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A B S T R A C T

Predictive cues induce large changes in people’s choices by biasing responses towards the expected stimulus
category. At the same time, even in the absence of predictive cues, humans often exhibit substantial intrinsic
response biases. Despite the ubiquity of both of these biasing effects, it remains unclear how predictive cues
interact with intrinsic bias. To understand the nature of this interaction, we examined data across three previous
experiments that featured a combination of neutral cues (revealing intrinsic biases) and predictive cues. We
found that predictive cues decreased the intrinsic bias to about half of its original size. This result held both when
bias was quantified as the criterion location estimated using signal detection theory and as the probability of
choosing a particular stimulus category. Our findings demonstrate that predictive cues reduce but do not
eliminate intrinsic response bias, testifying to both the malleability and rigidity of intrinsic biases.

1. Introduction

Perceptual decision making is the process of making a judgment
about the identity of a stimulus based on the available sensory in-
formation (Hanks & Summerfield, 2017). Perceptual decisions can be
described as a combination of two quantities: stimulus sensitivity,
which quantifies a subject’s intrinsic ability to perform the task, and
response bias, which quantifies a subject’s propensity to choose one
stimulus category over another (Green & Swets, 1966). Stimulus sen-
sitivity and response bias together determine how a subject responds to
any given stimulus. However, although stimulus sensitivity has been
the object of intense study, response bias remains poorly understood.

Two main sources of response bias have been described in the lit-
erature. First, response bias can be manipulated experimentally by
providing unequal priors or rewards (Fig. 1A) (Ackermann & Landy,
2015; Bohil & Maddox, 2001, 2003; Busemeyer & Myung, 1992; Healy
& Kubovy, 1981; Maddox & Bohil, 1998; Maddox & Dodd, 2001;
Maddox, 2002). Here we specifically focus on manipulations in which
predictive cues indicate on a trial-by-trial basis the stimulus category
that is more likely to occur (Cheadle, Egner, Wyart, Wu, &
Summerfield, 2015; Jiang, Summerfield, & Egner, 2013; Kok, Mostert,
& de Lange, 2017; Kok, Rahnev, Jehee, Lau, & De Lange, 2012; Morales
et al., 2015; Todorovic & de Lange, 2012). Such predictive cues change
subjects’ priors for the two stimulus categories and induce a corre-
sponding bias in subjects’ responses (for reviews, see Rahnev &
Denison, 2018; Summerfield & de Lange, 2014).

The other source of response bias is the intrinsic propensity of

subjects to prefer one stimulus category over another (Fig. 1B). Humans
are known to have stable idiosyncratic biases that differ from subject to
subject (Finlayson, Papageorgiou, & Schwarzkopf, 2017; García-Pérez &
Alcalá-Quintana, 2011; Kosovicheva & Whitney, 2017; Linares, Aguilar-
Lleyda, & López-Moliner, 2019; Wexler, Duyck, & Mamassian, 2015).
We recently showed that these biases are robust across multiples days of
the same experiment and extend to even the simplest two-choice per-
ceptual tasks (Rahnev & Denison, 2018).

Although the existence of biases induced by predictive cues or in-
trinsic factors is well established, it has remained unclear how these
two sources of bias interact with each other. Specifically, three alter-
native possibilities could potentially describe this interaction.

First, predictive cues may completely eliminate the intrinsic bias.
We call this the “eliminate” hypothesis; it corresponds to the intuition
that intrinsic response biases are malleable and could be eliminated
when external priors are presented. This hypothesis predicts that the
average of the criteria corresponding to the cues predicting each sti-
mulus category would center on no-bias criterion location (Fig. 1C).

Second, predictive cues may maintain the intrinsic bias and simply
stretch it to accommodate the new information regarding priors. We
call this the “maintain” hypothesis; it corresponds to the intuition that
the intrinsic response bias may be rigid and thus could become the new
baseline around which any experimental manipulations operate. This
hypothesis predicts that the average of the criteria corresponding to the
cues predicting each stimulus category would center on criterion lo-
cation for the intrinsic bias (Fig. 1D).

Third, predictive cues may reduce but not eliminate the intrinsic
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bias. We call this the “reduce” hypothesis; it corresponds to the intui-
tion that the intrinsic response bias may be both malleable and rigid.
This hypothesis predicts that the average of the criteria corresponding
to the cues predicting each stimulus category would typically fall in-
between the no-bias and intrinsic bias criterion locations (Fig. 1E).

In order to adjudicate between these competing hypotheses, we re-
analyzed data from three previous experiments (Bang & Rahnev, 2017;
de Lange, Rahnev, Donner, & Lau, 2013; Rahnev, Lau, & De Lange,
2011). Each experiment featured an expectation manipulation such
that, on a trial-by-trial basis, a predictive cue indicated which stimulus
category is more likely to occur. Three types of cues were used in each
case: cues predicting the first stimulus category, cues predicting the
second stimulus category, and neutral cues with no predictive value.
This design allowed us to investigate how biases induced by each of the
two predictive cues interact with subjects’ intrinsic biases in the neutral
cue condition. To anticipate, the results strongly supported the “reduce”
hypothesis: Predictive cues reduced (by about half) but did not elim-
inate intrinsic response bias.

2. Methods

2.1. Subjects

A total of 72 healthy subjects participated in the three experiments
(30 subjects in Experiment 1, 23 subjects in Experiment 2, and 19
subjects in Experiment 3). All three experiments were previously pub-
lished (Bang & Rahnev, 2017; de Lange et al., 2013; Rahnev et al.,
2011). In Experiment 2, two subjects were excluded in the original
publication due to chance-level performance; the same subjects were
excluded in the analyses here too. The original sample sizes were out-
side of our current control and were individually too small for reliable
parameter estimates in the context of our Binomial and regression tests.
Therefore, we combined the data from the three experiments, giving us
a total of 70 subjects. This sample allows us to detect even relatively
small effect sizes. For completeness, we still report the results of all
analyses as run on each individual experiment. All subjects had normal
or corrected-to-normal vision and gave written informed consent. All
experiments were approved by the local Institutional Review Board.

Fig. 1. Interaction between predictive cues and intrinsic response bias. Gaussian stimulus distribution for stimuli from Categories 1 and 2 are displayed in gray and
black, respectively. (A) Standard predictive cues assumption. A neutral cue with no predictive value is typically assumed to result in an unbiased criterion placed at
the intersection of the two Gaussian distributions. Predictive cues indicating that Category 1 or Category 2 is more likely to occur are assumed to lead to a symmetric
shift in the criterion location around the neutral cue criterion. (B) Presence of intrinsic bias. Even though subjects should place their criterion at the intersection of the
two Gaussian distributions, it is often the case that intrinsic biases shift the criterion away from that location. In the case depicted here, the intrinsic bias favors
Category 1. (C) “Eliminate” hypothesis: predictive cues eliminate intrinsic response bias. If so, the midpoint of the two predictive criteria (magenta) overlaps with the
no-bias criterion (black). (D) “Maintain” hypothesis: predictive cues maintain intrinsic response bias. If so, the midpoint of the two predictive criteria (magenta)
overlaps with the intrinsic response bias criterion (green). (E) “Reduce” hypothesis: predictive cues reduce intrinsic response bias. If so, the midpoint of the two
predictive criteria falls in-between the no-bias and intrinsic bias criteria. Cat 1, Category 1; Cat 2, Category 2. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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2.2. Experiment selection

We analyzed all relevant experiments for which we had access to the
raw data. Because each of these experiments had a relatively small
sample size (N ≤ 30), we conducted a comprehensive search for pub-
lished papers that contain data relevant to our current analyses.
However, this search failed to produce any studies with sample sizes
larger than the experiments already included here (sample size
range= 6–23). Therefore, we elected to only analyze the data from
Bang and Rahnev (2017), Rahnev et al. (2011), and de Lange et al.
(2013) for which we already had the raw data.

2.3. Commonality in experimental design for experiments 1–3

The three experiments differed in a number of dimensions.
However, they were chosen for re-analysis here because of the com-
monality between them. Specifically, each experiment featured a
combination of three cues: a cue predicting the first stimulus category, a
cue predicting the second stimulus category, and a neutral cue with no
predictive value. The predictive cues were valid in 66.67% of the trials
in Experiment 1, and in 75% of trials in Experiments 2 and 3. The
neutral cue always signified that each stimulus category is equally
likely to occur. The presence of these three cue types allowed us to
examine the interaction of the bias induced by the predictive cues with
the bias observed for neutral cues. Full experimental details can be
found in the original publications; below we highlight the most relevant
design characteristics of each experiment.

2.4. Experiment 1 design

Experiment 1 was originally reported in Bang and Rahnev (2017).
Subjects’ task was to indicate whether the overall direction of a series of
Gabor patches had an overall tilt to the left (i.e., clockwise) or to the
right (i.e., counterclockwise) from the vertical. Each trial featured a
sequential presentation of a pre cue, a fixation cross, a stimulus, a
fixation cross, a post-cue (each phase lasted 500ms), and an untimed
response period (Fig. 2A). The stimulus consisted of 30 Gabor patches
with orientations sampled randomly from a normal distribution with a

mean determined separately for each subject (average = +/−7.49°)
and a standard deviation of 22.5°. Each individual Gabor patch was
presented for one computer frame (16.7ms). After each trial, subjects
received feedback on the accuracy of their response.

The predictive cues consisted of the following symbols: “< ” in-
dicated that an overall left tilt was more likely, “> ” indicated that an
overall right tilt was more likely, and “|” indicated that both tilts were
equally likely. The original purpose of this experiment was to compare
the influence of cues presented before or after the stimulus presenta-
tion. Therefore, the experiment featured “pre cue” and “post cue”
blocks where the cues were presented before and after the stimulus,
respectively. To keep the timing between these blocks consistent, an
uninformative dash sign was presented after the stimulus in pre cue
blocks and before the stimulus in post cue blocks.

Subjects completed a total of 480 trials each. Left/right/neutral cues
were presented with 37.5%/37.5%/25% probability resulting in 180/
180/120 trials total for each cue type. These trials were equally split
between pre and post cue blocks. For the purposes of the present ana-
lyses, the pre and post cues were combined together. However, control
analyses not shown here demonstrated that all results remain the same
if only pre or post cues are considered.

2.5. Experiment 2

This study was originally reported in Rahnev et al. (2011). Subjects
indicated the direction of motion (either contracting or expanding) of
white dots (density, 2.4 dots/degree2; speed, 6°/s) presented on a black
annulus (outer circle radius, 10°; inner circle radius, 1°). The black
annulus was clearly visible since it was presented on a gray back-
ground. Each trial featured a sequential presentation of a cue (250ms),
a fixation square (250ms), a stimulus (500ms), and a response prompt
(1 s) (Fig. 2B). Subjects completed the task as part of a functional MRI
experiment. Threshold motion coherence was determined based on a
training session (mean = 4.4%, SD=0.7%). The actual experiment
featured equal number of three motion coherence levels: 50%, 100%,
and 150% of the threshold coherence level. The three motion coherence
levels were combined in the present analyses.

The cues were four geometric shapes (square, diamond, triangle

Fig. 2. Experimental tasks. All experiments featured a combination of cues predicting the first stimulus category, the second stimulus category, and neutral cues.
Subjects’ task was to indicate the stimulus category (1 or 2) that the stimulus came from. (A) Experiment 1 task. Predictive (66.67% validity) and neutral (no
predictive validity) cues indicated the likely stimulus orientation (clockwise/counterclockwise). In different blocks, the predictive cue was presented before (pre cue)
or after (post cue) the stimulus. These conditions were combined in the present analyses. (B) Experiment 2 task. Predictive (75% validity) and neutral (no predictive
validity) cues indicated the likely motion direction (contracting/expanding). On each trial, the response mapping was indicated after the stimulus offset. (C)
Experiment 3 task. Predictive (75% validity) and neutral (no predictive validity) cues indicated the likely motion direction (left/right). In all experiments, the
stimulus difficulty was individually adjusted for each subject.
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pointing up, and triangle pointing down). For half of the subjects the
square and diamond were predictive (whereas both the triangles were
non-predictive) and for the other half this relationship was reversed.
Unlike in the other experiments, response mapping was provided only
after the offset of the stimulus. Subjects responded with the index fin-
gers of their left and right hands and the response mapping was in-
dicated by a set of arrows pointing inward indicating the finger mapped
to contracting motion, and a set of arrows pointing outward indicating
the finger mapped to expanding motion.

Subjects completed a total of 672 trials. The experiment was orga-
nized in alternating 8-trial blocks of predictive and non-predictive cues.
Predictive cue blocks featured cues predicting both stimulus categories.
Contracting/expanding/neutral cues were presented with 25%/25%/
50% probability resulting in 168/168/336 trials total for each cue type.

2.6. Experiment 3

This study was originally reported in de Lange et al. (2013). Sub-
jects indicated the direction of motion (either left or right) of white dots
(density, 2.4 dots/degree2; speed, 6°/s) presented on a black annulus
(outer circle radius, 10°; inner circle radius, 1°). The black annulus itself
was not visible because the background was also black. Each trial fea-
tured a sequential presentation of a cue (200ms), a fixation dot
(800–1,300ms), and a stimulus (presented until response, up to 3 s)
(Fig. 2C). Subjects completed the task as part of a magnetoencephalo-
graphy experiment. As in Experiment 2, three motion coherence levels
were used and were combined for data analyses. The cues were the
words “LEFT,” “RIGHT,” and “NEUTRAL.”

Subjects completed a total of 864 trials. Left/right/neutral cues
were presented with 33.3%/33.3%/33.3% probability resulting in 288/
288/288 trials total for each cue type. The three types of cues were
randomly interleaved.

2.7. Bias measures

To quantify subjects’ tendency to respond in favor of one stimulus
category, we calculated the signal detection theory (SDT) measure de-
cision criterion (c) by calculating hit rate (HR) and false alarm rate
(FAR):

= − × +
−

−c HR FAR1
2

[Φ ( ) Φ ( )]
1

1

where −Φ 1 is the inverse of the cumulative standard normal distribution
that transforms HR and FAR into z-scores. HR and FAR were defined by
treating right orientations in Experiment 1, expanding motion in the
Experiment 2, and rightward motion in the Experiment 3 as targets. In
other words, Category 1/Category 2 corresponded to left/right or-
ientation in Experiment 1, contracting/expanding motion in
Experiment 2, and leftward/rightward motion in Experiment 3. Note
that negative criterion c values indicate a bias for Category 2 stimuli,
whereas positive criterion c values indicate a bias for Category 1 sti-
muli.

For each subject in each experiment, we computed the criteria used
in the presence of Category 1 cues (ccat1), Category 2 cues (ccat2), and
neutral cues (cneutral). We then determined the midpoint of the criteria
associate with the two predictive cues: = +cPredMid

c c
2

cat cat1 2 (see
Supplementary Methods for why the midpoint of the two criteria re-
presents the overall bias in the presence of predictive cues).

To check for the robustness of our results, we repeated these ana-
lyses with an alternative way of estimating response bias. In these
control analyses, we defined response bias as the percent of “Category
1” responses, =P (resp Cat1). For this alternative measure of bias, we
again computed the bias in the presence of Category 1 cues

=P( (resp Cat1))cat1 , Category 2 cues =P( (resp Cat1))cat2 , and neutral
cues =P( (resp Cat1))neutral . We then determined the midpoint of the
biases associated with the two predictive cues:

= = = + =P (resp Cat1)PredMid
P P(resp Cat1) (resp Cat1)

2
cat cat1 2 .

2.8. Binomial tests

We performed Binomial tests to determine whether the midpoint of
the predictive criteria, cPredMid, was centered around cNoBias (as predicted
by the “eliminate” hypothesis) or cneutral (as predicted by the “maintain”
hypothesis). To do so, we determined the number of subjects for who
the midpoint of the predictive criteria fell in one of three locations.
First, cPredMid could fall on the opposite side of cNoBias compared to cneutral,

that is ⎧
⎨⎩

< ≥
> <

c c c
c c c

, 0
, 0

PredMid NoBias neutral

PredMid NoBias neutral
. Second, cPredMid could fall in-be-

tween cNoBias and cneutral. Third, cPredMid could fall beyond cneutral, that is

⎧
⎨⎩

> ≥
< <

c c c
c c c

, 0
, 0

PredMid neutral neutral

PredMid neutral neutral
. We then tested whether cPredMid was cen-

tered around cNoBias by performing a two-sided Binomial test to examine
whether the number of subjects in location 1 is equal to the sum of the
number of subjects in locations 2 and 3. Similarly, we tested whether
cPredMid was centered around cneutral by performing a two-sided Binomial
test to examine whether the number of subjects in locations 1 and 2 is
equal to the sum of the number of subjects in location 3. Equivalent
analyses were also performed with the alternative measure of bias

=P (resp Cat1).
The Binomial tests are less powerful than the regression analyses

(discussed below) but we report them for two main reasons: (1) they
can be used to quantify the number of subjects consistent with each
hypothesis, and (2) they are less sensitive to the results of subjects with
extreme intrinsic biases, thus decreasing any potential biasing influence
by these subjects. We note that small sensitivity to the subjects with
large biases is not necessarily an asset because it is hard to judge how
predictive cues modulate the intrinsic bias if the bias is very small to
begin with. Nevertheless, we see the binomial tests as a useful com-
plementary approach that weighs each subject equally.

2.9. Regression analyses

We further tested the three hypotheses about the interaction be-
tween predictive cues and intrinsic response bias by performing a re-
gression where cPredMid was predicted by cneutral. The different hypotheses
made different predictions about the β value obtained in this regression.
The “eliminate” hypotheses, which states that predictive cues eliminate
the intrinsic bias, implies that cPredMid should not be affected by the
value of cPredMid (because the intrinsic bias has been eliminated) and
therefore predicts that =β 0. The “maintain” hypotheses, which states
that predictive cues maintain the intrinsic bias, implies that

=c cPredMid neutral (with added estimation noise) and therefore predicts
that =β 1. Finally, the “reduce” hypotheses, which states that pre-
dictive cues reduce but do not eliminate intrinsic bias, implies that
cPredMid falls in-between 0 and cneutral (again, with added estimation
noise) and therefore predicts that < <β0 1. To adjudicate between the
different hypotheses, we compared the obtained β values with 0 and 1
using F tests.

2.10. The criterion depictions in Fig. 3

Fig. 3 plots the Gaussian distributions and criterion locations for
two subjects using standard signal detection theory (SDT) assumptions.
Standard SDT postulates that the two stimulus categories give rise to
Gaussian distributions N μ σ( , )cat1

2 and N μ σ( , )cat2
2 , respectively. The

SDT parameter d’ is then equal to = −d μ μ
σ

' cat cat2 1. All computations
therefore remain the same if both μ’s and σ are scaled by the same
number, or if a constant is added to the μ’s for each stimulus category.
Therefore, without loss of generality, we set =σ 1 and = −μ μcat cat1 2.
This particular decision has the property that it makes the x axis of
evidence coincide precisely with the value of the criterion c. The plots
in Fig. 3 were thus produced by, for each subject, drawing Gaussian
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distributions with means ± d
2

'
and standard deviations of 1. Finally, d’

was computed directly from subjects’ data using the formula
= −− −d HR FAR' Φ ( ) Φ ( )1 1 .

2.11. Supplementary data

All data and codes for the analyses have been made freely available
at https://osf.io/xe8b3/ (DOI: https://doi.org//10.17605/OSF.IO/
XE8B3).

3. Results

We investigated how human subjects’ intrinsic response bias in
perceptual decision making interacts with the response biases induced
by predictive cues. Specifically, we adjudicated between three com-
peting hypotheses: that predictive cues (1) eliminate, (2) maintain, or
(3) reduce intrinsic response bias. We quantified each subject’s bias as
the signal detection theory (SDT) criterion in the presence of predictive
and neutral cues across three different previously published experi-
ments (Bang & Rahnev, 2017; de Lange et al., 2013; Rahnev et al.,
2011).

Fig. 3 plots the results for two subjects: one with intrinsic bias for
responding “Category 2” (that is, with a negative criterion location for
neutral cues) and one with an intrinsic bias for responding “Category 1”
(that is, with a positive criterion location for neutral cues). For the
subjects displayed in Fig. 3, the mid-point of the two predictive cues
criteria (cPredMid) is located in-between the no-bias ( =c 0NoBias ) and the
neutral cue (cneutral) criteria. Thus, for these two subjects, the predictive
cues led to a reduction but not an elimination of the intrinsic response
bias (in line with the “reduce” hypothesis).

We tested whether the same overall effect occurred in the whole
group of 70 subjects. To do so, we determined the number of subjects
for whom the midpoint of the predictive criteria (cPredMid) fell (1) on the
opposite side of cNoBias compared to cneutral, (2) in-between cNoBias and
cneutral, and (3) beyond cneutral (see Section 2.8 for more details). The
number of subjects in each of these categories was 15/36/19 (21.4%/
51.4%/27.1%). Then, using these numbers we performed two-sided
Binomial tests to check if the midpoint of the predictive criteria
(cPredMid) was centered either on cNoBias or cneutral. We found that for a
significant proportion of subjects (78.6%), cPredMid fell on the same side
of cNoBias as cneutral (p=0.000002). Similarly, for a significant proportion
of subjects (72.9%), cPredMid fell on the same side of cneutral as cNoBias

(p=0.0002). In other words, cPredMid was centered neither around
cNoBias nor around cneutral but tended to fall in-between them.

These binomial tests clearly falsified both the “eliminate” and

“maintain” hypotheses and thus strongly supported the “reduce” hy-
pothesis. However, these analyses were limited in two important ways.
First, for many subjects, cneutral had a very low absolute value (e.g., 0.1)
thus making it likely that estimation error would make cPredMid fall
outside of the interval between cNoBias and cneutral. Therefore, the
Binomial tests may have underestimated the strength of the effects.
Second, the Binomial tests do not allow us to determine the degree to
which predictive cues reduce the influence of the intrinsic response
bias.

To overcome these limitations, we performed regression analyses
that quantified how the intrinsic bias, cneutral, can be used to predict the
midpoint of the predictive criteria, cPredMid. Such regression analyses are
less likely to be biased by the presence of small intrinsic biases for some
of the subjects and can quantify more precisely how much the intrinsic
bias is reduced in the presence of predictive cues. Specifically, the β
value from this regression can be used as a measure of the degree to
which the response bias is maintained in the presence of predictive cues
(the “eliminate” and “maintain” hypotheses predict β values of 0 and 1,
respectively, whereas the “reduce” hypothesis predicts a β value be-
tween 0 and 1).

Across our 70 subjects, we found =β 0.64, suggesting that pre-
dictive cues reduced the influence of intrinsic bias by about a third
(Fig. 4). This β value was both significantly greater than 0 (F
(1,68)= 120.29, = × −p 1.1 10 16) and significantly smaller than 1 (F
(1,68)= 38.04, = × −p 4.3 10 8), thus confirming that both the “elim-
inate” and “maintain” hypotheses can be rejected with a high degree of
certainty. One subject appeared to have a particularly strong intrinsic
bias, cneutral, and thus be a potential outlier. Removing this subject only
slightly increased the estimated slope ( =β 0.69), which remained sig-
nificantly greater than 0 and smaller than 1 (both p’s < 0.00003).
Further, we checked for subjects with extreme biases in individual
conditions. First, we looked for subjects who responded “Category 1” in
any condition either less than 5% of the time or more than 95% of the
time and found one such subject. Using the even more lenient limits of
10% and 90% resulted in three such subjects with extreme biases. Ac-
cording to both definitions of extreme bias, excluding subjects with
such biases did not affect our conclusions that both the “eliminate” and
“maintain” hypotheses have to be rejected (all p’s < 0.000004).

We further performed the same regression analyses for each of
Experiments 1–3 separately to ensure that the above results were not
due to the aggregation of different experiments. All experiments re-
sulted in β values between 0 and 1 (β =0.6, 0.87, and 0.33 in
Experiments 1–3, respectively). These β values were significantly
greater than 0 for all three experiments (Experiment 1: F
(1,28)= 88.75, = × −p 3.5 10 10; Experiment 2: F(1,19)= 31.55,

Fig. 3. Bias effects for two subjects. For illustrative purposes, we depict one subject with an intrinsic bias for responding “Category 2” (that is, with a negative neutral
criterion; left panel) and one subject with an intrinsic bias for responding “Category 1” (that is, with a positive neutral criterion; right panel). For both subjects, the
midpoint of the predictive criteria (cPredMid) is located in-between the no-bias criterion (cNoBias) and the intrinsic bias criterion (cneutral). The insets list the exact values
for each of these three criteria for each subject. The separation of the Gaussian distributions for each subject reflects that particular subject’s stimulus sensitivity d’.
Cat 1, Category 1; Cat 2, Category 2.
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p=0.00002; Experiment 3: F(1,17)= 6.9, p=0.018) and significantly
smaller than 1 for two of the three experiments (Experiment 1: F
(1,28)= 39.08, = × −p 9.3 10 7; Experiment 2: F(1,19)= 0.73, p=0.4;
Experiment 3: F(1,17)= 28.39, p=0.00006). These results confirm
that the “reduce” hypothesis that predictive cues reduce but do not
eliminate intrinsic bias is supported in individual experiments too.

To further establish the robustness of our conclusions, we explored
whether the same effects can be observed with an alternative way of
estimating bias. In these control analyses, we quantified bias as simply
the proportion of “Category 1” responses ( =P (resp Cat1), see Section
2.7). We then computed this alternative bias measure for each cue type
and estimated the equivalent quantities to our SDT analyses. Specifi-
cally, we tested the relationship between intrinsic bias,

=P (resp Cat1)neutral , and the midpoint of the biases associated with the
two predictive cues, =P (resp Cat1)PredMid .

We found very similar results to our SDT-based analyses.
Specifically, for a significant proportion of subjects (78.6%)

=P (resp Cat1)PredMid fell on the same side of =P (resp Cat1)NoBias as
=P (resp Cat1)neutral (p=0.000002). Similarly, for a significant pro-

portion of subjects (64.3%) =P (resp Cat1)PredMid fell on the same side of
=P (resp Cat1)neutral as =P (resp Cat1)NoBias (p=0.02). Further, a re-

gression analysis across our 70 subjects produced =β 0.54, suggesting
that predictive cues reduced the influence of intrinsic bias by about half
(Fig. 5). This β value was both significantly greater than 0 (F
(1,68)= 71.24, = × −p 3.5 10 12) and significantly smaller than 1 (F
(1,68)= 52.84, = × −p 4.6 10 10). Finally, the individual β values for
each experiment again fell between 0 and 1 (β =0.56, 0.75, and 0.1 in
Experiments 1–3, respectively). These β values were significantly
greater than 0 for two of the three experiments (Experiment 1: F
(1,28)= 48.59, = × −p 1.4 10 7; Experiment 2: F(1,19)= 29.12,
p=0.00003; Experiment 3: F(1,17)= 0.86, p=0.37) and significantly
smaller than 1 for two of the three experiments (Experiment 1: F
(1,28)= 29.53, = × −p 8.5 10 6; Experiment 2: F(1,19)= 3.17,
p=0.09; Experiment 3: F(1,17)= 77.81, = × −p 9.4 10 8). Thus, our
results are largely insensitive to the exact bias measure used.

One potential confound in all analyses so far is that in two of our
three experiments, we had substantially more total trials with pre-
dictive cues compared to neutral cues. This could be problematic since
it means that we would have a smaller estimation error when com-
puting subjects’ bias for predictive compared to neutral cues. If the

estimation error is large and subjects have minimal true bias, then the
reduction in bias for predictive cues may in fact be purely the result of
smaller estimation error which brings the estimated bias closer to the
location of no bias. To ensure that our results are not due to such sta-
tistical artefact, we re-did all analyses when considering only the first
N

2
neutral trials from each predictive cue type (i.e., cues for Category 1 and

cues for Category 2) where Nneutral is number of neutral-cue trials for a
given subject. These re-analyses thus ensured that the same number of
trials were used in computing the bias for neutral and predictive cues.
We found that all previously significant results remained significant in
the re-analyses and the effect sizes showed very little change. For ex-
ample, in the critical regression analyses, we obtained a β value of 0.62
for the SDT analyses (the β value was 0.64 when all trials were con-
sidered) and 0.54 for the alternative bias measure (the β value was
again 0.54 when all trials were considered). Similar results were also
obtained if we considered last, rather than the first, N

2
neutral trials from

each predictive cue type. Therefore, our results cannot be explained as a
statistical artefact of the different number of trials in the predictive and
neutral cue conditions.

In each analysis above, the data from each subject were reduced to a
single scalar value. However, it is important to test whether we can
falsify the “eliminate” and “maintain” hypotheses on the level of in-
dividual subjects too (Regenwetter & Robinson, 2017). To address this
question, we combined the data from the two predictive cues and used
Binomial tests for each subject to determine whether the observed
proportion of “Category 1” responses across the two predictive condi-
tions was different from 0.5 (thus testing the “eliminate” hypothesis)
and the proportion of “Category 1” responses for neutral cues (thus
testing the “maintain” hypothesis).

We found that 23 out of our 70 subjects (32.9%) showed significant
subject-level bias (i.e., p < 0.05 in the Binomial test on their individual
data). A Binomial test on the group level demonstrated that this pro-
portion is significantly higher than the 5% of significant subject-level
bias expected by chance ( = × −p 2.1 10 13). Therefore, these subject-
level analyses strongly falsify the “eliminate” hypothesis and show that
individual-subject biases remain in the presence of predictive cues.
Similarly, 11 of the 70 subjects (15.7%) showed subject-level bias that
is significantly different from the bias for neutral cues, which is also
significantly higher than the 5% expected by chance (p=0.0007).

Fig. 4. Regression analyses results. The intrinsic bias, cneutral, was used to pre-
dict the midpoint of the predictive criteria, cPredMid. The obtained β value of 0.64
was significantly different than both 0 (falsifying the “eliminate” hypothesis,
which implies that cneutral has no relationship with cPredMid) and 1 (falsifying
“maintain” hypothesis, which implies that =c cneutral PredMid). Each dot represents
one subject and colors indicate the experiment in which the subject partici-
pated. The thick black line indicates the line of best fit, whereas the thin gray
lines indicate the predictions of the “eliminate” and “maintain” hypotheses.

Fig. 5. Regression analyses for an alternative measure of bias. We quantified
bias as the probability of giving a “Category 1” response rather than as the SDT
criterion and again observed a similar relationship between intrinsic bias,

=P (resp Cat1)neutral , and the midpoint of the predictive criteria,
=P (resp Cat1)PredMid . As in the SDT analyses, the obtained β value of 0.54 was

significantly different than both 0 and 1. Each dot represents one subject and
colors indicate the experiment in which the subject participated. The thick
black line indicates the line of best fit, whereas the thin gray lines indicate the
predictions of the “eliminate” and “maintain” hypotheses.
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Therefore, both the “eliminate” and “maintain” hypotheses are falsified
on the level of individual subjects too.

4. Discussion

Understanding perceptual decision making on a mechanistic level
requires insight into the nature of subjects’ response biases. Here we
investigated how two sources of response bias – intrinsic bias and bias
induced by predictive cues – interact with each other. Across three
experiments, we observed that predictive cues reduce but do not
eliminate intrinsic response bias. These findings demonstrate both the
malleability and rigidity of people’s intrinsic biases.

4.1. The mechanisms of bias reduction

Why do predictive cues reduce intrinsic bias? At least four different
possibilities exist. We examine each of them below.

First, the reduction in bias could stem from normative considera-
tions, which can typically be expressed within the framework of
Bayesian Decision Theory (Maloney & Mamassian, 2009). Within this
framework, predictive cues should have a multiplicative influence on
the likelihood ratio implied by the criterion location (Rahnev &
Denison, 2018). The multiplicative influence on the likelihood ratio is
in turn equivalent to an additive influence for the SDT criterion location
c (Rahnev, Koizumi, McCurdy, D’Esposito, & Lau, 2015). Therefore,
normative considerations would imply that the predictive criteria
should be centered around cNoBias or cneutral depending on one’s as-
sumption on whether predictive cues should eliminate or maintain the
intrinsic bias. What is important here is that neither scenario would
result in a reduction of intrinsic bias based on normative considerations
alone. This is not to say that our findings deviate from normativity but
simply that additional factors need to be introduced for normativity to
make predictions consistent with our results.

Second, it is possible that intrinsic biases are something that people
are aware of but are not motivated to overcome. According to this ac-
count, the attempt to incorporate the predictive cues into one’s deci-
sions provides extra motivation to curtail the intrinsic bias. However,
although motivation could indeed be part of the story here, it does not
explain why a bias in a particular direction would arise in the first
place.

Third, it is possible that subjects followed one of two possible
mixture strategies where with probability P they simply answered ac-
cording to the cue and with probability 1-P they either responded with
exactly the same bias as for neutral cues or responded with no bias at all
( =c 0). These strategies may be able to fit our data while still postu-
lating that the true underlying bias is either maintained or eliminated.
However, both of these strategies result in substantial decreases in d’ for
predictive cues due to the fact that they involve substantial “criterion
jitter” (Rahnev & Denison, 2018), that is, the fact that the criterion
changes markedly from trial to trial. To quantify the exact decrease, we
fit these two models to the data for each subject (see Supplementary
Results) and found that while d’ for predictive cues was on average 1.44
in the empirical data, it decreased to 1.27 in the model where bias was
maintained (t(69)= 4.32, p=0.00005) and to 1.28 in the model
where bias was eliminated (t(69)= 3.84, p=0.0003). This substantial
decrease in d’ compared to the empirical data suggests that these
mixture strategies cannot explain our data.

Fourth, it could be that the very act of integrating the externally-
provided priors into one’s decision making suppresses the factors that
gave rise to the intrinsic bias. According to this account, the reduction
of bias is an automatic and unconscious process. This is the account that
appears most plausible to us at the moment.

This brief discussion reveals that it is currently unclear what the
exact mechanisms of the bias reduction are. We have investigated the
phenomenon using descriptive methods but many potential mechan-
isms can give rise to this observed bias reduction, some of which do not

postulate a true reduction of internal bias but simply a decision strategy
that makes behavior appear less biased (e.g., the third possibility
above). Currently, any explanation for the observed effect would ne-
cessarily be speculative and will likely remain so until we know where
intrinsic biases come from.

4.2. The source of intrinsic bias

What causes the intrinsic biases observed in our experiments?
Perhaps the most trivial reason for observing response biases is the
limited number of trials used. Indeed, for subjects with a completely
unbiased criterion of exactly 0, the measured criterion based on a few
hundred trials would be expected to take positive values for some
subjects and negative values for others. However, using data from
Rahnev, Nee, Riddle, Larson, and D’Esposito (2016), we previously
demonstrated that response criteria remained stable over four sessions
of the same experiment conducted on separate days (Rahnev & Denison,
2018). Similarly, many other types of stable idiosyncratic biases have
been described in the literature (Finlayson et al., 2017; García-Pérez &
Alcalá-Quintana, 2011; Kosovicheva & Whitney, 2017; Wexler et al.,
2015). In the current experiment, we found that intrinsic bias as mea-
sured in one condition (in the presence of neutral cues) persists in a
completely different condition (in the presence of predictive cues). This
persistence further establishes the existence of stable individual dif-
ferences in response bias. Taken together, these considerations strongly
suggest that the observed intrinsic response bias is not simply caused by
noise in the estimation procedure.

If intrinsic bias is not an experimental artifact, it appears that it
must be the product of heuristic algorithms of decision making. Indeed,
it is widely recognized that humans have limited resources and thus
often use heuristic computations (Gershman, Horvitz, & Tenenbaum,
2015; Gigerenzer & Selten, 2002). Nevertheless, it remains unclear
what type of heuristic computations would give rise to response biases
and why such heuristics are adopted in the first place. Our current
findings that the intrinsic bias is reduced but not eliminated in the
presence of predictive cues provides one of the few empirical phe-
nomena related to response bias that can begin to unveil its source. The
finding that predictive cues lead to a reduction of intrinsic bias of about
one third to a half adds additional quantitative precision that can be
exploited in creating and testing computational models that postulate
potential sources of intrinsic bias. We suggest that the source of sub-
jects’ intrinsic bias should be recognized as one of the most important
questions in the pursuit of a mechanistic understanding of perceptual
decision making.

4.3. Relationship to other types of bias

In this paper, we use the term “bias” to signify an overall predis-
position to choose one of two stimulus categories. However, many other
types of biases have been described that alter responses on a trial-by-
trial basis. For example, perceptual responses have been shown to be
influenced by the cost to act (Hagura, Haggard, & Diedrichsen, 2017),
previous stimuli (Cicchini, Mikellidou, & Burr, 2017; Fischer &
Whitney, 2014), and previous decisions (Abrahamyan, Silva, Dakin,
Carandini, & Gardner, 2016; Fritsche, Mostert, & de Lange, 2017;
Manassi, Liberman, Kosovicheva, Zhang, & Whitney, 2018). Such biases
pull responses in different directions on different trials and interact
with biases that remain stable across the whole experiment (Finlayson
et al., 2017; García-Pérez & Alcalá-Quintana, 2011; Kosovicheva &
Whitney, 2017; Linares et al., 2019; Wexler et al., 2015). It remains an
open question how these different types of biases trade off against each
other.

4.4. Novel predictions

We expect that the reduction in intrinsic bias for predictive cues
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observed in current experiments would generalize across different do-
mains. A particularly intriguing generalization concerns serial depen-
dence (Fischer & Whitney, 2014; Treisman & Faulkner, 1984; Yu &
Cohen, 2009). One common type of serial dependence is the tendency
to repeat the same response in two-choice tasks. A particular response
on one trial can therefore be considered to act as a predictive cue for the
next trial. We would therefore predict that serial dependence also acts
to reduce the intrinsic response bias. Testing this prediction would re-
quire that one includes sufficient number of “neutral” trials. In the
context of serial dependence, a “neutral” trial is a trial that is not
preceded by a response toward either stimulus category. Practically,
neutral trials can be trials presented immediately after a distractor task
or after a short break. Future experiments should address whether the
results obtained here indeed generalize to serial dependence.
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