed 
that there is substantial evidence against the hypothesis 
that feedback increased the rate of learning (BF01 = 8.5). 
Together, these findings indicate that trial-by-trial feed-
back, even when provided over the course of multiple 
days and a total of 3,500 trials, does not improve sen-
sitivity on a perceptual task. It should be noted that the 
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BF01 scores were lower than 3 in both two-sided tests, 
suggesting that although we have substantial evidence 
that feedback did not improve perceptual sensitivity, 
there is only anecdotal evidence that it did not change 
perceptual sensitivity because we cannot convincingly 
reject the (arguably nonsensical) possibility that feed-
back decreased sensitivity.

In addition to perceptual sensitivity (d′), we exam-
ined whether feedback had an effect on metacognitive 
sensitivity (meta-d′). We conducted an ANOVA equiva-
lent to the one for the d′ analyses above and found no 
evidence that feedback affected meta-d′—main effect 
of group: F(1, 58) = 2.29, p = .14, ηp

2 = .04, BF01 = 1.2; 
interaction between group and day: F(6, 348) = 0.43, p = 
.86, ηp

2 = .007, BFinclusion = .02 (Fig. 8b). As with d′, the 
feedback group showed slightly lower meta-d′ scores, 
and a directed, one-sided Bayesian independent- 
samples t test confirmed that there is substantial evi-
dence against the hypothesis that feedback increased 
meta-d′ (BF01 = 8.6). The rate of increase in meta-d′ 
was also similar between the two groups (feedback: 
slope = .015, no feedback: slope = .023), t(58) = −0.58, 

p = .56, Cohen’s d = −0.18, BF01 = 3.3, and again, the 
rate of increase was slightly higher for the no-feedback 
group. Taken together, these results show that even 
a much longer period of trial-by-trial feedback does 
not affect either perceptual or metacognitive sensitiv-
ity, thus providing additional evidence against the 
notion that feedback acts via direct reinforcement 
mechanisms.

Discussion

Feedback is one of the most universal and powerful 
ways in which behavior can be improved across 
domains as diverse as educational, work, and sports 
settings, as well as a myriad of cognitive tasks (Hattie 
& Timperley, 2007). However, the mechanisms through 
which feedback affects behavior remain unclear. Spe-
cifically, two very different accounts coexist in the  
literature: Feedback could have a direct effect on perfor-
mance through automatic reinforcement mechanisms 
(Petrov et al., 2005; Thorndike, 1927), or alternatively, 
feedback may have only an indirect effect mediated by 
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a deliberate change in strategy (Vollmeyer & Rheinberg, 
2005). Perceptual decision-making and metacognition 
provide ideal test beds for adjudicating between these 
two possibilities. In both cases, a direct effect via rein-
forcement mechanisms would predict an increase in 
perceptual and metacognitive sensitivity, whereas an 
indirect effect mediated by altered strategies would 
predict an exclusive effect on perceptual and metacog-
nitive bias. Our results demonstrate that feedback does 
not affect perceptual or metacognitive sensitivity but 
reduces both perceptual and metacognitive bias. These 
findings strongly suggest that, in the context of simple 
perceptual tasks, explicit feedback affects behavior  
not via direct reinforcement mechanisms but by allow-
ing participants to deliberately adjust their response 
strategy.

It is hardly surprising that trial-by-trial feedback 
allows people to alter their strategies. In fact, a large 
literature has already shown that different types of feed-
back can readily debias confidence ratings in diverse 
tasks (Benson & Önkal, 1992; Lichtenstein & Fischhoff, 
1980; Stone & Opel, 2000). In the context of our experi-
ment, participants biased toward choosing X can easily 
notice that they are wrong more frequently when pick-
ing the X response and consequently decide to select 
O more often, thus reducing their original bias. Simi-
larly, when overconfident participants receive feedback 
about being wrong, this feedback allows them to lower 
their confidence ratings, thus improving their confi-
dence calibration.

A more controversial question is whether feedback 
also has a direct effect on behavior via automatic rein-
forcement mechanisms. For example, much of the 
behaviorist tradition was able to achieve substantial 
success in training animals under the assumption that 
feedback exclusively acts to strengthen desirable stim-
ulus–response associations outside of any need to posit 
cognitive constructs such as strategy (Skinner, 1938; 
Thorndike, 1927). Nevertheless, it is important to note 
that whether or not the experimenter poses the exis-
tence of cognitive strategies does not preclude their 
existence, for both humans and animals. In fact, our 
results strongly question the theory that feedback has 
a direct, automatic influence on behavior outside of the 
strategies adopted by the participant.

The current findings help resolve a longstanding 
controversy in the field of perceptual decision-making 
about the effects of feedback on sensitivity. A close 
examination of this literature reveals several issues that 
preclude drawing strong conclusions from previous 
studies. First and foremost, with total sample sizes rang-
ing from six to 36 participants further split into groups 
(except Shiu & Pashler, 1992), no study was sufficiently 

powered. Second, researchers claiming to find a posi-
tive effect of feedback on sensitivity sometimes did not 
conduct a direct statistical comparison between the 
feedback and no-feedback groups (Seitz et al., 2006). 
Finally, in the rare cases in which a statistically signifi-
cant difference was observed, the difference occurred 
for some but not other conditions and only for certain 
time points during training (Ball & Sekuler, 1987). These 
factors suggest that previous claims that feedback 
improves sensitivity may have been based more on the 
seeming plausibility of this claim rather than the 
strength of the evidence. The converging evidence from 
our two well-powered experiments (consisting of more 
than 200,000 trials each) implies that previous positive 
results could have been statistical aberrations caused 
by a combination of small sample sizes and preexisting 
assumptions that feedback must improve perceptual 
sensitivity.

The present work is also the first to demonstrate that 
feedback reduces response bias in perceptual decision-
making. Note that our design allowed us to examine a 
true, nondirectional reduction in response bias by inves-
tigating whether the variability of the response criterion 
was smaller in the feedback group (for a similar analysis, 
see Hu & Rahnev, 2019). Instead, previous studies exam-
ined only directional changes in bias by exploring 
whether the response criterion had an overall increase 
or decrease (Aberg & Herzog, 2012; Goldhacker et al., 
2014; Jones et al., 2015; Petrov et al., 2006; Wenger et al., 
2008). However, a change in bias in a specific direction 
signifies only that participants have started to choose 
one response option over the other; such an effect can-
not in and of itself be interpreted as either a reduction 
or an increase in bias.

The current study also sheds light on the question 
of what components of feedback-induced learning gen-
eralize to a new task. We found that the effects of 
feedback on perceptual and metacognitive bias were 
task specific and did not generalize to a new task. This 
lack of generalization may be driven by the fact that 
different kinds of processes lead to the response bias 
observed in different tasks. For example, the bias in the 
X/O task is likely independent from the bias in the red/
blue task, and thus reducing the former has no effect 
on the latter. Nevertheless, in our Experiment 1, feed-
back helped participants reduce their RTs, and this 
effect generalized to a new task. It is likely that this 
generalization was at least in part driven by the fact 
that the second task had the exact same timing structure 
as the first one. Future studies should examine whether 
this feedback-related RT advantage generalizes to tasks 
that differ in other aspects such as the timing and struc-
ture of the task.
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An important limitation of our work is that it used 
only simple perceptual tasks. It is therefore an open 
question of whether the same effects would be obtained 
in the context of more complex tasks, and especially 
outside of the domain of perception. Nevertheless, our 
results fit well with the findings in fields outside of per-
ceptual decision-making and metacognition. For exam-
ple, Kantner and Lindsay (2010) showed that trial-by-trial 
feedback does not affect memory sensitivity across dif-
ferent experimental conditions chosen to create a feed-
back advantage. Even more tellingly, Kluger and DeNisi 
(1996) conducted an extensive review and showed that 
feedback in education can have either a positive or a 
negative effect on subsequent performance. They argued 
that the widespread assumption in education research 
that feedback always leads to improvement is false and 
suggested that the effect of feedback is determined by 
a number of mediating factors, which has been sub-
sequently confirmed by other studies, too (Hattie &  
Timperley, 2007; Vollmeyer & Rheinberg, 2005). Another 
limitation of our study is that even though the decreases 
in perceptual and metacognitive bias are consistent with 
an effect of feedback on participants’ conscious strate-
gies, it remains possible that other types of automatic 
effects contributed to them. Nevertheless, such a pos-
sibility is made unlikely by the finding that the perceptual- 
bias effects emerged very quickly within the first 30 trials 
and remained largely stable afterward (see Fig. S5), 
which is more consistent with an early strategy adjust-
ment than a slow automatic process. A final limitation is 
that our participants were recruited via Amazon Mechan-
ical Turk and were based only in the United States; 
therefore, future studies should test whether our findings 
generalize to other populations.

In conclusion, we found that trial-by-trial feedback 
reduces response bias and improves confidence calibra-
tion but does not affect perceptual or metacognitive 
sensitivity. These results strongly suggest that, at least 
in the context of perception, feedback acts via modify-
ing participants’ strategies for completing the task but 
has no direct, mediator-free effect on learning.
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