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Brain activity patterns exhibited during task performance have been shown to spontaneously reemerge in the following restful awake
state. Such “awake reactivation” has been observed across higher-order cortex for complex images or associations. However, it is still
unclear whether the reactivation extends to primary sensory areas that encode simple stimulus features. To address this question, we
trained human subjects from both sexes on a particular visual feature (Gabor orientation) and tested whether this feature will be
reactivated immediately after training. We found robust reactivation in human V1 that lasted for at least 8 min after training offset. This
effect was not present in higher retinotopic areas, such as V2, V3, V3A, or V4v. Further analyses suggested that the amount of awake
reactivation was related to the amount of performance improvement on the visual task. These results demonstrate that awake reactiva-
tion extends beyond higher-order areas and also occurs in early sensory cortex.
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Introduction
Understanding how the human brain learns is one of the central
goals in neuroscience. A growing body of literature demonstrates
that new learning becomes consolidated during offline states
(McGaugh, 2000; Diekelmann and Born, 2010; Sasaki et al.,
2010). Studies in animals suggest that offline memory consolida-
tion may be in part accomplished via spontaneous memory reac-
tivation, that is, the reemergence of the brain activity patterns
observed during task performance (Foster, 2017; Pfeiffer, 2017).
This spontaneous reactivation occurs during sleep but also dur-

ing restful wakefulness, in which case it is referred to as awake
reactivation.

Recent studies have demonstrated that memory reactivation
can be demonstrated in human subjects using fMRI. This line of
research has found evidence for awake reactivation in the medial
temporal lobe (Staresina et al., 2013; Tambini and Davachi, 2013)
and in higher-order cortical areas (Deuker et al., 2013; Schlicht-
ing and Preston, 2014; Guidotti et al., 2015; Chelaru et al., 2016;
de Voogd et al., 2016).

However, previous research could not determine what spe-
cific training components were reactivated. Indeed, some previ-
ous studies used associative learning between different categories
(Deuker et al., 2013; Staresina et al., 2013; Tambini and Davachi,
2013; Schlichting and Preston, 2014). The use of associative
learning makes it difficult to disentangle brain processes related
to the coding of each stimulus from the brain processes related to
the binding of different stimuli (Deuker et al., 2013). The studies
that did not use associative learning used relatively complex vi-
sual stimuli consisting of a large number of individual features
(Deuker et al., 2013; Staresina et al., 2013; Tambini and Davachi,
2013; Schlichting and Preston, 2014; Guidotti et al., 2015; Che-
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Significance Statement

How do we acquire new memories and skills? New information is known to be consolidated during offline periods of rest. Recent
studies suggest that a critical process during this period of consolidation is the spontaneous reactivation of previously experienced
patterns of neural activity. However, research in humans has mostly examined such reactivation processes in higher-order cortex.
Here we show that awake reactivation occurs even in the primary visual cortex V1 and that this reactivation is related to the amount
of behavioral learning. These results pinpoint awake reactivation as a process that likely occurs across the entire human brain and
could play an integral role in memory consolidation.
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laru et al., 2016; de Voogd et al., 2016). Further, these studies
observed awake reactivation in higher-order brain regions that
have mixed selectivity to features (Huth et al., 2016), making it
difficult to infer what specific features are reactivated.

Isolating a specific feature that is reactivated is critical for at
least two reasons. First, it will demonstrate the limits of the awake
reactivation phenomenon in humans. Does reactivation in the
human brain occur only at the level of complete objects and can
therefore be observed only in higher-level cortex? Or is reactiva-
tion a phenomenon that also occurs at the level of individual
stimulus features and can be observed even in primary sensory
areas? Second, providing evidence for awake reactivation of spe-
cific features will link the studies in humans even more tightly to
the phenomenon of neuronal replay observed in animals where
replay is typically demonstrated for relatively more specific stim-
uli, such as trajectory through space (Foster and Wilson, 2006;
Diba and Buzsáki, 2007; Davidson et al., 2009; Carr et al., 2011) or
placement on the screen (Han et al., 2008).

To find evidence for the existence of feature-specific awake
reactivation, we focused on the primary visual cortex (V1), which
is known to code stimulus orientation (Yacoub et al., 2008), to
show changes after visual training (Sasaki et al., 2010; Rosenthal
et al., 2016), and to be involved in learning and memory for visual
information (Karanian and Slotnick, 2018; Rosenthal et al.,
2018). We used oriented Gabor patches rather than complex
stimuli for training and examined whether the trained orienta-
tion is reactivated in V1 after extensive visual training. Our results
showed that the activity patterns of V1 were more likely to be
classified as the trained, compared with an untrained orientation
shortly after visual training. However, higher retinotopic areas,
such as V2, V3, V3A, or ventral V4 (V4v), did not show this effect.
Further analyses suggested that the greater amount of awake
reactivation in V1 was associated with greater learning for the
trained stimulus. These findings demonstrate that feature-
specific awake reactivation takes place after visual training in the
primary visual cortex, and suggest that reactivation may occur in
both association and primary sensory cortices.

Materials and Methods
Participants. Twelve healthy subjects (19 –25 years old, 7 females) with
normal or corrected-to-normal vision participated in this study. Subjects
were screened for a history of neurological or psychiatric disorders, as
well as for any contraindications to MRI. All subjects provided demo-
graphic information and written informed consent. The study was ap-
proved by the Institutional Review Board of Georgia Institute of
Technology. All experiments were performed during daytime. All 12
subjects’ data were included in the analysis. The sample size was deter-
mined based on similar fMRI experiments on visual learning (Guidotti et
al., 2015; Shibata et al., 2016).

Task. Subjects completed a 2-interval-forced-choice (2IFC; see Fig.
1A) orientation detection task where they indicated which of two inter-
vals contained a Gabor patch. The Gabor patch (contrast � 100%, spatial
frequency � 1 cycle/degree, Gaussian filter � � 2.5 degrees, random
spatial phase) was presented within an annulus subtending 0.75°–5° and
was masked by noise at a given signal-to-noise (S/N) ratio. For an S/N
ratio of X, 100-X% of the pixels in the Gabor patch were replaced with
random noise. Subjects were always presented with a noisy Gabor patch
during one interval and with pure noise (0% S/N ratio) during the other
interval. The interval in which the Gabor patch was presented was deter-
mined randomly on every trial.

Each trial began with a 500 ms fixation period, followed by two stim-
ulus intervals of 50 ms each. The two intervals were separated by a 300 ms

blank period. Subjects were asked to fix their eyes on a white bull’s-eye on
a gray disc (0.75° radius) at the center of the screen for the entire duration
of the task. Subjects indicated the interval in which the Gabor patch
appeared by pressing a button on a keypad. There was no time limit for
the response, and no feedback was provided.

Procedures. The study took place over 3 d (see Fig. 1B). Day 1 consisted
of decoder construction, retinotopy, and a pretraining behavioral test.
Day 2 consisted of training on the visual task preceded and followed by
pretraining and post-training scans. Finally, day 3 consisted of a single
post-training behavioral test. Days 1 and 2 were separated by multiple
days, whereas day 3 always immediately followed day 2.

The training, as well as the pretraining and post-training behavioral
tests, consisted of individual blocks. Within each block, we controlled the
difficulty of the task by adjusting the S/N ratio using a 2-down-1-up
staircase procedure. Each block started with stimuli at 25% S/N ratio and
terminated after 10 reversals of the staircase. Each block lasted �1–2 min,
contained 30 – 40 trials, and presented stimuli with just one orientation
(45° or 135°).

During the training, subjects completed 16 blocks in total lasting �40
min. All 16 blocks consisted of a single orientation (the “trained” orien-
tation). The training was performed in the MR scanner.

The pretraining and post-training behavioral tests were performed
to obtain each subject’s threshold S/N ratio for each Gabor orienta-
tion. The order of presentation of the two orientations was random-
ized for each test and each subject. Subjects performed the pretraining
and post-training behavioral tests in a mock scanner located imme-
diately adjacent to the scanner room. Following previous experiments
(Bang et al., 2018a,b; Shibata et al., 2017), we computed the threshold
S/N ratio as the geometric mean of the S/N ratios for the last 6 rever-
sals in a block.

Decoder construction. The purpose of the decoder construction stage
was to obtain each subject’s BOLD signal patterns corresponding to each
of the two Gabor orientations (45° and 135°). The decoder construction
was used to construct the decoder that distinguishes between the two
Gabor orientations.

During the decoder construction scan, the subjects performed 10 runs
of a frequency detection task (for details of the task, see below) inside the
MR scanner. Each run consisted of 18 trials of 16 s each, in addition to
two 6 s fixation periods in the beginning and the end of the run (each run
lasted a total 300 s). Each trial had two parts: 12 s stimulus presentation
period and the following 4 s response period.

During the 12 s stimulus presentation period, 12 Gabor patches were
presented at a rate of 1 Hz. Each Gabor patch was presented for 500
ms, allowing for 500 ms blank period between consecutive Gabor
stimuli. All 12 Gabor patches had one specific orientation (45° or
135°) chosen randomly on each trial. In half of the 18 trials, 1 of the 12
Gabor patches had slightly higher spatial frequency compared with
the other patches. For the other half of the 18 trials, all 12 Gabor
patches had the same spatial frequency. After the end of the 12 s
stimulus presentation period, subjects indicated whether a Gabor
patch with a different spatial frequency was presented. All Gabor
patches were displayed with 50% S/N (all other parameters were
equivalent to the parameters used for the 2IFC task). In the beginning
of the 12 s stimulus presentation period, the bull’s-eye at the center of
the screen changed its color from white to green to indicate that the
stimulus presentation period had started. The color of the fixation
point remained green throughout the 12 s stimulus presentation pe-
riod and changed to white again when the response period started.

We controlled the difficulty of the frequency detection task using an
adaptive staircase method. The initial degree of the spatial frequency
change in the first run was set to 0.24 cycles/degree and decreased by 0.02
in the case of a hit and increased by 0.02 in the case of an error. In the case
of a correct rejection, the degree of the frequency did not change. The
following run always started from the last degree of the frequency expe-
rienced by the subject.

Pretraining and post-training scans. We recorded each subject’s BOLD
activity before and after the visual training. In each case, we collected two
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5 min scans. The two pretraining scans were combined in the analyses
because we did not expect any difference between them. Rather, they
served to establish a baseline against which we could compare the de-
coder performance in the post-training scan. The two post-training scans
(post1 and post2) were analyzed separately to gain insight into the awake
reactivation time course.

To discourage subjects from consciously imagining the trained orien-
tation, we required them to perform a fixation task during the pretrain-
ing and post-training scans. The fixation task was designed so that the
parts of the visual cortex corresponding to the trained stimulus were not
prevented from engaging in awake reactivation. This was achieved by
making the target in the fixation task small and spatially nonoverlapping
with the trained stimulus. Subjects detected a color change of the center
dot of the white bull’s-eye (size and location of the white bull’s-eye were
the same as in the 2IFC task). The center dot changed color from white
([R, G, B] � [255, 255, 255]) to faint pink ([R, G, B] � [255, 255 � x,
255 � x]) for 1.5 s and returned to white. Subjects had to press a button
during this 1.5 s period. After the center dot returned to white, the next
color change occurred after a random interval between 0.5 and 1 s (the
average interval was 0.76 s). Each 5 min pretraining and post-training
scan contained on average 133 color changes. Initially, the color change x
was set to 40 and was then controlled by a 2-down-1-up staircase proce-
dure with a step size of 2.

To further verify that subjects did not engage in conscious rehearsal,
we administered a postexperiment questionnaire. The questionnaire
consisted of two questions and an open-ended prompt: (1) “Did you
imagine anything during the fixation task?” (2) “Did you imagine any
orientation during the fixation task?” and (3) “In your own words, de-
scribe your experience during the fixation task.” All subjects responded
in the negative to the first two questions and no subject mentioned any-
thing about the trained or untrained stimuli in the open-ended prompt,
thus suggesting that subjects did not engage in conscious rehearsal of the
trained stimulus.

To confirm that the subjects’ performance during the fixation task
remained at a similar level over time (during the pre, post1, and post2
scans), we conducted a one-way repeated-measures ANOVA on the
accuracy rate with a factor of time (pre vs post1 vs post2). We found
no significant main effect of time (F(2,22) � 2.045, Huynh–Feldt cor-
rection, � � 0.724, p � 0.169), suggesting that subjects’ performance
was relatively constant over time. This conclusion was further sup-
ported by direct comparisons between pre and post1 (t(11) � �1.581,
p � 0.142, paired t test) and pre and post2 (t(11) � �1.185, p � 0.261,
paired t test).

MRI data acquisition. Subjects were scanned in a Siemens 3T Trio MR
scanner using a 12-channel head coil. For the anatomical reconstruction,
high-resolution T1-weighted MR images were acquired using a multi-
echo MPRAGE (256 slices, voxel size � 1 � 1 � 1 mm 3, TR � 2530 ms,
FOV � 256 mm). Functional MR images were acquired using gradient
echo EPI sequences (voxel size � 3 � 3 � 3.5 mm, TR � 2000 ms, TE �
30 ms, flip angle � 79°). Thirty-three contiguous slices were positioned
parallel to the AC-PC plane to cover the whole brain.

Retinotopy and ROI selection. We defined the retinotopically organized
areas V1, V2, V3, V3A, and ventral V4 (V4v) using standard retinotopic
methods (Sereno et al., 1995; Tootell et al., 1997). Briefly, we presented
a flickering checkerboard pattern at the vertical/horizontal meridians
and in the upper/lower visual fields. Furthermore, we presented an
annulus stimulus to delineate the retinotopic regions in each visual
area corresponding to the visual fields stimulated by the Gabor patch.
The stimulus was a flickering checkerboard pattern within an annulus
subtending 0.75°-5° from the center of the screen, which is identical
with the size of the Gabor patch used in the rest of the experiment.
Only the voxels activated by the annulus stimulus were included in
the main analyses.

To localize the retinotopic areas V1, V2, V3, V3A, and V4v, we per-
formed a conventional amplitude analysis where we delineated areas V1,
V2, V3, V3A, and V4v using the contrast maps for vertical/horizontal
meridians and upper/lower visual fields (Sereno et al., 1995; Tootell et al.,

1997). We then localized the subregions in each visual area correspond-
ing to the part of the visual field occupied by the Gabor patch by con-
trasting the annulus ON and annulus OFF conditions.

In addition to the retinotopically defined areas in the visual cortex, we
analyzed 12 anatomical ROIs defined using Freesurfer as part of the
cortical reconstruction: superior, middle, and inferior frontal cortex;
orbitofrontal cortex; precentral, postcentral, and paracentral cortex; su-
perior and inferior parietal cortex; and superior, middle, and inferior
temporal cortex.

fMRI data analysis. We analyzed the brain data using Freesurfer soft-
ware (RRID:SCR_001847; http://surfer.nmr.mgh.harvard.edu/). Be-
cause we obtained each subject’s brain data on separate days (days 1 and
2), we processed the structural images from two different days with the
longitudinal stream (Reuter et al., 2012), which is known to create an
unbiased within-subject structural template using robust, inverse consis-
tent registration. We registered the functional data from the two different
days’ scans to the individual structural template that was created via the
longitudinal stream using rigid-body transformations. A gray matter
mask was used for extracting BOLD signals from voxels located within
the gray matter. Functional data were realigned as part of preprocessing,
but no spatial or temporal smoothing was applied.

We extracted the BOLD time courses from each voxel using MATLAB
(RRID:SCR_001622; The MathWorks). We shifted the BOLD signals by
6 s to account for the hemodynamic delay and removed voxels that
showed spikes �10 SDs from the mean during decoder construction
scans. We further removed a linear trend using linear order polynomial
algorithms. Then, within each run, we normalized (z scored) each voxel’s
BOLD time courses to minimize the baseline changes across runs. To
create the data sample for decoding, we averaged the BOLD signals across
6 volumes (12 s) that correspond to the duration of the stimulus presen-
tation period in the decoder construction.

We selected relevant voxels using sparse logistic regression (Ya-
mashita et al., 2008) as implemented in the sparse logistic regression
toolbox. Sparse logistic regression selects relevant voxels in the ROIs
automatically while estimating their weight parameters for classifica-
tion. We selected the voxels within the subregions of V1, V2, V3, V3A,
and V4v corresponding to the Gabor stimuli as the input voxels. Then
we trained the decoder to classify the BOLD patterns as either the
Gabor stimulus with 45° or 135° orientation using all 180 data sam-
ples from all 10 runs in the decoder construction scan (90 samples for
each orientation).

Before applying the decoder to the pretraining and post-training
scans, we checked the validity of the decoder. Because of the known
difficulties in assessing decoder validity (Varoquaux et al., 2017; Varo-
quaux, 2018), we performed two different cross-validation procedures
on the data from the decoder construction scan. These cross-validations
did not result in different decoders for the data from the pretraining and
post-training scans; those scans were always analyzed with the decoder
created based on all 10 runs from the decoder construction scan. We
performed a 5-fold cross-validation where the decoder was trained on
eight runs and tested on the remaining two runs (different iterations used
runs 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 10 as the test runs). We
observed very high decoder performance of �80% accuracy for all reti-
notopically defined visual areas (V1: t(11) � 42.566, p � 0.001; V2: t(11) �
55.076, p � 0.001; V3: t(11) � 48.986, p � 0.001; V3A: t(11) � 34.767, p �
0.001; V4v: t(11) � 17.153, p � 0.001; uncorrected one-sample t tests; Fig.
2-2 A, available at https://doi.org/10.1523/JNEUROSCI.0884-18.2018.
f2-2). In addition, we performed a 10-fold cross-validation where the
decoder was trained on nine runs and tested on the remaining run and
again observed high decoder performance for all retinotopically defined
visual areas (V1: t(11) � 10.856, p � 0.001; V2: t(11) � 11.746, p � 0.001;
V3: t(11) � 8.345, p � 0.001; V3A: t(11) � 3.851, p � 0.003; V4v: t(11) �
4.241, p � 0.001; uncorrected one-sample t tests; Fig. 2-2 B, available at
https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f2-2). Finally, pilot
data from a previous subject suggested that our decoder generalizes with
little to no loss of accuracy to data collected on a different day.
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Finally, we applied the decoder to the pretraining and post-training
scans using the same voxels as the ones selected during the decoder
construction. The BOLD signals during pretraining and post-training
scans were shifted by 6 s, and a linear trend was removed. The time
courses of the BOLD signals were again averaged across 6 volumes be-
cause our decoder was constructed based on the average of 6 volumes at
a time (see above). For each 6-volume period of the pretraining and
post-training scans, we applied the decoder to calculate the likelihood
that it was elicited by each Gabor orientation. Based on these likelihood
scores, the decoder classified each 6-volume period as either the trained
or untrained orientation.

To ensure that our results were not due to motion artifacts, we ex-
cluded volumes with relatively strong motion. Motion was computed
using the formula for framewise displacement (FD) from Power et al.
(2012) as follows:

FD � �xt � xt�1� � �yt � yt�1� � �zt � zt�1�

�
50*�

180
���t � �t�1� � �	t � 	t�1� � �
t � 
t�1�	

where x, y, and z (translations), and �, 	, and 
 (rotations) are the six
head motion parameters obtained from the realignment step, and t is the
time point of the current volume. This formula significantly overesti-
mates the actual motion of each voxel (Yan et al., 2013). We used a
stringent criterion and excluded volumes for which FD � 0.5. This cri-
terion led to an exclusion of a total of just 27 volumes from all pretraining
and post-training scans across all subjects (of a total of 7200 volumes;
thus, a total of just 0.38% of all volumes were excluded), testifying to the
low overall motion observed in the study. Performing the same analyses
without any volume exclusions did not affect the results, including the
significant classification in V1.

Statistical analyses. We used two-tailed parametric statistical tests,
such as t tests and ANOVAs. For all repeated-measures ANOVAs, we
used Mauchly’s test of Sphericity to test the assumption of sphericity. We
used Huynh–Feldt correction with the estimated � when the sphericity
assumption was violated. All such violations are reported when they
occurred.

Relationship between awake reactivation and behavioral improvement.
To check whether the amount of awake reactivation was associated with
the amount of behavioral improvement, we first constructed an index of
subjects’ learning. The learning index measures the relative learning
amount for the trained compared with the untrained orientation. The
learning amount was defined as the change in the thresholds for pretrain-
ing and post-training behavioral tests divided by the threshold at pre-
training behavioral test as follows:

Tpre � Tpost

Tpre

where Tpre and Tpost refer to the threshold S/N ratios before and after
training. Lower threshold values indicate better performance. We
computed the learning index by subtracting the learning amount for
the untrained orientation from learning amount for the trained ori-
entation.

To relate the learning index to the amount of awake reactivation, we
constructed an equivalent index of subject-specific awake reactivation.
The reactivation index measures the increase in decodability of the
trained stimulus in V1 from the pretraining to the post-training scan as
follows:

Ppost � Ppre

Ppre

where Ppre and Ppost refer to the probability of classifying brain activity
as the trained orientation in the pretraining and post-training scans,
respectively.

Apparatus. All visual stimuli were created in MATLAB using Psycho-
physics Toolbox 3 (RRID:SCR_002881) (Brainard, 1997). The stimuli
were presented on an LCD display (1024 � 768 resolution, 60 Hz refresh

rate) inside a mock scanner and on an MRI-compatible LCD projector
(1024 � 768 resolution, 60 Hz refresh rate) inside the MR scanner.

Data availability. The data are freely available online at https://osf.io/
9du8v/.

Results
We examined whether a process of feature-specific awake reacti-
vation occurs after visual training in human V1. We trained hu-
man subjects (n � 12) to detect a specific Gabor orientation (45°
or 135°, counterbalanced between subjects; Fig. 1A). The training
led to better performance on the post-training compared with the
pretraining behavioral test (F(1,11) � 34.351, p � 0.001), thus
demonstrating that significant behavioral learning took place
(Fig. 1-1, available at https://doi.org/10.1523/JNEUROSCI.0884-
18.2018.f1-1). There was no significant difference in the learning
amount for trained and untrained orientations (F(1,11) � 0.009,
p � 0.926), suggesting that learning transfers between the trained
and untrained stimuli as observed in a number of previous stud-
ies (Xiao et al., 2008; Zhang et al., 2010; McGovern et al., 2012;
Wang et al., 2014).

Before the training, we constructed a decoder that could
distinguish between the multivoxel pattern of BOLD activity
elicited by each Gabor orientation (Fig. 1B). We then applied
this decoder to the brain activity scans conducted before (pre,
two 5 min scans that we combined for analysis) and after
(post1 and post2: consecutive two 5 min scans analyzed sepa-
rately) the training.

Awake reactivation in V1
If feature-specific awake reactivation indeed occurs in V1, it
would manifest itself as post-training, but not pretraining, brain
activity appearing more similar to the trained, compared with the
untrained, orientation. To test for such feature-specific awake
reactivation in V1, we analyzed the decoder’s probability of clas-
sifying brain activity from the pretraining and post-training scans
in V1 as the trained orientation. In this analysis, brain activity was
always classified as either the trained or untrained Gabor orien-
tation at each data point; we therefore only report the probability
of “trained orientation” classifications. To examine whether the
decoder’s classification for the trained orientation significantly
increased after the training, we applied a one-way repeated-
measures ANOVA to the decoder’s classifications. We found a
significant main effect of time (pre vs post1 vs post2; F(2,22) �
5.721, p � 0.010). Consistent with the existence of awake reacti-
vation, the activation pattern in V1 was more likely to be classi-
fied as the trained orientation immediately after (post1)
compared with before (pre) the visual training (t(11) � 3.516, p �
0.005, uncorrected paired-sample t test; Fig. 2A,B). A significant
quadratic trend was also observed in the time course of the de-
coder’s probability (F(1,11) � 10.767, p � 0.007), indicating a
peak right after training. Furthermore, the probability of classifi-
cation as the trained orientation was significantly greater than
chance in both post-training periods (post1: t(11) � 4.415, p �
0.001; post2: t(11) � 2.968, p � 0.013; one-sample t tests) but not
before training (pre, t(11) � 0.226, p � 0.825, one-sample t test).
No subject showed a significant bias for the trained or untrained
stimulus in the pretraining scan (all p values �0.4, binomial
tests), and there was no correlation between the classification
performance in the pretraining scan with the identity of the
trained stimulus (r � 0.041, p � 0.900). Thus, the significant
classification results in the post-training scans cannot be attrib-
uted to differences in the pretraining scans.

The above analysis focused on the decoder’s probability of
classifying brain activity as the trained orientation based on the
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decoder’s binary classification (either trained or untrained orien-
tation) at each data point. However, for each data point, the
decoder could also produce a continuous measure: the likelihood
that the data point came from the trained or untrained orientation.
Analyzing these continuous likelihood values (rather than the binary
classification performance) led to the same pattern of results (Fig.
2-1, available at https://doi.org/10.1523/JNEUROSCI.0884-18.
2018.f2-1). Specifically, we found a marginally significant effect of
time in a one-way repeated-measures ANOVA (F(2,22) � 3.321, p �
0.055). Consistent with the existence of awake reactivation, the like-
lihood of classification as the trained orientation increased immedi-
ately after (post1) compared with before (pre) the visual training
(t(11) � 2.545, p � 0.027, paired-sample t test). The likelihood of
classification was significantly greater than chance in both post-
training periods (post1: t(11) � 3.540, p � 0.005; post2: t(11) � 2.370,
p � 0.037; one-sample t tests) but not before training (pre, t(11) �
0.455, p � 0.658, one-sample t test). Thus, both methods of analysis
show that post-training brain activity in V1 appears more similar to
the trained orientation.

Finally, we confirmed that the fixation task that subjects per-
formed in the pretraining and post-training scans did not influ-
ence the decoder classification. Due to our continuous staircase,
the color change always started as easily noticeable and gradually
reached each individual’s threshold value where it was barely
noticeable. The color change was thus much more noticeable in
the first compared with the second half of each scan. Therefore, to

check for the influence of a noticeable color change on the
decoder classification, we compared the likelihood of classifi-
cation as the trained orientation between the first and the
second halves of the post1 and post2 scans. We found no
significant decrease for either post1 (t(11) � �1.140, p �
0.278, paired-sample t test) or post2 (t(11) � �0.618, p �
0.549, paired-sample t test). To increase the power for these
analyses, we additionally combined the post1 and post2 scans
and again found no difference between the first and the second
halves (t(23) � �1.293, p � 0.209, paired t test). Therefore, the
observed reactivation is unlikely to be simply caused by the
occurrence of a noticeable color change event.

No awake reactivation in higher retinotopic areas
Having established the existence of feature-specific awake reacti-
vation in V1, we explored whether similar effects could be ob-
served in higher visual areas. To do so, we analyzed the decoder’s
probability of classifying pretraining and post-training brain ac-
tivity as the trained orientation based on activity patterns in V2,
V3, V3A, and V4v. To test whether the decoder’s performance in
higher visual areas changed after the training, we conducted a
two-way repeated-measures ANOVA with factors time (pre vs
post1 vs post2) and region (V2, V3, V3A, and V4v). The ANOVA
revealed no significant effects of time (F(2,22) � 0.153, p � 0.859),
region (F(3,33) � 1.886, p � 0.151), or interaction between the
two (F(6,66) � 2.055, p � 0.071). Despite the lack of significant

Figure 1. Task and experimental procedure. A, Subjects performed a 2IFC orientation detection task during pretraining and post-training behavioral tests, as well as the training on day 2. During
the task, subjects indicated whether a Gabor patch appeared in the first or second interval. B, The experiment consisted of 3 d. In the critical day 2, visual training (�40 min on average) was preceded
by two pretraining scans (5 min/scan; combined into a single “pre” baseline) and followed by two post-training scans (post1 and post2). During the pretraining and post-training scans, subjects
detected a color change in a small fixation dot (see Materials and Methods). The main experimental question was whether the trained stimulus can be decoded in the post-training scan. Decoder
construction (�50 min) and retinotopy (�20 min) scans were collected on day 1. Pretraining and post-training behavioral tests were conducted on days 1 and 3 to confirm that training improved
task performance. (See Figure 1-1, available at https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f1-1).
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overall effects (Fig. 3; individual results are shown in Fig. 3-1,
available at https://doi.org/10.1523/JNEUROSCI.0884-18.
2018.f3-1), we analyzed the data further to ensure that none of
these higher retinotopic regions showed the pattern of results in
V1 where decodability of the trained stimulus increased immedi-
ately after training (post1) compared with before training (pre).
Indeed, we found no such effects in V2, V3, V3A, or V4v (all p
values �0.5 for pre vs post1 in each area before correction: V2:
t(11) � 0.443, p � 0.666; V3: t(11) � �0.644, p � 0.533; V3A:
t(11) � �0.081, p � 0.937; V4v: t(11) � �0.413, p � 0.688, paired-
sample t tests).

We analyzed the data from V1 separately from the other four
retinotopic areas based on our a priori hypothesis. However, in a
control analysis, we entered all five retinotopic regions into the
same two-way repeated-measures ANOVA. Consistent with the
existence of awake reactivation exclusively in V1, a significant
interaction between region and time emerged (F(8,88) � 2.290,
p � 0.028). In addition, we further examined whether the decod-
er’s probability of classifying brain activity as the trained orien-
tation in V1 is significantly greater than that in V2, V3, V3A, and
V4v immediately after training (post1). We found a greater de-
codability of the trained stimulus in V1 compared with V2, V3A,
and V4v immediately after training (post1) (V1 vs V2, t(11) �
4.183, p � 0.002; V1 vs V3, t(11) � 1.306, p � 0.218; V1 vs V3A,
t(11) � 2.657, p � 0.022; V1 vs V4v, t(11) � 2.415, p � 0.034;

paired-sample t tests, before correction).
These results support the notion that the
pattern of increased decodability of the
trained stimulus immediately after train-
ing is found exclusively in V1.

No awake reactivation outside the
occipital lobe
In addition to the retinotopically defined
ROIs, we checked for awake reactivation
in the rest of cortex. We created anatom-
ical ROIs corresponding to subregions of
the temporal, parietal, and frontal cortex
(see Materials and Methods). Leave-one-
run-out cross-validation (10-fold cross-
validation) demonstrated above chance
orientation classification in three of these
ROIs: superior parietal cortex (t(11) �
3.760, p � 0.003), inferior parietal cortex
(t(11) � 2.351, p � 0.038), and middle
temporal cortex (t(11) � 2.293, p � 0.043).
Therefore, we only checked for awake re-
activation (by applying the trained de-
coder to the pretraining and post-training
scans) for these three ROIs.

We found no evidence of awake reac-
tivation in any of these areas outside of
the occipital cortex. Indeed, one-way
repeated-measures ANOVAs with a factor
of time revealed no significant effects of
time in any of the three ROIs (superior
parietal cortex: F(2,22) � 0.139, p � 0.871;
inferior parietal cortex: F(2,22) � 1.180,
p � 0.326; middle temporal cortex: F(2,22)

� 0.201, p � 0.820). Despite the lack of
significant overall effects in these ROIs, we
checked specifically whether any of the
three higher areas showed the pattern of

results in V1 where decodability of the trained stimulus increased
immediately after training (post1) compared with before training
(pre). None of the three ROIs showed this pattern (superior pa-
rietal cortex: t(11) � 0.399, p � 0.698; inferior parietal cortex:
t(11) � 0.852, p � 0.412; middle temporal cortex: t(11) � �0.650,
p � 0.529; uncorrected paired-sample t tests pre vs post1). These
results are consistent with the notion that awake reactivation is
specific to V1.

Relationship between awake reactivation and
behavioral improvement
Finally, we examined whether the observed awake reactivation in
V1 may have been related to the amount of behavioral learning.
To address this question, we examined whether subjects who
showed greater reactivation in V1 exhibited stronger behavioral
improvement. We constructed a subject-specific learning index
that measures the amount of learning that was specific to the
trained orientation. Similarly, we constructed a subject-specific
reactivation index that measures the amount of reactivation by
comparing the probability of decoding the trained stimulus in the
pretraining and post-training scans (for details about both indi-
ces, see Materials and Methods). We then compared the learning
index across subjects with a high versus low amount of reactiva-
tion (using a median split). We found that the learning index for
those who showed higher awake reactivation was greater than that

Figure 2. Probability of classifying brain activity during the pretraining and post-training scans as trained orientation in V1.
Consistent with the existence of awake reactivation, brain activity in V1 immediately after training was more likely to be classified
as the trained orientation. The effect is visible both in the group (A) and individual data (B). Error bars indicate SEM. *p � 0.05,
**p � 0.01. N.S., not significant. Similar results were obtained by analyzing the continuous likelihood values instead of the binary
classifications values (see Figure 2-1, available at https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f2-1). The decoder was val-
idated using cross-validation techniques (see Figure 2-2, available at https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f2-2).

Bang et al. • Feature-Specific Awake Reactivation in Human V1 J. Neurosci., November 7, 2018 • 38(45):9648 –9657 • 9653

https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f3-1
https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f3-1
https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f2-1
https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f2-2


for those who showed lower awake reactivation (t(10) � 2.616, p �
0.026, independent-samples t test; Fig. 4), suggesting a potential as-
sociation between awake reactivation and greater learning for the
trained compared with the untrained orientation.

Discussion
We investigated whether a process of feature-specific awake re-
activation takes place in human V1 following training with a
novel visual stimulus. We found that, shortly after training, the
brain activity in V1 was more likely to be classified as the trained
orientation. This awake reactivation was specific to V1; higher
retinotopic areas failed to show similar effects. Furthermore, the

strength of awake reactivation showed a positive association with
the behavioral performance improvement specific to the trained
stimulus. These results provide strong evidence that awake reac-
tivation extends beyond higher-level cortical areas to primary
sensory cortices.

Awake reactivation has been studied in humans using para-
digms in which the memory was explicitly cued (Bosch et al.,
2014; Ekman et al., 2017) or subjects were asked to actively recall
the memory (St-Laurent et al., 2014, 2015; Tompary et al., 2016).
However, these studies cannot establish whether awake reactiva-
tion also occurs in the absence of explicit instructions. In the
current study, we discouraged conscious rehearsal by requiring
subjects to perform a challenging task at fixation during the pre-
training and post-training scans and further administered a post-
experiment questionnaire that confirmed that subjects did not
engage in conscious rehearsal. A number of studies have shown
that conscious rehearsal is not needed in order for memory en-
hancement to occur (Dewar et al., 2014; Brokaw et al., 2016; Craig
et al., 2016; Tambini et al., 2017).

Our study demonstrates that awake reactivation in humans
can be feature-specific. Indeed, by comparing Gabor stimuli that
only vary in their orientation, we revealed that a basic visual
feature, such as orientation, is specifically reactivated in the brain.
Conversely, previous human studies could not determine what
specific aspect of the trained stimulus was reactivated. Some of
the prior studies used associative learning between two different
categories (Deuker et al., 2013; Staresina et al., 2013; Tambini and
Davachi, 2013; Schlichting and Preston, 2014). However, the re-
emergence of the brain processes during encoding of two differ-
ent categories is insufficient to determine whether the reactivated
information relates to the coding of each stimulus or the binding
process (Deuker et al., 2013). Other studies did not use associa-
tive learning but used complex stimuli, such as animals, fruits,

Figure 3. Probability of classifying brain activity during the pretraining and post-training scans as trained orientation in V2, V3, V3A, and V4v. Consistent with a lack of awake
reactivation in higher retinotopic areas, post-training brain activity in V2, V3, V3A, and V4v was classified as the trained orientation at chance level (0.5) immediately after training. Error
bars indicate SEM. N.S., not significant. For individual subject data, see Figure 3-1 (available at https://doi.org/10.1523/JNEUROSCI.0884-18.2018.f3-1).

Figure 4. Strength of awake reactivation is associated with performance improvement
specific to the trained orientation. The amount of behavioral improvement specific to the
trained orientation was greater for subjects who showed higher levels of awake reactiva-
tion (based on a median split). Dots represent individual data. Error bars indicate SEM.
*p � 0.05.
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vegetables, letters, and cartoon movies (Deuker et al., 2013; Sta-
resina et al., 2013; Tambini and Davachi, 2013; Schlichting and
Preston, 2014; Guidotti et al., 2015; Chelaru et al., 2016; de Voogd
et al., 2016), which contain a large number of individual fea-
tures that could potentially be reactivated. By demonstrating
feature-specific reactivation, the current study shows that
awake reactivation in the human brain is not limited to the
level of whole objects but extends down to the most basic
visual features.

Related to the issue of feature-specific reactivation, we also
showed that reactivation in humans is not exclusive to higher-
order brain areas but exists even in the primary visual cortex V1.
Prior studies demonstrated the existence of reactivation mostly in
the association cortex but not in the primary sensory areas (Deu-
ker et al., 2013; Staresina et al., 2013; Tambini and Davachi, 2013;
Schlichting and Preston, 2014; Guidotti et al., 2015; Chelaru et al.,
2016; de Voogd et al., 2016). It has thus remained unclear what
the limits of the reactivation phenomenon are. Our study sug-
gests that human reactivation is likely to occur across most (if not
all) brain regions.

A major difference between our study and previous research
on awake reactivation is that our task involved extensive training.
In contrast, most previous studies used a single or very few pre-
sentations of each stimulus (Deuker et al., 2013; Staresina et al.,
2013; Tambini and Davachi, 2013; Schlichting and Preston, 2014;
Guidotti et al., 2015; Chelaru et al., 2016; de Voogd et al., 2016).
Extensive training was also provided in a previous study of awake
reactivation (Guidotti et al., 2015). Such training has been addi-
tionally shown to enhance the activity of the trained patch of V1
during sleep (Yotsumoto et al., 2009; Bang et al., 2014) and alter
the connectivity between the trained area of visual cortex and
the rest of the brain (Lewis et al., 2009). It is an open question
whether the nature of awake reactivation is the same in cases of
few stimulus presentations versus extensive training. Never-
theless, together with the study by Guidotti et al. (2015), our
results demonstrate that awake reactivation occurs in a variety
of visual learning paradigms. It should also be noted that,
because we trained subjects on degraded visual stimuli, our
decoder was trained on a separate decoder construction ses-
sion rather than on the patterns of activity elicited during
learning itself. Future studies should ideally use learning par-
adigms that allow the decoder to be trained using the brain
activity elicited during learning.

In our study, the decodability of the trained orientation in V1
was highest in the first post-training scan (post1) but remained
significant in the second post-training scan (post2). Therefore,
awake reactivation in our study continued at least until the onset
of the second post-training scan (post2), which occurred on av-
erage 7.75 min after the offset of visual training. In other words,
reactivation persisted for at least �8 min after subjects last expe-
rienced the trained stimulus. This time course of awake reactiva-
tion in V1 agrees well with neuronal results in anesthetized
rodent V1 (Han et al., 2008). In that study, 50 (125) stimulus
repetitions led to �3 (�14) minutes of replay activity. Compared
with the results from Han et al. (2008), our visual training was
significantly longer, but reactivation processes lasted for a shorter
time. The shortened time length of reactivation is likely due to the
fact that, unlike in anesthesia, the awake brain needs to remain
responsive to its environment, which likely diminishes its capac-
ity for reactivation.

Despite the fact that fMRI has limited spatiotemporal resolu-
tion compared with neuronal recordings, our results, together
with prior human studies on awake reactivation, appear to reveal

processes akin to neuronal replay in animals (Carr et al., 2011).
Neuronal replay, defined as the reemergence of neuronal patterns
that represent previous learning, has been studied extensively in
hippocampal cells (Foster and Wilson, 2006; Diba and Buzsáki,
2007; Yao et al., 2007; Davidson et al., 2009; Carr et al., 2011) but
also in areas of the neocortex, particularly the visual (Ji and Wil-
son, 2007; Yao et al., 2007; Han et al., 2008) and the frontal cortex
(Euston et al., 2007) in animals. Similar to these previous find-
ings, we suspect that our results reflect spontaneous firing of the
same pools of V1 neurons that code for the trained stimulus.
Future studies using finer spatiotemporal resolution are needed
to directly examine this possibility.

An important open question is from where awake reactivation
originates. In our study, we found evidence for reactivation in V1
but not in higher retinotopic areas or regions outside of the oc-
cipital lobe. This pattern of results can be interpreted as suggest-
ing that local circuits within V1 initiated the reactivation process.
Indeed, top-down processes, such as visual imagery (Albers et al.,
2013), attention (Tootell et al., 1998), and working memory
(Harrison and Tong, 2009), which affect V1 invariably, have as
strong (or stronger) influence on the higher retinotopic areas.
Moreover, it is possible to decode orientation cues consciously
held in working memory, even in frontoparietal areas (Ester et al.,
2015). In other words, it would be surprising if a top-down signal
can be read out in V1 but not in higher areas. For this reason, we
favor an explanation where awake reactivation originates from
circuits that specifically code for a given feature. For example, V1
explicitly codes for orientation (Yacoub et al., 2008), whereas
higher regions do not (even though orientation can still be de-
coded in them). Thus, our findings of awake reactivation only in
V1 are consistent with the idea that reactivation could be ex-
pected to occur at the site that specifically codes for the trained
feature.

The possibility of locally generated awake reactivation in V1
adds to a growing body of work demonstrating that V1 is not a
simple, passive feature detector but instead is important for high-
level processes (Karanian and Slotnick, 2018; Rosenthal et al.,
2018). Indeed, a number of studies have suggested that changes in
the nature and behavioral relevance of sensory stimulation alter
V1 responses via fully or partly local mechanisms (Fahle, 2004;
Shuler and Bear, 2006; Xu et al., 2012). For example, both spatio-
temporal sequence learning (Gavornik and Bear, 2014) and vi-
sual recognition memory (Cooke et al., 2015) have been reported
to occur in V1 via local plasticity. Therefore, our work contrib-
utes to the emerging view that V1 integrates perception, learning,
and mnemonic functions.

In conclusion, we found evidence for feature-specific awake
reactivation in V1 after training on a visual task in humans. Fur-
ther, the amount of awake reactivation in V1 was associated with
the behavioral learning amount on the trained stimulus. These
results suggest that feature-specific awake reactivation might be a
critical mechanism in offline memory consolidation.
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Shimojo S, Watanabe T (2009) Location-specific cortical activation
changes during sleep after training for perceptual learning. Curr Biol
19:1278 –1282. CrossRef Medline

Zhang JY, Zhang GL, Xiao LQ, Klein SA, Levi DM, Yu C (2010) Rule-based
learning explains visual perceptual learning and its specificity and trans-
fer. J Neurosci 30:12323–12328. CrossRef Medline

Bang et al. • Feature-Specific Awake Reactivation in Human V1 J. Neurosci., November 7, 2018 • 38(45):9648 –9657 • 9657

https://doi.org/10.1016/j.neuroimage.2016.10.038
http://www.ncbi.nlm.nih.gov/pubmed/27989847
https://doi.org/10.1167/14.13.12
http://www.ncbi.nlm.nih.gov/pubmed/25398974
https://doi.org/10.1016/j.cub.2008.10.030
http://www.ncbi.nlm.nih.gov/pubmed/19062277
https://doi.org/10.1038/nn.3036
http://www.ncbi.nlm.nih.gov/pubmed/22267160
https://doi.org/10.1073/pnas.0804110105
http://www.ncbi.nlm.nih.gov/pubmed/18641121
https://doi.org/10.1016/j.neuroimage.2008.05.050
http://www.ncbi.nlm.nih.gov/pubmed/18598768
https://doi.org/10.1016/j.neuroimage.2013.03.004
http://www.ncbi.nlm.nih.gov/pubmed/23499792
https://doi.org/10.1038/nn1895
http://www.ncbi.nlm.nih.gov/pubmed/17468750
https://doi.org/10.1016/j.cub.2009.06.011
http://www.ncbi.nlm.nih.gov/pubmed/19576772
https://doi.org/10.1523/JNEUROSCI.0704-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20844128

	Feature-Specific Awake Reactivation in Human V1 after Visual Training
	Introduction
	Materials and Methods
	Results
	Discussion
	References


