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Automatic multisensory integration
follows subjective confidence rather than
objective performance

Check for updates
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It is well known that sensory information from onemodality can automatically affect judgments from a
different sensory modality. However, it remains unclear what determines the strength of the influence
of an irrelevant sensory cue from onemodality on a perceptual judgment for a different modality. Here
we test whether the strength of multisensory impact by an irrelevant sensory cue depends on
participants’ objective accuracy or subjective confidence for that cue. We created visual motion
stimuli with low vs. high overall motion energy, where high-energy stimuli yielded higher confidence
but lower accuracy in a visual-only task. We then tested the impact of the low- and high-energy visual
stimuli on auditory motion perception in 99 participants. We found that the high-energy visual stimuli
influenced the auditorymotion judgmentsmore strongly than the low-energy visual stimuli, consistent
with their higher confidence but contrary to their lower accuracy. A computational model assuming
common principles underlying confidence reports and multisensory integration captured these
effects. Our findings show that automatic multisensory integration follows subjective confidence
rather than objective performance and suggest the existence of common computations across vastly
different stages of perceptual decision making.

In daily life, individuals frequently receive information from multiple sen-
sory modalities simultaneously. A substantial literature has examined how
information from different sensory cues is automatically combined within
sensory areas to form a single perceptual judgment1–6. Automatic multi-
sensory integration occurs even when participants are explicitly informed
that certain sensory cuesare irrelevant to the task athand4,7–11. Findings from
this literature show that when sensory cues from one modality are parti-
cularly accurate or exhibit less noise, they exert a greater influence on per-
ceptual judgments2,3,5.

A separate literature has examined people’s ability to metacognitively
estimate how noise in the sensory input (e.g., due to low stimulus contrast,
low motion coherence, or image blur) impacts accuracy via confidence
ratings12–15. This literature has demonstrated that confidence is typically
higher for stimuli that exhibit less stimulusnoise16,17.However,many studies
have also found that 18–20 confidence and accuracy can often be dissociated
such that participants give higher confidence in one condition compared to
another even if accuracy for the two conditions is matched18–22. This raises
thequestion:Doesmultisensory integration followobjectiveperformanceor
subjective confidence when the two conflict?

Two competing hypotheses can be formulated. According to
Hypothesis 1, multisensory integration follows objective accuracy, with
metacognitive confidence having no impact. This view is motivated by
extensive literature showing that multisensory integration is often an
automatic process11,23–26, though it can be influenced by various factors,
including attention, spatial and temporal alignment and physical para-
meters of the stimuli27–30. In contrast, metacognitive judgments of con-
fidence are supported by networks involving the prefrontal cortex and other
brain regions, allowing for both automatic and controlled processes that
may rely on heuristics and other high-level cognitive mechanisms31–34.
Hypothesis 1 would therefore predict that the visual stimulus with lower
performance will have a smaller influence on multisensory integration
regardless of its higher confidence. Conversely, according to Hypothesis 2,
multisensory integration follows metacognitive confidence. In this view,
participants need to first engage in a process of estimating the objective
reliability of each stimulus in multisensory tasks. This estimation process is
fallible. Hypothesis 2 would therefore predict that the visual stimulus with
higher confidence will have a larger influence on the multisensory decision
regardless of its lower accuracy.

1School of Psychology, Georgia Institute of Technology, Atlanta, GA, 30332, USA. 2Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
e-mail: yi.gao0525@outlook.com

Communications Psychology |            (2025) 3:38 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44271-025-00221-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44271-025-00221-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44271-025-00221-w&domain=pdf
http://orcid.org/0000-0002-0156-5527
http://orcid.org/0000-0002-0156-5527
http://orcid.org/0000-0002-0156-5527
http://orcid.org/0000-0002-0156-5527
http://orcid.org/0000-0002-0156-5527
http://orcid.org/0000-0003-0919-9231
http://orcid.org/0000-0003-0919-9231
http://orcid.org/0000-0003-0919-9231
http://orcid.org/0000-0003-0919-9231
http://orcid.org/0000-0003-0919-9231
http://orcid.org/0000-0002-5459-1884
http://orcid.org/0000-0002-5459-1884
http://orcid.org/0000-0002-5459-1884
http://orcid.org/0000-0002-5459-1884
http://orcid.org/0000-0002-5459-1884
http://orcid.org/0000-0002-5265-2559
http://orcid.org/0000-0002-5265-2559
http://orcid.org/0000-0002-5265-2559
http://orcid.org/0000-0002-5265-2559
http://orcid.org/0000-0002-5265-2559
mailto:yi.gao0525@outlook.com
www.nature.com/commspsychol


Here, we adjudicated between these two competing hypotheses by
investigating whether the strength of multisensory impact by an irrelevant
sensory cue depends on participants’ objective accuracy or subjective con-
fidence for the irrelevant cue. We employed an established method18 to
induce a confidence-accuracydissociationbymanipulating the energy levels
in a random-dot kinematogram.Critically,wepresented visual and auditory
in congruent and incongruent directions across different trials and exam-
ined the automatic influence of high- and low-energy visual motion stimuli
on auditory motion perception (leftward vs. rightward motion). Finally, to
evaluate whether these effects arise from shared computational principles,
we developed a simple model that assumes unifiedmechanisms underlying
multisensory integration and confidence.

Methods
Preregistration
Data collection for the third group of participants was pre-registered on
November 10, 2022. The preregistration can be found at https://osf.io/an7jr.
All originally planned analyses were reported.

Participants
We collected data from 99 participants (30 female participants and 69male
participants, sex based on self-report, aged from 17 to 33, mean age = 20.5,
SD = 2.6). Gender information was collected based on self-report. Partici-
pants’ race was collected but was not analyzed as it was irrelevant to the
purpose of the study. The sample size for each group is sufficient to detect an
effect, as calculated using G*Power (version 3.1.9.7), with the power set at
0.8, alpha at 0.05, and an effect size of 0.6 for a two-tailed paired t-test.A total
sample size of 99 participants is expected to yield robust experimental
results. We utilized a convenience sampling strategy. Participants were
recruited from the student body at Georgia Tech and were compensated
with either 1 SONA credit or monetary reward ($ 10/h). While the sample

may not fully represent the broader population, no significant differences
are assumedbetweencollege students andother potential subject groups.All
participants had normal or corrected-to-normal vision and normal hearing
abilities. Before the experiment, all participants provided written consent
approved by the Institutional Review Board of Georgia Institute of Tech-
nology (Protocol number: H21041).

Stimuli
The experiment featured both visual and auditory motion stimuli. The
visual stimuli were random-dot kinematograms that included three types of
dot motion: (1) dots moving in the dominant direction, (2) dots moving in
the non-dominant direction (opposite to the dominant direction), and (3)
dots moving in random directions (Fig. 1A). The dominant direction was
either leftward or rightward, randomized in each trial. The total number of
dots in the motion stimuli was fixed to 4,241. Visual stimuli were presented
at the center of the screen. Each dot had a diameter of 0.05 degrees and
moved at 5 degrees per second. Each dot had a limited lifetime offive frames
(83ms) andwas subsequently regenerated at a new location once its lifetime
expired. All dots were black andweremoving within an invisible circle with
a diameter of 6 degrees. A red fixation dot was presented at the center of the
screen throughout the experiment.

We created two types of motion stimuli: high-energy stimuli where
50% of dots move in the dominant direction, and low-energy stimuli where
25% of dots move in the dominant direction. Note that the term “energy”
here refers to the maximal level of evidence supporting the correct choice.
This definition is distinct and unrelated to the concept of “energy” in the
Motion Energy model proposed by Adelson & Bergen35. To adjust the
performance in the high- and low-energy conditions, we customized the
percent of dots moving in the non-dominant direction. The experiment
included three participant groups to induce different confidence-accuracy
dissociations for the visual stimuli. In thefirst groupof participants (N = 24),

Fig. 1 | Experimental paradigm and main results. A Visual stimuli used in the
experiments. The visual stimuli were random-dot kinematograms that consisted of
dots moving in a dominant direction (either leftward or rightward for each trial), a
non-dominant direction (always opposite to the dominant direction), and random
directions. The number of dotsmoving in the dominant directionwasfixed to 50%of
the total number of dots for the high-energy stimuli and 25% for the low-energy
stimuli. The number of dots moving in the non-dominant direction was customized
in different ways for different participants (see Methods). Note that the high
coherence in the dominant direction was consistently paired with high coherence in
the non-dominant direction. This relationship results in a dissociation between
confidence and accuracy. The total number of dots was constant for stimuli with

different energy levels. B Auditory stimuli used in the experiments. We used cross-
faded white noise as auditorymotion stimuli. For leftwardmotion, the sound played
to the left ear faded in (i.e., the sound intensity increased over time), while the sound
in the right ear faded out (i.e., the sound intensity decreased over time). The opposite
was true for rightward motion. C Trial structure. Each trial started with motion
stimuli (visual-only, auditory-only, or a combination of visual and auditory). Par-
ticipants then judged the direction ofmotion (left vs. right) and provided confidence
on a 4-point scale. In the multisensory condition, participants judged the auditory
motion, but their judgments were typically influenced by the visualmotion. The next
trial started after a fixation interval of 800–1300 ms. D Performance was better for
congruent vs. incongruent trials in the multisensory condition (N = 99).
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we aimed tomatch the performance for high- vs. low-energy stimuli. To do
so, we ran 3-down-1-up staircases on the proportion of dots moving in the
non-dominant direction separately for the high- and low-energy stimuli.
The initial proportion of dots moving in the non-dominant direction was
6% and 3.5% for high- and low-energy stimuli. The initial step sizes of the
staircases were 1.5% and 0.9%, and were reduced to 1.0% and 0.6% after
three reversals, and to 0.5% and 0.3% after another three reversals. The
staircase ended after 150 trials or 14 reversals, whichever came first. The
threshold was determined as the average value at the time of the last eight
reversals. The final proportions of dots moving in the non-dominant
direction were 30.04% (SD= 4.75) for the high-energy condition and 6.98%
(SD = 3.18) for the low-energy condition (Fig. S1). However, the resulting
confidence and accuracy were in the same direction – both confidence and
performance were larger for the high- compared to the low-energy stimuli.
Therefore, in the second group of participants (N = 25), we aimed to further
dissociate confidence and accuracy by inducing lower performance but
higher confidence for the high-energy stimuli compared to the low-energy
stimuli. For this purpose, we fixed the percent of dots moving in the non-
dominant direction to 45% for the high-energy stimuli and 0% for the low-
energy stimuli. The manipulation was successful, but the resulting perfor-
mance for the high-energy condition was quite low. Thus, in the final group
of participants (N = 50), we slightly decreased the percent of dotsmoving in
the non-dominant direction to 31% for the high-energy stimuli (and kept it
at 0% for the low-energy stimuli). None of the participants were repeated
among the three groups. Tomaximize power, we analyzed the data from all
participants together. However, the pattern of results was qualitatively the
same for each group when they were analyzed separately (see Fig. S2).

The auditory motion stimuli consisted of signal sounds of either left-
ward or rightward direction and white noise sounds with no direction. To
create rightward auditory motion, the intensity of the signal sound in the
right ear increased from zero to maximum loudness while the intensity of
the signal sound in the left ear decreased from maximum loudness to zero
(Fig. 1B). The opposite was true for leftward motion. To determine the
relative loudness intensity of the signal and noise sounds, we ran a 2-down-
1-up staircase on the ratio of the signal sounds to the total loudness (sig-
nal+ noise sounds), and used the obtained ratio for the targetmotion in the
formal sessions. The starting point of the staircase was 70%; the initial step
size was 3%, which was reduced to 2% after three reversals, and to 1% after
another three reversals. The staircase ended after 120 trials or 12 reversals,
whichever came first. The threshold was determined as the average value at
the time of the last six reversals.

Procedure
The experiment included three different conditions: visual-only, auditory-
only, and multisensory. In all cases, participants judged the direction of
motion (leftwardvs. rightward) and rated their confidenceona4-point scale
(lowest, low, high, highest). The visual-only and auditory-only conditions
featured stimuli from a single modality. Critically, the multisensory con-
dition included both visual and auditory stimuli, but participants were
instructed to judge the auditory motion direction and ignore the visual
motion direction. Nevertheless, based on previous research26,7,36,37, we
expected that visual stimuli would affect auditory judgments via automatic
integration mechanisms. Motion stimuli were presented for 500ms and all
responses were untimed. After the end of a trial, a fixation circle was shown
for a period randomly chosen between 800 and 1300ms before the next trial
started (Fig. 1C).

The experiment began with a screening session intended to remove
participants who could not properly perform the visual-only task. During
this session, participants completed blocks that contained 25 trials with low-
energy stimuli (where we set 0% of dots to move in the non-dominant
direction) and 25 trials with high-energy stimuli (where we set 8.3% of dots
tomove in the non-dominant direction).We passed participants who could
perform at 80% correct or better for both types of stimuli. Fourteen
participants were unable to reach that threshold for the low-energy stimuli
even after up to eight screening blocks and therefore did not participate

in the main experiment. These participants are not included in the count
of recruited participants. No participants dropped out or declined
participation.

The main experiment consisted of two visual-only, one auditory-only,
and two multisensory blocks. Each block consisted of 80 trials and the
different typesof blockswere randomly interleaved for eachparticipant (400
trials total). The visual-only and multisensory blocks contained an equal
number of trials with high- and low-energy stimuli. In the multisensory
blocks the direction of auditory motion was pseudo-randomized to contain
equal number of leftward and rightward motion, whereas the direction of
visual motion was fully randomized such that the two stimuli were con-
gruent on average in 50% of the trials. To increase trial number per con-
dition, the third group of participants mentioned above completed four
visual-only blocks and 10 blocks where auditory-only and multisensory
trialswere interleaved (45 trials per block, 630 trials total) but didnotneed to
indicate confidence for the auditory-only and multisensory trials. No one
was present during the experiment except the participant and the
researcher. The researcher was not blind to the experimental condition and
the study hypothesis.

Apparatus
We presented all visual stimuli on a Dell monitor (47.5 cm× 26.5 cm;
refresh rate = 70Hz) positioned 50 cm away from the participants. We
delivered the auditory stimuli through SENNHEISER HD 280 PRO head-
phones. All sounds had a sampling frequency of 44.1 kHz.

Behavioral analyses
For each condition, we calculated task performance (d’) based on the signal
detection theory38 using the formula:

d0 ¼ φ�1 hit rateð Þ � φ�1 false alarm rate
� � ð1Þ

where φ�1 denotes to the inverse of the cumulative standard normal dis-
tribution converting the hit and false alarm rates to Z scores.

We performed two-sided paired sample t-tests to compare perfor-
mance (d’) and confidence levels between the high- and low-energy stimuli
in the visual-only condition, as well as both the visual weights (see below for
how thosewere estimated) and overall performance (d’) in themultisensory
condition. Normality and equal variances were formally tested since t-tests
were relatively robust to small violations of these assumptions given our
large number size (N = 99).We report Cohen’s d and the Bayes factors39 for
all t-tests. We calculated Cohen’s d by taking the difference between the
mean of the two samples and then dividing it by the pooled standard
deviation of the two samples. The default Cauchy priors with a scale para-
meter of 7071 were used for all Bayes factors analyses. All the statistical
analyses were run with MATLAB (MathWorks, Version 2022a).

Computational model
We developed a model of the computations involved in confidence ratings
in the visual-only condition and multisensory integrations in the multi-
sensory condition. The model assumes that both visual and auditory evi-
dence (xvisual and xauditory) are sampled from Gaussian distributions in
accordance with signal detection theory38 such that leftward and rightward
motion stimuli produce distributions of internal evidence coming from
N � μ

2 ; σ
2

� �
andN μ

2 ; σ
2

� �
, respectively. Participants give confidence ratings

by applying the same criteria for both high- and low-energy stimuli. Criti-
cally, the energy level of the visual stimuli could alter the variability of the
internal evidence distributions19,40. This allows for the high-energy stimuli to
have higher variability of the internal signal. In turn, this leads to the high-
energy distributions occupying more of the high-confidence regions com-
pared to the low-energy distributions, leading to more high-confidence
trials41–43.

We fit this part of the computational model to the auditory-only and
visual-only data in the following manner. For the auditory-only condition,
the model had one free parameter for the distance between the peaks of the
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Gaussian distributions of internal evidence, μauditory , with the standard
deviation (SD) of the evidence distributions fixed to 1. The parameter
μauditory was estimated directly from the data using Eq. 1 above. For the
visual-only condition, the model had 10 free parameters: the distance
between the peaks of the high-energy distributions, μHE , the distance
between the peaks of the low-energy distributions, μLE , the SD of the
high-energy distributions, σHE, and 7 response criteria ci with
i ¼ �3;�2;�1; 0; 1; 2; 3. Because the model predictions depend only on
the ratio between the SDs for the high- and low-energy stimuli, without loss
of generality the SD of the low-energy distributions, σLE , was fixed to 1. The
criterion c0 was the decision criterion that separated the two stimulus
categories,whereas the rest of the criteria determined the confidence ratings,
such that the criteria ci and c�i separated the ratings i and iþ 1. Negative
criteria separate the confidence ratings for leftward motion decisions,
whereas positive criteria separate the confidence ratings for rightward
motion decisions. Thus, given the presentation of a stimulus that produces
an internal activationN μ; σ2

� �
, the probability of confidence rating of i for a

rightward decision is:

P conf ¼ i; dec ¼ rightward
� � ¼

Z ci

ci�1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
1
2

x�μ
σð Þ2 ð2Þ

and the probability of confidence rating of i for a leftward decision is:

P conf ¼ i; dec ¼ leftward
� � ¼

Z c�iþ1

c�i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�
1
2

x�μ
σð Þ2 ð3Þ

where c�4 ¼ �1 and c4 ¼ 1.
So far, we have covered the model’s assumptions regarding the visual-

only and auditory-only conditions. For the multisensory condition, we
tested three different computations that could potentially underlie multi-
sensory integration.

Flexibleweight computation. Thefirst computation that could underlie
multisensory integration in our task is the Flexible weight computation,
according to which participants flexibly combine the visual and auditory
signals. The Flexible weight computation includes a free parameter, w,
that describes the propensity of each participant to use visual information
in the multisensory condition. Specifically, the assumption behind this
computation is that the auditory signal, xauditory , is directly combinedwith
the visual signal, xvisual , such that the decision variable for the multi-
sensory decisions, xmultisensory , is:

xmultisensory ¼ w � xvisual þ 1� wð Þ � xauditory ð4Þ

where w represents weight allocated to the visual signal, which ranges
between 0 and 1. Rightward decisions were made for xmultisensory ≥ 0, and
leftward decisions for xmultisensory < 0. In an earlier iteration of Eq. 4, we
included a bias term that would allow the Flexible weight computation to
account for individual biases for choosing left vs. right motion direction.
However, the addition of this termdid not improve the overall quality of the
modelfit or affect any of themodel’s critical features. Therefore, tomaintain
maximum simplicity, the bias termwas removed and has not been included
for any of the computations underlying multisensory integration.

The Flexible weight computation was implemented using a single free
parameter for the weight with which visual stimuli contributed to the
multisensory decision variable. Because the distributions for the high-
energy visual stimuli extend further to both extremes compared to the
distributions for the low-energy visual stimuli, the combination of the visual
and auditory signals assumed by the Flexible weight computation results in
the high-energy visual stimuli having a stronger impact on auditory
judgments.

Reliability-weighted computation. Flexible weight computation treats
weight as a free parameter, contrasting the approach in Ernst & Banks’2

seminal paper on cue combination where optimal weight aligns with the
reliability of each sensory modality. Unlike Ernst & Banks’ study, our
participants solely judged auditory motion direction in the multisensory
condition, resulting in a zero optimal weight for visual signals. Never-
theless, we tested whether an alternative computation that assumes
reliability-weighted averaging of the auditory and visual signals in the
multisensory condition describes the data better. We call this Reliability-
weighted computation. In the context of our task, the Reliability-
weighted computation postulates that the weight (w) in Eq. 4 is not a free

parameter but is instead equal to dvisual
dvisualþdauditory

, where dvisual and dauditory are

the d’ values for the visual and auditory stimuli, respectively. The
Reliability-weighted computation thus includes no free parameters and is
therefore a lot more constrained than the Flexible weight computation.

Flexible causal inference computation. Finally, we considered an
alternative computation—which we call Flexible causal inference compu-
tation—aimed at mimicking the causal inference mechanism proposed by
Körding and colleagues44. The idea is that if the auditory and visual signals
are sufficiently similar, then they are mandatorily combined based on their
reliabilities. However, if they are sufficiently different, then they are judged
to have different sources and the participant simply uses the auditory signal
(as they should). Because it is not clear a priori how different signals should
be before they are judged to have different causes, we implement this
computation using a free parameter. Specifically, the Flexible causal
inference computation considers the absolute difference between visual
and auditory evidence, diff ¼ jxvisual � xauditoryj. If diff >T (where T is a
free parameter representing a threshold), the computation relies on the
auditory signal alone, but if diff ≤T , the model uses a mandatory cue
combination as in the Reliability-weighted computation. The flexibility in
the computation comes from the fact that T can take many different
values. At the one extreme, T can become 0, which means that the visual
signal is always disregarded. As the parameter T increases, the visual signal
is given higher and higher weight in the overall multisensory judgment. At
the extreme where T takes a very high value (e.g., >6), the difference in the
two signals is always less than the threshold and thus the visual signal is
always used with a weight ofw ¼ dvisual

dvisualþdauditory
. Thus, in practice, the Flexible

causal inference computation is very similar to the Flexible weight com-
putation. Indeed, the two computations resulted in relatively similar model
fits (Flexible weight computation won by an average of 89 points per
participant). More importantly, a model recovery analysis showed that the
two computations are not actually distinguishable from each other
(Fig. S3). Therefore, it appears that the Flexible weight and the Flexible
causal inference computations are so strongly related as to be nearly
indistinguishable. We therefore present all results related to the Flexible
causal inference computation in the Supplementary (Fig. S3).

Model fitting
Weperformedmodelfitting using a 2-step procedure. In the first step, wefit
the visual-only and auditory-only data, and thus obtained the parameters
μHE , μLE , σHE , and μauditory . Then, using these parameters, we fit the data
from themultisensory condition for eachof the three possible computations
described above. To fit the model to the data, we usedmaximum likelihood
estimation as in previous studies19,45,46. Model fitting was performed using
the Bayesian Adaptive Direct Search (BADS) toolbox, version 1.0.547. For
both steps, we performedmodel fitting 10 times and selected the best-fitting
iteration as the overall model fit.

Model comparison
Toquantifymodelfit,we calculated theAkaike InformationCriterion (AIC)
and Bayesian Information Criterion (BIC). These metrics were computed
using the standard formulas: AIC ¼ �2 � log Lþ 2 � k and BIC ¼ �2�
log Lþ k � logðnÞ, where k represents the number of free parameters, and n
is the number of trials. Both AIC and BIC provide a measure of model
goodness-of-fit. BIC includes a harsher penalty for model complexity
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compared to AIC and thus favors simpler models. Lower AIC and BIC
values indicate a better fit. To determine whether differences in AIC were
statistically significant, we used bootstrapping to generate 95% confidence
intervals (CIs) on the summed AIC and BIC differences across models,
employing the MATLAB bootci function with 100,000 resamples. Con-
fidence intervals excluding zero suggest a significant difference between
models. The model selection based on AIC/BIC is based on a fixed-effects
assumption, implying that a single model explains the behavior of all par-
ticipants. However, an alternative random-effects approach allows for dif-
ferent models to explain different participants’ behavior. We used the
Variational Bayes Analysis toolbox to estimate the model frequencies and
their protected exceedance probabilities, which quantify how often a par-
ticular model is likely to be the most frequent generative model across the
population48.

Model recovery
To assess the distinguishability of the three computations underlying
multisensory integration, we performed model recovery analyses. We
generated synthetic datasets using each computation, ensuring that the
number of participants and trials matched those in the actual experiment.
The parameters used for simulating these datasets were derived from the
best-fitting parameters. Each synthetic dataset was then fitted with each of
the three computations to determine how well the different computations
can be distinguished from each other in our dataset. For each synthetic
dataset, we computed AIC and BIC values. To quantify the likelihood that
the generating computation is correctly identified, we calculated the fre-
quency with which each computation was selected as the best-fitting
computation across all datasets. Specifically, we computed Pmodel for every
dataset, representing the probability that the computation responsible for
generating a particular dataset is correctly identified.

Parameter recovery
The goal of parameter recovery is to evaluate how accurately the model
parameters can be estimated from the data. We utilized the same fits gen-
erated during the model recovery analyses but focused only on cases where
the same computation was used to generate and later fit the same synthetic
dataset.We then compared the estimated parameters to the original known
values used in the data generation process. To assess the accuracy of para-
meter recovery, we calculated the Pearson correlation coefficient between
the estimatedparameters and the trueparameter values across all datasets.A
highcorrelation indicates that theparameters arebeing accurately recovered
by the fitting procedure. Note that the Reliability-weighted computation
does not include free parameters; therefore, parameter recovery is not
applicable for this computation.

Weight estimation
As part of our data analysis process, we estimated the weights for the
high- and low-energy visual stimuli for each participant in the multi-
sensory condition. We did so for both the empirical data and the data
generated by each of the three computations underlying the multisensory
integration. To perform this weight estimation, we used a similar pro-
cedure as described above for Eq. 4 except that the weights were sepa-
rately estimated for high- and low-energy stimuli and the SDs for both
high- and low-energy stimulus distributions were set to 1. This procedure
determines how much weight is given to each modality when combining
signals from different modalities, regardless of the internal variability of
each signal.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Participants judged the direction of motion (left vs. right) of visual and
auditory stimuli. Critically, we used an established method to create two

types of visual stimuli that lead to a confidence-accuracy dissociation18.
Specifically, “high-energy” visual stimuli had high coherence for both left-
ward and rightward motion, whereas “low-energy” stimuli had low
coherence for both leftward and rightward motion (Fig. 1A). Previous
research has shown that if one adjusts the motion coherences for leftward
and rightwardmotion appropriately as tomatch the sensitivity levels (d’) for
the high- and low-energy stimuli, participants express higher confidence for
the high-energy stimuli18.

Wehad three conditions: visual-only, auditory-only, andmultisensory.
In the visual-only condition, participants judged the direction of motion of
the high- and low-energy visual stimuli described above. In the auditory-
only condition, participants experienced auditory stimulation of varying
loudness separately in eacheardesigned togive the impressionof leftwardor
rightward movement and judged the direction of motion (Fig. 1B). In the
multisensory condition, the visual (both high- and low-energy) and audi-
tory stimuli were presented simultaneously and were congruent 50% of the
time. Participants indicated the direction of motion of the auditory stimuli
irrespective of the direction of visual motion (Fig. 1C). In the multisensory
condition, the auditory stimuli were randomly pairedwith either the low- or
the high-energy visual stimuli andwe tested whether theweight given to the
visual stimuli would reflect their corresponding objective reliability or
subjective confidence.

We first confirmed that participants integrated the auditory and visual
motion stimuli in the multisensory condition. Note that this analysis
extends beyond our preregistration, but it is necessary to confirm multi-
sensory integration. For this, we separately plotted participants’ sensitivity
(d’) for congruent trials (where visual and auditory directions were the
same) and incongruent trials (where visual and auditory directions con-
flicted) across high- and low-energy visual stimuli.We found that congruent
trials produced significantly higher sensitivity than incongruent trials
(t(98) = 11.23, p = 2.6*10-19, Cohen’s d = 1.13, 95% CI = [0.58, 83],
BF10 = 2.0*1016; Fig. 1D). We also observed a small but significant interac-
tion, such that the d’ difference between congruent and incongruent trials
was larger for low-energy (d’ difference = 80) than for the high-energy trials
(d’ difference = 61; F(1, 98) = 4.44, p = 04, partial η2 = 0.04). In addition,
performance was better for congruent trials compared to the auditory-only
condition (t(98) = 2.29, p = 02, 95% CI = [0.02, 28], Cohen’s d = 23,
BF10 = 1.34), butworse for incongruent trials compared to the auditory-only
condition (t(98) = 8.92, p = 2.6*10-14, 95% CI = [0.43, 67], Cohen’s d = 90,
BF10 = 2.7*1011). Finally,we also found that reaction timeswere significantly
shorter when visual and auditory motion were congruent compared to
incongruent directions (t(197) = 4.74, p = 4.1*10-6, 95% CI = [0.01, 03],
Cohen’s d = 34, BF10 = 2875.4; Fig. S4). Together, these results show that
participants integrated the auditory and visualmotion stimuli whenmaking
decisions in the multisensory condition instead of the visual stimuli simply
interfering with auditory processing.

We then verified that the high- and low-energy visual stimuli produced
a confidence-accuracy dissociation (testing Hypothesis 1 in the pre-
registration). Indeed, in the visual-only condition, high-energy visual sti-
muli led to lower performance (d’) (t(98) = 5.7, p = 1.0*10-7, 95%CI = [0.42,
86], Cohen’s d = 58, BF10 = 1.2*105, two-sidedpaired t-test; Fig. 2A left), but
higher confidence (t(98) = 9.1, p = 9.9*10-15, 95% CI = [0.29, 46], Cohen’s
d = 92, BF10 = 6.9*1011; Fig. 2A right) compared to the low-energy visual
stimuli.

Critically, we tested how high- and low-energy visual stimuli affected
auditory motion judgment in the multisensory condition (testing
Hypotheses 2 and 3 in the preregistration).Using the observed performance
in the visual-only and auditory-only conditions, we computed the weight of
the visual information on the auditory judgments in the multisensory
condition. Across all trials, we found that the visual stimuli had a substantial
influence (average visual weight = 25; average auditory weight = 75) even
though participants were asked to only judge the auditory direction in the
multisensory condition. Critically, the weight was substantially higher for
the high-energy (average weight = 29) compared to the low-energy stimuli
(average weight = 20; t(98) = 3.43, p = 0009, 95% CI = [0.04, 14], Cohen’s
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d = 35, BF10 = 25.27; Fig. 2B left). Consistent with these results, we also
observed that both multisensory conditions exhibited lower d’ than the
auditory-only condition (high-energy: t(98) = 5.48, p = 3.4*10-7, 95% CI =
[0.20, 44], Cohen’s d = 55, BF10 = 3.9*104; low-energy: t(98) = 3.41, p = 001,
95%CI = [0.09, 32], Cohen’s d = 34, BF10 = 23.28, Fig. 2B right), but that the
decrease was larger for the high- compared to the low-energy stimuli
(t(98) = 2.90, p = 005, 95% CI = [0.04, 20], Cohen’s d = 29, BF10 = 5.60).
These results demonstrate that multisensory integration was more strongly
influenced by the high-energy visual stimuli in line with their higher con-
fidence despite their lower associated performance.

To explain these results, we developed a simple computational model
(note that the computational modeling extends beyond preregistration).
The model assumes that high-energy visual stimuli produce internal evi-
dence distributions with a significantly larger variance but only a slightly
larger distance between themeans of the left and right stimulus distributions
than low-energy stimuli (Fig. 3A). However, as in previous work41–43, par-
ticipants use the same confidence criteria for both stimulus types. This leads
to higher confidence ratings for high-energy stimuli despite lower d’ levels,
thus explaining the confidence-accuracy dissociation in the visual-only
condition. Indeed, the model successfully reproduced the confidence-
accuracy dissociation by producing lower performance (t(98) = 2.98,
p = 004, 95% CI = [0.14, 72], Cohen’s d = 30, BF10 = 6.92) but higher con-
fidence (t(98) = 6.79, p = 8.8*10-10, 95% CI = [0.16, 29], Cohen’s d = 68,
BF10 = 1.1*107) for the high- compared to the low-energy stimuli in the
visual-only condition (Fig. 4A).

We examined two main computations that can underlie multisensory
integration: the Flexible weight computation and the Reliability-weighted
computation. The Flexible weight computation posits that participants
flexibly combine the visual and auditory signals, with theweight being a free
parameter. In contrast, the Reliability-weighted computation assumes that
sensory signals are combined based on their respective reliabilities, and the
weight is not a free parameter. We fit models instantiating each of these
computations to the multisensory data and examined how well each com-
putation explained the observed multisensory effects.

We found that the Flexible weight computation mirrored the beha-
vioral effects, despite assuming a single weight for the low- and high-energy
visual stimuli in themultisensory condition. Specifically, the Flexible weight

computation reproduced the higher estimated weight for the high- com-
pared to the low-energy stimuli (t(98) = 3.47, p = 0008, 95% CI = [0.04, 14],
Cohen’s d = 35, BF10 = 28.00) and the overall lower multisensory d’ for the
high- compared to the low-energy visual stimuli (t(98) = 5.72, p = 1.1 * 10-7,
95% CI = [0.06, 11], Cohen’s d = 58, BF10 = 1.1*105; Fig. 4B). In contrast,
though the Reliability-weighted computation reproduced lower weight for
the high- compared to the low-energy visual stimuli (t(98) = 3.36, p = 001,
95%CI = [0.04, 14], Cohen’s d = 34, BF10 = 20.27), it failed to reproduce the
overall lower multisensory d’ for the high- compared to the low-energy
visual stimuli (t(98) = .45, p = 65, 95% CI = [-0.12, 07], Cohen’s d = 05,
BF01 = 8.14; Fig. 4C). Note that the success of both computations in
reproducing the higher visual weights for the high- compared to the low-
energy conditions is due to the fact that the high-energydistributions extend
further to both extremes (Fig. 3A), leading to a stronger influence on the
judgments in the multisensory condition. Overall, despite its simplicity, the
model with Flexible weight computation was able to explain both the
confidence-accuracy dissociation and the multisensory integration bias by
postulating a unified computational principle.

In close correspondence to its better qualitative fits (Fig. 4B, C), the
Flexible weight computation outperformed the Reliability-weighted com-
putation by a total of 8,852 BIC points (Fig. 5A; see Fig. S5 for AIC results,
which show an even bigger advantage for the Flexible weight computation).
The Flexible weight computation also exhibited high parameter recover-
ability (r = 0.92, p = 1.0 × 10-42, 95% CI = [0.88, 94], Fig. 5B). We also
observed high model recovery, such that the correct computation was
recovered an average of 90.41% (Fig. 5C; see Fig. S5 for AIC results).

Finally, we also tested whether the multisensory results can be
explainedby aFlexible causal inferencecomputation.This computationfirst
determines if the visual and auditory signals likely originate from the same
or different sources based on the absolute difference between these signals (a
free parameter). When the signals are judged to have different sources, the
computation relies solely on the auditory signal, whereas when the signals
are judged to have the same source, the two signals are combined based on
their reliabilities. However, we found that the Flexible causal inference
computation strongly mimicked the Flexible weight computation. Specifi-
cally, the two computations were easily confusable, showing very poor
model recovery (Fig. S3). This is likely due to the fact that their free

Fig. 2 | Experimental results. A In the visual-only
condition, high-energy visual stimuli led to lower
performance (left) but higher confidence (right).
B In the multisensory condition (with congruent
and incongruent trials combined), high-energy
visual stimuli were weighed more heavily in judg-
ments (left), and both multisensory conditions had
lower d’ than the auditory-only condition (dashed
line), with a larger decrease for high-energy stimuli
(right). Shaded symbols indicate individual data
(N = 99). Error bars indicate SEM.
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Fig. 3 | Computational model. A Internal dis-
tributions of evidence for high- vs. low-energy sti-
muli. The model assumes that the distribution for
high-energy stimuli has a larger variability com-
pared to that of low-energy stimuli, resulting in
more trials falling in the range in the tails with
higher confidence. The distributions shown in the
figure are the average distributions obtained after
fitting the model to the data. B Standard deviation
(SD) and difference between the two distributions’
means from panel A, showing that high-energy
visual stimuli produce internal evidence distribu-
tions with a significantly larger variance but only a
slightly larger distance between the means of the
left and right stimulus distributions than low-
energy stimuli. C Multisensory-decision model.
Visual signals are combined directly with auditory
signals without any normalization, such that
xmultisensory ¼ w � xvisual þ 1� wð Þ � xauditory . We
tested two main computations underlying multi-
sensory integration. The Flexible weight computa-
tion treats the parameter w as a free parameter. The
Reliability-weighted computation fixes the para-
meter w to the value that would result in weighing
each sensory signal according to its reliability2.

Fig. 4 | Model fits. A The model successfully
reproduced lower multisensory d’ for the high-
energy stimuli compared to the low-energy stimuli,
consistent with the associated higher confidence but
lower accuracy for the high-energy stimuli. B The
Flexible weight computation well reproduced the
higher estimated weight and the overall lower mul-
tisensory d’ and for the high- compared to the low-
energy visual stimuli. C The Reliability-weighted
computation produced higher weight for the high-
compared to the low-energy visual stimuli (left
panel). However, it produced similar multisensory
d’ for the high- compared to the low-energy visual
stimuli. Error bars indicate SEM.
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parameters allow them to behave similarly for the majority of the range of
these free parameters (see Methods).

Discussion
Using an established manipulation for producing confidence-accuracy
dissociations18, we found that multisensory integration follows subjective
confidence instead of objective performance5,49,50. Critically, by using stimuli
that specifically dissociate sensitivity and confidence, we show that the
weight given to visual stimuli in multisensory trials follows the subjective
confidence ratings instead of the objective sensitivity associated with these
stimuli. We note that in most cases, objective uncertainty and subjective
confidence in standard 2-choice tasks go together, such that confidence is
typically higher for conditions with higher accuracy13,14,51. However, in the
cases where confidence and accuracy do dissociate (e.g., for a condition that
produces higher confidence despite lower accuracy), then it is the con-
fidence that drives multisensory integration.

Our work suggests the existence of common computations underlying
multisensory integration and metacognitive confidence reports. Several
previous papers have also examined whether metacognitive confidence
judgments share computations with other processes. For example, recent
work has demonstrated the existence of similar computational noise across
cognition, metacognition, and even meta-metacognition52,53 as well as
similarneural correlates forperceptual decisionmaking andconfidence54. In
addition, the metacognitive ability to provide confidence ratings predictive
of one’s accuracy is at least partly domain-general55,56. Importantly, none of
this previous work has examined whether automatic sensory inference
performed within sensory areas of the brain may also share mechanisms
with the deliberate computations associated with higher-order cognition.
The current findings thus provide critical evidence for the existence of
common computations among divergent process related to perception.

Our computational model implies that internal evidence distributions
with higher variance lead to both higher confidence and higher weighing in
multisensory judgments. At first, this may appear counterintuitive because
in traditional cue combination studies higher variance means lower per-
formance. The difference stems from the fact that we used a 2-choice
categorization task rather than an estimation task. In estimation tasks,
higher variability occurs for more uncertain stimuli, which leads to lower
confidence16,57 and less weight in multisensory judgments2,6. However, in
2-choice tasks, the uncertainty is jointly determined by the variance of the
internal distributions and the distance between their means58. Thus, in a
2-choice task, conditionswithhigh variance of the internal distributions can

be associatedwith high performance as long as the higher variability is offset
by a larger distance between the means of the distributions (as is the case in
our model; Fig. 2A, B).

The multisensory results observed here were well fit by assuming a
flexible combination of the visual and auditory stimuli (Flexible weight
computation). Notably, very similar results were obtained by assuming that
visual and auditory stimuli are flexibly combined using the principles of
causal inference (Flexible causal inference computation)44. Indeed, our
model recovery analyses demonstrated that these two computations are
almost indistinguishable in the context of the current experiment. The
underlying reason for the success of both the Flexible weight and Flexible
causal inference computations is that both are primarily influenced by the
differing variances of high vs. low-energy visual-only stimuli, where visual
motion stimuli with greater variance exert a larger impact on auditory
motion judgments32–34,59,60. Therefore, the conclusion that multisensory
integration follows subjective confidence rather than objective performance
is supported by both of these potential computations underlying multi-
sensory judgments. However, further research is necessary to distinguish
between the two. The key takeaway is that the computations for both
confidence and multisensory integration are constrained by the variance in
visual signals.

The finding that multisensory integration is driven by confidence
supports the hypothesis of a late cortical origin for multisensory weighting
processes61. Previous studies provide evidence for the involvement of both
sensory and parieto-frontal regions in multisensory integration62–66. To
further explore the neural signatures of how confidence influences this
process, future research could examine differences in neural responses to
high- versus low-energy stimuli during multisensory integration using
techniques such as EEG and fMRI.

We used a specific paradigm that induces a confidence-accuracy
dissociation18 because this paradigmcanbe adapted to amultisensory study.
Many other manipulations for inducing confidence-accuracy dissociations
have been developed in the literature19,67–69 but they are harder to adapt to
sensory cue integration. Moreover, here we focus on participants’ pro-
pensity tomisestimate confidence instead of the noise inherent in providing
confidence judgments45,68,70,71. Futurework should replicateour results using
other paradigms that can induce confidence-accuracy dissociation and
examine the influence on metacognitive noise.

In conclusion, our work demonstrates that subjective confidence, not
objective performance, guidesmultisensory integration. Our results suggest
the existence of common computationalmechanisms across vastly different

Fig. 5 | Model comparison, parameter recovery,
and model recovery. A Comparison of model per-
formance between the Flexible weight computation
and the Reliability-weighted computation based on
BIC values. The Flexible weight computation out-
performed the Reliability-weighted computation.
Error bars indicate 95% confidence intervals (CIs)
generated using bootstrapping. B Parameter recov-
ery for the weight parameter (w) of the Flexible
weight computation. Pearson’s correlation between
weights fitted from simulated data and true data
demonstrates effective parameter recovery. The red
line represents the fit using a linear regression
model. C Model recovery analysis for the Flexible
weight and Reliability-weighted computations.
Model recovery was assessed using standard fixed-
effects analyses (left) and using random-effects
modeling (right). In both cases, we observe excellent
model recovery showing that the two computations
are clearly distinguishable from each other.
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stages of perceptual decision making and may point to the existence of
unified inference mechanisms throughout the cortex.

Limitations
The task used here differs from Ernst & Banks’2 seminal paper on cue
combination, aswell asmanyothermultisensory cue combination studies1,4.
In ourwork, the task in themultisensory trialswas toonly judge the auditory
signal and ignore the visual stimulus. Optimal performancewould therefore
beobtained if the visual stimuliwere completely ignored (i.e., givenweightof
0). It is therefore not surprising that theReliability-weighted computation—
which was developed as a model for cases where optimal performance is
achieved via reliability-weighted cue combination – did not fit well with our
data. It is an open question whether our conclusions apply to traditional
multisensory cue combination that uses estimation tasks. Based on the
current results, we predict that subjective confidence would also play a
crucial role in multisensory cue combination. Specifically, if a modality is
associated with low reliability but high subjective confidence, it is likely that
this modality will be overweighed (relative to optimal) in cue combination
studies. Future work should test this prediction, as well as whether this type
of effectmay explain previous findings of suboptimality in cue combination
studies3,49,50,72–75.

Data availability
All data are available at https://osf.io/crkjd/.

Code availability
The experimental codes, as well as codes for analysis and modeling are
available at https://osf.io/crkjd/ (https://doi.org/10.17605/OSF.IO/CRKJD).
All codes were written in MATLAB (MathWorks, Version 2022a).
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