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Visual metacognition is the ability to evaluate one’s performance on visual perceptual tasks.
The field of visual metacognition unites the long tradition of visual psychophysics with the
younger field of metacognition research. This article traces the historical roots of the field and
reviews progress in the areas of (a) constructing appropriate measures of metacognitive abil-
ity, (b) developing computational models, and (c) revealing the neural correlates of visual
metacognition. First, I review the most popular measures of metacognitive ability with an em-
phasis on their psychophysical properties. Second, I examine the empirical targets for model-
ing, the dominant modeling frameworks and the assumed computations underlying visual
metacognition. Third, I explore the progress on understanding the neural correlates of visual
metacognition by focusing on anatomical and functional studies, as well as causal manipula-
tions. What emerges is a picture of substantial progress on constructing measures, developing
models, and revealing the neural correlates of metacognition, but very little integration
between these three areas of inquiry. I then explore the deep, intrinsic links between the three
areas of research and argue that continued progress requires the recognition and exploitation
of these links. Throughout, I discuss the implications of progress in visual metacognition for
other areas of metacognition research, and pinpoint specific advancements that could be
adopted by researchers working in other subfields of metacognition.
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The article provides an overview of the field of visual metacognition. It discusses pro-
gress on constructing measures of metacognitive ability, developing computational mod-
els, and revealing the neural correlates of visual metacognition. It is argued that
continued progress requires synergy between these areas of study, and that progress in
visual metacognition has direct implications for research in all subfields of metacognition
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Visual metacognition is the ability to evaluate one’s per-
formance on visual perceptual tasks. It is a critical skill in
our everyday life that allow us, for example, to recognize
our poor ability to see in foggy conditions and thus, drive
slower. More generally, our visual metacognition allows us
to know whether to commit to a decision or either seek
advice from others (Pescetelli & Yeung, 2021) or gather
more information ourselves (Desender et al., 2018). The
field has dual roots in research on visual perception and
metacognition. Both fields can be tracked all the way to an-
tiquity and were topics already examined by Aristotle.

The modern research on visual perception dates back to
the mid-19th century with pioneering work by Fechner,
Helmbholtz, and others who cast perception as a process of
inference and laid the foundation of psychophysics research
(Fechner, 1860; Helmholtz, 1856). Many of the early devel-
opments—such as the graded manipulation of visual stimuli
and the careful measurement of individual performance—
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remain important to this day. However, the early research
used metacognitive measures of evaluation, such as confi-
dence ratings, as a means to understand vision rather than
as a topic of research in their own right (Green & Swets,
1966; Peirce & Jastrow, 1884).

The modern research on metacognition can be traced
back at least to the middle of the 20th century (Clarke et al.,
1959; Hart, 1965). It was exactly 50 years ago when John
H. Flavell coined the term “metamemory” (Flavell, 1971).
Flavell later popularized the term “metacognition” (Flavell,
1979), which he defined as “knowledge and cognition about
cognitive phenomena.” The early research on metacognition
was mostly conducted within the fields of memory and de-
velopment, but has since expanded to many other fields and
boasts its own dedicated journals and conferences.

Within this context, the birth of the field of visual meta-
cognition can be traced to the late 2000s. That was the point
when the already growing interest in understanding confi-
dence in perceptual tasks (Baranski & Petrusic, 1994; Fleet
et al., 1987; Keren, 1988) converged with a series of studies
on the neural correlates of confidence in visual tasks (Del
Cul et al., 2009; Fleming et al., 2010; Lau & Passingham,
2006; Rounis et al., 2010) and the development of improved
measures of metacognitive ability (Maniscalco & Lau,
2012; Rounis et al., 2010). The field was additionally fueled
by the finding of numerous dissociations between confi-
dence and accuracy (Rahnev et al., 2011; Rahnev, Bahdo et
al., 2012; Rahnev, Maniscalco et al., 2012; Wilimzig et al.,
2008; Zylberberg et al., 2012), which helped to firmly es-
tablish metacognitive judgments of confidence as a separate
object of study in their own right.

Since then, the field of visual metacognition has made
substantial progress in understanding how people evaluate
their performance in perceptual tasks (for reviews, see
Fleming & Dolan, 2012; Mamassian, 2016; Meyniel et al.,
2015; Shekhar & Rahnev, 2021b). The field has grown and
matured, which can be seen from such projects as the crea-
tion of the Confidence Database (the largest repository of
open data in the behavioral sciences; Rahnev et al., 2020)
and an ambitious experiment in field-wide collective goal-
setting (Rahnev et al., 2021).

Research on visual metacognition typically involves asking
participants to provide confidence judgments about the accu-
racy of their perceptual decisions. In this context, the term
“confidence” refers to the ratings that participants provide,
“metacognitive ability” to the extent to which these ratings
predict one’s accuracy on a task, and “visual metacognition”
to the general field of studying how people evaluate their
own performance via confidence ratings. Practically speak-
ing, much of the research on visual metacognition seeks to
understand how people give confidence judgments in percep-
tual tasks. The field has mostly focused on studying trial-by-
trial retrospective confidence judgments in low-level visual
tasks with comparatively less attention paid to prospective

confidence judgments (but see Fleming et al., 2016), global
judgments about one's perceptual ability (but see Rouault
& Fleming, 2020), or more complex visual stimuli (but see
Lapate et al., 2020).

Three topics have emerged as central to the whole field of
visual metacognition are (a) constructing appropriate meas-
ures of metacognitive ability, (b) developing computational
models of metacognition, and (c) revealing the neural corre-
lates of visual metacognition. Here I reviewe recent pro-
gress in all three of these areas with special attention on the
implications of the progress in visual metacognition for
research in other domains of metacognition research. This
review demonstrates that these three components of visual
metacognition have been studied largely in isolation. I
argue that continued progress requires the recognition of
the deep links between the three areas, and examine recent
work that has begun to build bridges between them.

Measures of Visual Metacognitive Ability

One of the basic requirements to understand visual meta-
cognition is the accurate measurement of metacognitive
ability. Metacognitive ability is one’s capacity for providing
confidence ratings that predict his or her accuracy. Many
studies have shown that people vary substantially in their
metacognitive ability (Faivre et al., 2018; Mazancieux et
al., 2020). Demonstrating the importance of this construct,
metacognitive ability has been shown to correlate with both
brain volume (Allen et al., 2017; Fleming et al., 2010) and
the severity of several psychiatric symptoms (Jia et al.,
2020; Rouault et al., 2018). Accurate measurement of meta-
cognitive ability is also critical for understanding whether
metacognition is a domain-general process that generalizes
across different tasks (Faivre et al., 2018; Mazancieux et
al., 2020) and assessing the effects of metacognitive train-
ing (Carpenter et al., 2019; Haddara & Rahnev, in press).
Given the importance of the issue, it is no surprise that sev-
eral competing measures have been developed.

Traditional Measures

There are several traditional measures of metacognitive abil-
ity. One of the most widespread (especially in the field of meta-
memory) is the Goodman—Kruskall gamma coefficient (or just
gamma), which is essentially a rank correlation between trial-
by-trial confidence and accuracy (Nelson, 1984). A related
measure is the Pearson correlation (known as phi) between the
raw values of confidence and accuracy (Kornell et al., 2007).
In contrast to these two correlation measures, another tradi-
tional measure—the area under the Type II ROC function
(Clarke et al., 1959)—relies on signal detection analyses.

Despite their intuitive appeal and widespread usage, all of
these traditional measures have a critical flaw in that they all
strongly depend on the performance on the primary task (Flem-
ing & Lau, 2014). In other words, easier tasks automatically
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lead not just to higher accuracy on the perceptual task but also
to higher estimated metacognitive ability when assessed with
these measures. This property means that the traditional meas-
ures confound metacognitive ability with task performance.

Meta-d’ and Mratio

To address this limitation of traditional measures, Manis-
calco and Lau (2012) developed a new approach to meas-
uring metacognitive ability based on signal detection theory
(SDT). In this approach, the informativeness of confidence
ratings is expressed in the units of ¢, the standard SDT mea-
sure of perceptual sensitivity. The resulting measure was
therefore called meta-d’. Just as the traditional measures
above, meta-d’ depends on the difficulty of the primary task.
However, this approach allows the construction of a new
measure, commonly referred to as Mratio, which is derived
as the ratio meta-d'/d’. Indeed, Mratio has been found to
measure metacognitive ability independent of primary task
difficulty in both simulations (Barrett et al., 2013) and empir-
ical data (Shekhar & Rahnev, 2021a). This property has
made Mratio the most popular measure of metacognitive
ability within the field of visual metacognition.

Relationship to Other Domains of Metacognition Research

The development of Mratio has allowed the field of vis-
ual metacognition to study metacognitive ability independ-
ent from primary task performance. Unfortunately, this
measure has been slow to penetrate other areas, which con-
tinue to use traditional measures such as gamma. The use of
these traditional measures means that many findings of dif-
ferences in metacognitive ability across a variety of fields
are likely to be an artifact of imperfectly matched primary
task performance. For example, a recent article that care-
fully matched accuracy on a memory task among older and
younger adults concluded that the finding of a metacogni-
tive difference between the two groups is an epiphenome-
non of the age differences in memory (Hertzog et al., 2021).
The adoption of Mratio could help other subfields of meta-
cognition research avoid such epiphenomenal findings in
the first place and weed them out with much greater ease.

An important issue that requires additional research is the
fuller characterization of the psychometric properties of
Mratio and other measures of metacognitive ability. For
example, beyond their dependence on the primary task per-
formance, it is important to empirically assess whether
these measures are independent from both response bias
and metacognitive bias (the tendency to give either high or
low confidence ratings) with recent research suggesting that
Mratio may be confounded with metacognitive bias (Shek-
har & Rahnev, 2021a; Xue et al., 2021). In addition, funda-
mental features of these measures such as their test-retest
reliability are just beginning to be examined (Guggenmos,
2021). Finally, it is important to examine whether visual

metacognitive ability is related to performance in other
aspects of visual cognition such as imagery (Rademaker &
Pearson, 2012), mental rotation, and so forth. The next few
years are likely to see much progress on these topics.

Models of Visual Metacognition

Given its deep roots in visual psychophysics, it is no surprise
that since its inception, the field of visual metacognition has
strongly emphasized computational modeling. This emphasis
has resulted in a proliferation of theories with more than a dozen
distinct competing models. Here I review the target effects that
models of visual metacognition have been trying to explain, the
dominant frameworks adopted, and the two main hypotheses
for the computations underlying visual metacognition.

Target Effects for Models of Visual Metacognition

Models of visual metacognition have typically been devel-
oped with the goal of explaining certain target effects, espe-
cially ones related to measured metacognitive ability. Perhaps
the most common target effect is explaining “metacognitive
inefficiency,” that is, the observation that metacognitive judg-
ments of confidence are typically less informative about
the accuracy of a decision than they could be (Shekhar &
Rahnev, 2021b). Such inefficiency is typically modeled by
assuming the presence of “metacognitive noise,” which is
random noise that affects the confidence ratings but not the
primary decision (J. W. Bang et al., 2019; Barrett et al., 2013;
Fleming & Daw, 2017; Maniscalco & Lau, 2016). Pinpoint-
ing the exact sources of this metacognitive noise is an area of
active research (Shekhar & Rahnev, 2021b).

Conversely, metacognitive confidence judgments some-
times appear to exhibit “superefficiency” such that they seem
more informative than the theoretical maximum (Fleming &
Daw, 2017). This phenomenon is usually thought to involve
postdecisional processes similar to the ones involved in error
detection (Yeung & Summerfield, 2012) and changes of
mind (van den Berg et al., 2016), but may also be at least
partly a methodological artifact (Rahnev & Fleming, 2019).
Models that try to explain metacognitive superefficiency typ-
ically assume that the metacognitive system has access to
evidence not available for the primary decision either
because the evidence arrived after the decision was made or
because of the existence of partially independent streams of
processing of object-level and metacognitive information
(Fleming & Daw, 2017; Mamassian, 2020; Pleskac & Buse-
meyer, 2010). The exact reasons for the phenomenon of
metacognitive superefficiency thus remain ill-understood.

Finally, other models have focused on explaining more spe-
cific target effects. Some examples include the bias of confi-
dence ratings to ignore disconfirming information (Koizumi et
al., 2015; Peters et al., 2017; Samaha et al., 2016; Zylberberg
et al., 2012), the influence of the previous trial’s confidence
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rating (Rahnev et al., 2015) and the use of the clarity of the
stimulus as a cue for confidence (Rausch et al., 2018).

It is thus clear that there are many target effects that mod-
els of visual metacognition may need to explain. The chal-
lenge ahead is to determine which of these effects are most
critical for understanding the mechanisms of visual meta-
cognition and focusing the field’s modeling efforts on them.

Dominant Frameworks

By far the most popular framework for models of visual
metacognition is SDT (Green & Swets, 1966). The essence
of SDT is that sensory processing is noisy and thus the in-
ternal activation generated by a stimulus varies from trial to
trial. Within the SDT framework, confidence ratings are
given by comparing the strength of the internal activation
with predefined criteria. The popularity of the framework
stems from SDT’s dominance in explaining performance in
perceptual tasks more generally and its minimal assump-
tions that allow flexible model construction. Consequently,
the majority of models in the field are in some way based
on SDT (Aitchison et al., 2015; J. W. Bang et al., 2019;
Fleming & Daw, 2017; Hangya et al., 2016; Maniscalco &
Lau, 2016; Peters et al., 2017; Rausch et al., 2018; Shekhar
& Rahnev, 2021a).

However, one limitation of all SDT-based models is that
they cannot account for reaction time (RT) because SDT
does not specify how the internal activation evolves over
time. This limitation has motivated the adoption of an alter-
native framework based on sequential sampling, which can
be used to jointly model choice, RT, and confidence. Differ-
ent models within this framework have postulated very
different mechanisms for confidence from postdecisional
evidence accumulation (Pleskac & Busemeyer, 2010), to
using the difference between two competing accumulators
(Vickers, 1979), to employing RT as a cue for confidence
(Kiani et al., 2014), to having different accumulators specif-
ically linked to each confidence response (Ratcliff & Starns,
2009, 2013). There is thus little convergence thus far on
how the sequential sampling framework should be used in
the context of confidence, and the properties of most of
these models have not been examined in detail.

The existence of two separate modeling frameworks is
both exciting and disconcerting. Although there are deep
links between SDT and sequential sampling (Griffith et al.,
2021), the actual models of visual metacognition developed
from one framework cannot always be directly translated to
the other framework. Yet, currently there is almost no work
that directly compares the performance of the two frame-
works in explaining metacognitive judgments. This topic is
thus a particularly exciting avenue for future research.

The Computations Underlying Visual Metacognition

Regardless of which target effects one tries to explain and
which framework one adopts, a remaining critical issue
for each model is to describe the assumed computations
underlying visual metacognition. The majority of existing
models postulate simple computations where the level of
evidence favoring one choice over another is directly trans-
lated to a specific confidence rating via several criteria such
that higher evidence directly translates to higher confidence.
The appeal of this mechanism comes from its simplicity
and biological plausibility. However, the nature of the rele-
vant internal evidence can vary substantially between mod-
els. For example, some models assume that confidence is
based only on the evidence for the chosen option and
ignores the evidence for all other options (Koizumi et al.,
2015; Peters et al., 2017; Samaha et al., 2016; Zylberberg et
al., 2012), while many others assume that the evidence used
for metacognitive judgments already reflects the difference
between the evidence for each option (J. W. Bang et al.,
2019; Green & Swets, 1966; Maniscalco & Lau, 2016; Ple-
skac & Busemeyer, 2010; Vickers, 1979).

However, basing confidence directly on signal strength is
not optimal. Ideally, confidence should be based on a
Bayesian computation of the posterior probability of being
correct and multiple models assume that such computations
underlie confidence judgments (Aitchison et al., 2015;
Fleming & Daw, 2017; Meyniel et al., 2015). Nevertheless,
it is still unclear whether people can actually perform the
complex computations required to estimate the posterior
probability of being correct and this is a topic of active
research (Bertana et al., 2021).

The distinction between basing metacognitive judgments
of confidence directly on internal activations versus on
Bayesian computations has strong implications about how
visual metacognition is conceptualized. Resolving the issue
has been selected as one of the central short-term goals for
the whole field (Rahnev et al., 2021) and research on this
question is thus likely to proliferate in the coming years.

Relationship to Other Domains of Metacognition Research

Although early models of metacognition were developed
primarily within the context of metamemory, visual meta-
cognition has now become the dominant driver of model de-
velopment in metacognition research. Further, the field of
visual metacognition has led the way not just in developing
new models but also in performing extensive model compar-
ison and selection (Aitchison et al., 2015; Maniscalco &
Lau, 2016; Shekhar & Rahnev, 2021a). Researchers from
other domains of metacognition research would be wise to
consider and build on the modeling progress made within
visual metacognition. Specifically the issues related to the
relevant target effects, frameworks, and assumed computa-
tions are relevant to any subfield of metacognition research.
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Neural Correlates of Visual Metacognition

Beyond its focus on models and measures, the field of vis-
ual metacognition has placed a strong emphasis on revealing
the neural correlates of metacognition. Research in this area
has its roots in studies on metamemory conducted from the
1980s on. Early studies examined patients with Korsakoff's
syndrome and found that they exhibited metamemory impair-
ments likely due to accompanying frontal lobe dysfunction
(Janowsky et al., 1989; Shimamura & Squire, 1986). Follow-
up studies focusing on patients with lesions to frontal cortex
(Pannu et al., 2005; Schnyer et al., 2004) and neuroimaging
(Chua et al., 2006; Kikyo et al., 2002; Moritz et al., 2006)
confirmed the critical role of various prefrontal regions in both
feeling-of-knowing and retrospective confidence judgments of
memory. These studies provided the groundwork for later
studies that focused on visual metacognition.

One of the main challenges for determining the neural bases
of visual metacognition is to ensure that the brain mechanisms
identified are specific to metacognition. Indeed, metacognitive
processes often coexist (and can be easily confused) with
other cognitive processes such as attention, working memory,
or cognitive effort (Fleming & Dolan, 2012). In addition,
because metacognitive judgments of confidence depend so
heavily on the difficulty of the first-order task, it is critical to
ensure that the identified neural mechanisms truly correspond
to metacognition rather than simply to accuracy or RT.
Researchers have adopted multiple strategies to successfully
meet these challenges. Here I briefly review relevant research
that revealed the anatomical correlates of metacognitive ability
applied creative manipulations in the context of functional
neuroimaging or used causal manipulations to selectively tar-
get metacognitive judgments.

Anatomical Correlates of Metacognitive Ability

An early line of research that sought to identify the brain
structures selectively involved in metacognition relied on
correlating different anatomical brain measures with sub-
ject-by-subject metacognitive ability. In an influential early
study, Fleming et al. (2010) equated performance across
participants on a perceptual task and then correlated their
measured metacognitive ability with gray matter volume.
They found that higher gray matter volume in the anterior
prefrontal cortex (aPFC) was correlated with higher meta-
cognitive ability. This finding has been replicated and
extended by several other studies (Allen et al., 2017;
McCurdy et al., 2013). In addition, a recent study further
found that metacognitive ability in a perceptual task is
related to the functional integrity of the superior longitudi-
nal fasciculus—a major white matter tract that connects
frontal and parietal lobes (Zheng et al., 2021). Together,
these studies demonstrate that people’s metacognitive abil-
ity can be related to various anatomical substrates, mostly
connected to the frontal lobes. By equating the accuracy on

the task for all participants, the experimenters could ensure
that the anatomical correlates were independent of first-
order performance.

Evidence From Functional Neuroimaging

Although studies correlating metacognitive ability with
anatomical measures have been influential, they can only
reveal individual anatomical structures. However, there is
accumulating evidence that metacognition emerges via net-
work interactions and not simply from the function of single
regions (Yeon et al., 2020). Revealing the networks under-
lying visual metacognition has largely relied on neuroimag-
ing research.

The most common approach has been to simply compare
the brain activity for trials with low versus high confidence
(e.g., Fleck et al., 2006). However, given that low and
high confidence trials also differ in accuracy and RT, this
approach confounds the metacognitive processes with first-
order performance. Subsequent studies have used a variety
of approaches to address this confound. For example, an
early study used a metacontrast masking paradigm that pro-
duced a difference in subjective visibility judgments for con-
ditions with matched performance (Lau & Passingham,
2006). Other studies have compared brain activations in con-
ditions where participants did or did not rate their confidence
(Fleming et al., 2012; Morales et al., 2018; Yeon et al.,
2020), employed decoded neurofeedback to induce a change
in confidence (Cortese et al., 2016), or compared confidence
in the accuracy of one’s own versus another agent’s choice
(Pereira et al., 2020). Another approach has been to go
beyond trial-by-trial confidence and instead focus on the for-
mation of global judgments about one's perceptual ability
(Rouault & Fleming, 2020), an understudied topic that pro-
vides a distinct perspective on visual metacognition.

This research has implicated a number of mostly frontal,
parietal, and cingulate areas as integral to visual metacogni-
tion (Baird et al., 2013; Fleck et al., 2006; Fleming et al.,
2012; Lau & Passingham, 2006; Morales et al., 2018; Yeon et
al., 2020). Importantly, it has also shown the critical role of
the network communications between these regions such as
the observed increase in functional connectivity between fron-
tal and visual areas associated when engaging in metacogni-
tive evaluation (Fleming et al., 2012). Future work needs to
explore these network interactions in more depth with a par-
ticular focus on how metacognition may relate to the interac-
tions within and between large brain-wide communities.

Causal Studies

Beyond the commonly used correlational techniques, sev-
eral studies have employed techniques that afford a causal
association between a brain area and metacognition. An
early study delivered transcranial magnetic stimulation
(TMS) to dorsolateral prefrontal cortex (DLPFC) and
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reported a selective influence on metacognitive scores with
no change in the primary task performance (Rounis et al.,
2010). Follow-up TMS studies have confirmed the causal
role of both DLPFC and aPFC in visual metacognition
(Lapate et al., 2020; Rahnev et al., 2016; Shekhar & Rah-
nev, 2018). The conclusions from these brain stimulation
studies have received further support from a study that
found selective impairments in visual but not memory meta-
cognition for patients with anterior frontal lesions (Fleming
et al., 2014). Overall, this research convincingly demon-
strates that a number of areas in the prefrontal cortex are
involved in visual metacognitive evaluation.

Relationship to Other Domains of Metacognition
Research

One critical question with implications for all subfields of
metacognition research is to what extent metacognition is
domain-general or domain-specific. This question has been
addressed at great length within the context of visual meta-
cognition and metamemory (Faivre et al., 2018; Fleming et
al., 2014; McCurdy et al., 2013; Morales et al., 2018). This
research has revealed a widespread domain-general network
of areas in frontal and posterior midline regions, but with
several domain-specific areas such as aPFC for visual meta-
cognition and precuneus for memory metacognition. These
findings demonstrate the close link between the various sub-
areas of metacognition research. They also raise exciting
questions regarding the sources and implications of the par-
tial domain-specificity observed.

The Need for Synergy in Research on Measures,
Models, and Neural Correlates

The brief review thus far makes it obvious that tremendous
progress has been made in the last 15 years in constructing
measures of metacognitive ability, developing models, and
revealing the neural correlates of visual metacognition. How-
ever, a limitation of research to date has been that these three
areas have been investigated mostly in isolation. The prob-
lem with such lack of integration is that, as explained below,
deep understanding of any of these areas requires synergy
with the others.

The Link Between Models and Measures of
Metacognition

As already reviewed, there are more than a dozen models
and over half a dozen measures of visual metacognition.
Yet, none of the existing measures are derived from an
existing model of metacognition, and none of the models
are informed by the existing measures of metacognition.
This lack of integration is problematic because it ignores
the intimate relationship between models and measures of
metacognition. Specifically, a psychophysical measure is

RAHNEV

never truly model-free; in fact, any measure implies an
underlying model even if the model has not been expli-
citly derived (Macmillan & Creelman, 2005). Conversely,
every model of metacognition has implications about the
measurement of metacognitive ability and could be used to
derive a measure of metacognition.

Fortunately, the critical link between models and meas-
ures is becoming recognized. Recently, Shekhar and Rahnev
(2021a) examined the dependence of Mratio on partici-
pants’ metacognitive bias (that is, their bias toward being
more or less confident; Fleming & Lau, 2014). Ideally,
one’s metacognitive bias should be independent of one’s
estimated metacognitive ability because metacognitive bias
can be manipulated at will (i.e., one can easily increase or
decrease their reported level of confidence). However,
Shekhar and Rahnev found that higher confidence led to
higher Mratio values (the finding was subsequently repli-
cated and extended by Xue et al., 2021). This led them to
propose a new model of metacognition with signal-depend-
ent, lognormally-distributed metacognitive noise that could
explain this relationship. This model was found to outper-
form more standard models with either no metacognitive
noise or signal-independent metacognitive noise. Con-
versely, the estimated metacognitive noise was found not to
depend on one’s metacognitive bias (it was also independ-
ent of task difficulty), which could make it a better measure
of metacognitive ability. Both the new model and the new
measure of metacognition need to be further tested, but the
approach clearly demonstrates how jointly considering
models and measures of metacognition can lead to develop-
ments in both areas.

The Link Between Models and Neural Mechanisms of
Metacognition

Similar to the link between models and measures, there is
an intimate link between models and neural correlates of
metacognition. On one hand, the identity of the brain
regions implicated in metacognition constrain the possible
models. For example, the critical role of the prefrontal cor-
tex in metacognition is consistent with models where meta-
cognitive evaluation is performed by a second-order system
that monitors the first-order system that makes the primary
decision (Nelson & Narens, 1990). On the other hand, mod-
els of metacognition constrain the possible computational
roles that different brain areas could perform. However, as
with models and measures, the intimate link between mod-
els and neural mechanisms has rarely been exploited to
improve our understanding in either area.

Nevertheless, this link is also beginning to be exploited.
For example, Bang and Fleming (2018) constructed a model
that separates confidence and sensory reliability. The model
allowed them to identify brain areas associated separately
with each quantity and thus to elucidate the computational
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roles of different brain areas. Similarly, Shekhar and Rah-
nev (2018) found that TMS to DLPFC and aPFC had disso-
ciable effects on average confidence and metacognition.
These results supported a hierarchical model of visual meta-
cognition (J. W. Bang et al., 2019; Maniscalco & Lau,
2016). The resulting model, in turn, suggested distinct func-
tional roles for DLPFC and aPFC such that DLPFC reads
out the strength of the sensory evidence and relays it to
aPFC, which makes the confidence judgment by incorporat-
ing additional, nonperceptual information.

As the examples above demonstrate, an approach that
jointly considers the measures, models, and neural mecha-
nisms of visual metacognition has the promise of driving
progress in all three areas of research. The coming years
should see a proliferation of this approach in visual meta-
cognition and beyond.

Conclusions

The field of visual metacognition is only about 15 years
old but has already made great strides. Building on the solid
foundation of psychophysics research, it has adopted a
staunchly computational approach that is displayed in the
development of numerous models. This computational
focus has allowed it to construct improved measures of
metacognitive ability that transcend the limitations of tradi-
tional measures. Finally, the ease of manipulating visual
stimuli has allowed for unprecedented progress in revealing
the neural correlates and mechanisms of visual metacogni-
tion. The next challenge is to better integrate the research
on measures, models, and neural correlates of metacogni-
tion, as well as to make stronger connections to other sub-
fields of metacognition research.
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