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Even though the nature of confidence computations has
been the topic of intense interest, little attention has
been paid to what confidence response times (cRTs)
reveal about the underlying confidence computations.
Several previous studies found cRTs to be negatively
correlated with confidence in the group as a whole and
consequently hypothesized the existence of an intrinsic
relationship of cRT with confidence for all subjects. This
hypothesis was further used to support postdecisional
models of confidence that predict that cRT and
confidence should always be negatively correlated. Here
we test the alternative hypothesis that cRT is driven by
the frequency of confidence responses such that the
most frequent confidence ratings are inherently made
faster regardless of whether they are high or low. We
examined cRTs in three large data sets from the
Confidence Database and found that the lowest cRTs
occurred for the most frequent confidence rating. In
other words, subjects who gave high confidence ratings
most frequently had negative confidence–cRT
relationships, whereas subjects who gave low
confidence ratings most frequently had positive
confidence–cRT relationships. In addition, we found a
strong across-subject correlation between response
time and cRT, suggesting that response speed for both
the decision and the confidence rating is influenced by a
common factor. Our results show that cRT is not
intrinsically linked to confidence and strongly challenge
several postdecisional models of confidence.

Introduction

Humans have the metacognitive ability to estimate
the accuracy of their decisions (Metcalfe & Shimamura,
1994), which can guide their learning and subsequent
actions (Desender et al., 2018; Fleming et al., 2012;
Nelson & Narens, 1990; Shimamura, 2000; Yeung &
Summerfield, 2012). However, how one computes a
confidence estimate for a particular decision remains

poorly understood despite the fact that confidence
computations have been a topic of intense interest in
metacognition research (Rahnev et al., 2022).

One potentially promising but little-explored avenue
toward understanding confidence computations is the
examination of confidence response times (cRTs).
Previous research found cRT to be associated with
confidence and decision accuracy (Baranski & Petrusic,
1998; Herregods et al., 2023; Moran et al., 2015; Pleskac
& Busemeyer, 2010). Specifically, these studies have
claimed that confidence ratings are computed faster
whenever people are more confident or more accurate.
These relationships were further interpreted as evidence
that confidence is based on a postdecision evidence
accumulation process (Herregods et al., 2023; Moran et
al., 2015; Pleskac & Busemeyer, 2010; Yu et al., 2015).
Postdecision evidence accumulation models assume that
confidence is necessarily based on additional evidence
accumulated after the decision is made. For example, in
the two-stage dynamic signal detection (2DSD) optional
stopping model (Pleskac & Busemeyer, 2010), different
confidence levels have different confidence boundaries.
The 2DSD optional stopping model assumes that every
time the evidence crosses a confidence boundary, there
is a certain probability that the accumulation process
will be terminated and a corresponding confidence
response will be made. Another two models (Herregods
et al., 2023; Moran et al., 2015) assume the existence
of collapsing confidence boundaries that ensure that
higher confidence responses are given faster than lower
confidence responses. Thus, substantial theoretical
claims have been made based on the relationship of
cRT with confidence and accuracy.

The crucial hypothesis underlying postdecisional
evidence accumulation models is that high-confidence
responses are inherently made faster (Hypothesis
1; Figure 1A). However, a previously unexamined
alternative hypothesis is that cRT is driven by the
frequency of confidence responses such that the
most frequent confidence ratings are inherently made
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Figure 1. Illustration of the two hypotheses regarding the relationship between cRT and confidence. (A) Hypothesis 1 predicts that
high-confidence responses are inherently made faster regardless of which confidence response is the most frequent. Therefore, the
same decrease in cRT should be observed for all subjects. (B) Hypothesis 2 predicts that the most frequent confidence responses are
inherently made faster regardless of whether they are high or low. Therefore, the relationship between cRT and confidence ratings
would be different across subjects based on each subject’s confidence bias.

faster regardless of whether they are high or low
(Hypothesis 2; Figure 1B). This hypothesis is motivated
by extensive literature showing that more frequent
motor actions are executed faster (Katzner & Miller,
2012; Mattes et al., 2002; Miller, 1998; Näätänen, 1971).
Hypothesis 2 thus predicts that for subjects who are
biased toward low confidence, cRT will be lower for
their low- versus high-confidence ratings but that the
opposite relationship would be seen for subjects biased
toward high confidence. In other words, according to
Hypothesis 2, there is no intrinsic cRT–confidence
relationship, and instead, any observed relationship
is due to subjects responding faster for their most
frequent confidence ratings.

Here we adjudicated between the two hypotheses
about the cRT–confidence relationship. To do
so, we analyzed three large data sets from the
Confidence Database (Rahnev et al., 2020) and
examined whether the pattern of results matched the
predictions of Hypothesis 1 or Hypothesis 2. The
results followed closely the predictions of Hypothesis
2, thus strongly challenging the assumed intrinsic
relationship between cRT and confidence (Hypothesis
1). These results cast doubt on models that feature
postdecision evidence accumulation processes that
necessarily result in a negative cRT–confidence
relationship.

Methods

Data set selection

To adjudicate between the two hypotheses above,
we sought to examine the relationship of cRT with
confidence and accuracy in data sets with large sample
sizes. Specifically, we searched for data sets that (a)
included confidence ratings with up to 4-point scales,
(b) recorded cRTs, and (c) had at least 75 subjects who
each completed at least 200 trials per task. Note that we
selected data sets with discrete confidence scales with
less than or equal to four confidence levels because we
analyzed separately groups of subjects based on their
most frequent confidence response, and having more
detailed confidence scales leads to too many subgroups
that diminish in sample size. We searched the 171 data
sets included in the Confidence Database (Rahnev et
al., 2020) as of December 1, 2022, and found three data
sets that met the above conditions: “Bang_2019_Exp2,”
“Haddara_2022_Expt1,” and “Haddara_2022_Expt2.”
For simplicity, here we call these data sets “Bang,”
“Haddara1,” and “Haddara2,” respectively. In addition,
to further examine the robustness of our results, we
relaxed the third criterion so that data sets with at
least 30 (instead of 75) subjects who each completed
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Figure 2. Experimental tasks. (A) The experimental task in the Bang data set. Subjects indicated whether a Gabor patch was tilted
clockwise or counterclockwise from vertical. The data set consists of coarse discrimination and fine discrimination tasks with the
contrasts and tilt angles of the Gabor patches varying between the two tasks. The Gabor patch shown here is only for an illustration
purpose and does not faithfully represent stimuli in either of the two tasks. (B) The experimental task in the Haddara1 and the
Haddara2 data sets. In Haddara1, subjects saw a 7 × 7 grid that consisted of the letters X and O (Task 1) or the colors red or blue (Task
2) and indicated which letter or color occurred more frequently. (The illustration of Task 2 is not shown here.) Approximately half of
the subjects received trial-by-trial feedback in Task 1, while no feedback was given in Task 2. The task design in Haddara2 is identical
to Task 1 in Haddara1.

150 (instead of 200) trials per task would be
selected. These more liberal selection criteria
resulted in the selection of three additional data sets
(“Maniscalco_2017_expt1,” “Maniscalco_2017_expt2,”
and “Yeon_unpub_Exp2”; Supplementary Methods).
Analyses of these data sets led to the same conclusions
(Supplementary Figures S1–S3).

Experimental designs

Complete details about the experiments can be found
in the original articles (Bang et al., 2019; Haddara
& Rahnev, 2022). All data sets featured two-choice
perceptual decisions with 4-point confidence ratings
given with separate button presses. The decisions and
confidence ratings were untimed and given with a
computer keyboard. Decisions were given with keys “1”
and “2.” Confidence ratings were given with keys “1,”
“2,” “3,” and “4,” with “1” indicating lowest confidence

and “4” indicating highest confidence. Below, we
provide a bit more detail regarding each of the three
data sets.

In the Bang data set (Bang et al., 2019), subjects
(N = 201) indicated whether a Gabor patch was
tilted clockwise or counterclockwise from vertical
(Figure 2A). The data set consists of two tasks. For
the coarse discrimination task, the Gabor patches
were embedded in noise and tilted 45 degrees away
from the vertical. For the fine discrimination task, the
Gabor patches were tilted about 1 degree away from
vertical. The contrast in the coarse discrimination
task and the tilt in the fine discrimination task
varied between subjects in order to match the
average performance across the two tasks. Each
subject completed 100 trials for each of the two
tasks. Here we combined the data from both
tasks.

In the Haddara1 data set (Haddara & Rahnev, 2022),
subjects (N = 443) saw a 7 × 7 grid that consisted of the
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letters X and O (Task 1; Figure 2B) or the colors red or
blue (Task 2). Subjects indicated which letter or color
occurred more frequently. In Task 1, approximately half
of the subjects received trial-by-trial feedback about
whether the judgment was correct while the other half
received no such feedback. No feedback was given
in Task 2. The proportion of the dominant stimulus
was 31 of 49 for Task 1 and 27 of 49 for Task 2. Each
subject completed 330 trials for Task 1 and 150 trials
for Task 2. Here we again combined the data from both
tasks and analyzed together subjects who did or did not
receive trial-by-trial feedback.

For the Haddara2 data set (Haddara & Rahnev,
2022), the task design was identical to Task 1 in
Haddara1 (Figure 2B). A new sample of subjects (N
= 75) completed seven sessions over 7 different days.
Each subject completed 500 trials per day and 3,500
in total. Approximately half of the subjects received
trial-by-trial feedback about whether the judgment was
correct, while the other half received no such feedback.
We again analyzed together subjects who did or did not
receive trial-by-trial feedback. Note that even though
Haddara1 and Haddara2 used the same task, these
data sets featured different distributions of confidence
biases. Because Haddara2 includes 7 days, it is possible
that these differences are due to practice effects. To
check for this possibility, we separately analyzed
the data from day 1 of Haddara2 (Supplementary
Figure S4).

Analyses

For each subject in each of the three data sets, we
excluded trials with response times (RTs) outside mean
± 3 × SDs or cRTs outside mean ± 3 × SDs before
conducting any data analyses. We coded confidence
ratings as scalar variables with values 1–4 when we used
them for analyses.

We divided subjects into four different groups
according to their most frequent confidence ratings and
examined whether the cRT–confidence relationship
varied between groups. To measure the cRT–confidence
relationship, we performed linear regressions on cRT as
a function of confidence for each subject and used the
slopes of the regressions (βcRT∼Confidence) as an indicator
of the cRT–confidence relationship for each individual.
We performed linear regressions on βcRT∼Confidence as a
function of groups to test the effects of groups on the
cRT–confidence relationship.

We then tested the cRT–confidence relationship at
the population level across different data sets to examine
whether the relationship is universal. To determine the
effect of confidence on cRT at the population level,
we performed linear mixed-effects model analyses
on cRT as a function of confidence with random
intercepts and random slopes on confidence between

subjects and examined the fixed effects of confidence
on cRT. Besides, we also tested the cRT–confidence
relationship at the individual level (Supplementary
Figure S5). We separately computed βcRT∼Confidence in
odd and even trials for each subject and correlated
these values across subjects to test whether the
individual differences are stable and consistent. For
robustness, we also bootstrapped 100 random split-half
partitions of trials for each subject and tested whether
βcRT∼Confidence is correlated between the two halves.
We transformed r values of correlations to z scores,
averaged z scores obtained from 100 partitions, and
reported r values transformed from the averaged
z scores.

In addition, we also examined the cRT–accuracy
relationship. Tomeasure the cRT–accuracy relationship,
we computed the differences in cRT between correct
and error trials (cRTcorrect – cRTerror) for each subject.
We performed linear regressions on cRTcorrect – cRTerror
as a function of groups to test the effects of groups
on the cRT–accuracy relationship and examined the
cRT–accuracy relationship across different data sets.
To determine the effect of accuracy on cRT at the
population level, we performed paired-sample t-tests
comparing cRT for correct and error trials. We also
tested the cRT–accuracy relationship at the individual
level by separately computing cRTcorrect – cRTerror in
odd and even trials for each subject and correlating
these values across subjects (Supplementary Figure S6).
We also bootstrapped 100 random split-half partitions
of trials for each subject for cRTcorrect – cRTerror.

Finally, to further assess the extent a single factor
drives the response speed for both the decision and
the confidence rating, we computed the RT–cRT
correlation across subjects in each data set.

All analyses were conducted in R software
environment (Version 4.1.2). Bayes factors were
computed with the R package “BayesFactor”
(Version 0.9.12–4.4). Linear mixed-effects models
were implemented with the R package “lmerTest”
(Version 3.1.3).

Data and code

All data and code are available at https://osf.io/n5f24.

Results

We investigated the nature of the cRT–confidence
relationship. Specifically, we adjudicated between
the hypothesis that high-confidence responses are
inherently made faster regardless of which confidence
response is the most frequent (Hypothesis 1) and the
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Figure 3. The cRT–confidence relationship is driven by the most frequently chosen confidence rating. (A) cRT for each possible
confidence rating plotted separately for each group formed based on the most frequent confidence rating (e.g., “Group k” consists of
all subjects for whom k is the most frequently chosen confidence rating). Horizontal dashed lines indicate the lowest cRTs among the
four confidence levels in each group. (B) The cRT–confidence relationship, quantified as βcRT∼Confidence, for each of the groups formed
based on the most frequent confidence rating. (C) The cRT–confidence relationship within each group depends on the proportion of
trials on which a subject used the most frequent rating. In accordance with Hypothesis 2, we find positive relationships between
βcRT∼Confidence and the proportion of the most frequent confidence rating for Group 1 but negative relationships for Group 4. Error
bars show SEM. Each dot corresponds to one subject. Solid lines indicate best-fitting regressions.

hypothesis that the most frequent confidence responses
are inherently made faster regardless of whether they
are high or low (Hypothesis 2).

cRT–confidence relationship

We first tested the predictions of Hypotheses 1 and 2
(see Figure 1). According to Hypothesis 2, cRTs should
be lowest for the more frequently used confidence rating.
If so, subjects who give low confidence most frequently
should be fastest for low-confidence ratings and slowest
for high-confidence ratings, whereas subjects who give
high confidence most frequently should be fastest for
high-confidence ratings and slowest for low-confidence
ratings. Conversely, Hypothesis 1 predicts that all
subjects should be fastest for high-confidence ratings
and slowest for low-confidence ratings regardless of
their most frequent confidence rating. To compare
the predictions of the two hypotheses, we divided

subjects into groups depending on their most frequent
confidence ratings and examined which confidence
rating was made the fastest in each group. Consistent
with Hypothesis 2, the lowest cRTs always corresponded
to the most frequent confidence levels in all four groups
in each of the three data sets (probability of this
happening by chance equals ( 14 )

12 = 6.0 × 10−8;
Figure 3A).

Beyond examining the identity of the most frequent
confidence rating, we also explored how the direction
of the cRT–confidence relationship changed based
on the most frequent confidence rating. Hypothesis 2
predicts that the direction of this relationship should
switch from positive to negative for people who give
low confidence versus high confidence most frequently.
Conversely, Hypothesis 1 predicts that the direction of
this relationship should always be negative regardless
of which confidence rating is most frequent. For
each of the three data sets, we found that subjects
in Group 1 (who rated the lowest confidence level
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the most frequently) showed a significant positive
cRT–confidence relationship (quantified as the slope
βcRT∼Confidence) (Bang: t(49) = 5.94, p = 2.9 × 10−7,
Cohen’s d = .84, BF10 = 5.2 × 104; Haddara1: t(31)
= 2.87, p = 0.007, Cohen’s d = .51, BF10 = 5.70;
Haddara2: t(19) = 4.14, p = 5.6 × 10−4, Cohen’s d
= −.93, BF10 = 60.61; Figure 3B), while subjects in
Group 4 (who rated the highest confidence level the
most frequently) showed a negative cRT–confidence
relationship (Bang: t(58) = −5.33, p = 1.7 × 10−6,
Cohen’s d = −.69, BF10 = 9.8 × 103; Haddara1: t(190)
= −14.75, p = 2.5 × 10−33, Cohen’s d = −1.07, BF10 =
1.1 × 1030; Haddara2: t(8) = −1.90, p = 0.09, Cohen’s d
= −.63, BF10 = 1.14). Analyzing all groups together, we
found that the slope of the cRT–confidence relationship
(i.e., βcRT∼Confidence) decreased for the groups in which
the most frequent confidence rating was higher (Bang:
slope = −34.66, t(199) = −9.12, p = 8.4 × 10−17,
Cohen’s d = −.64; Haddara1: slope = −35.05, t(440) =
−10.34, p = 1.3 × 10−22, Cohen’s d = −.49; Haddara2:
slope = −34.22, t(73) = −4.52, p = 2.4 × 10−5, Cohen’s
d = −.53; Figure 3B). These results strongly support
Hypothesis 2 and demonstrate that the patterns in cRT
results are largely determined by the identity of the
most frequently chosen confidence rating.

Beyond the differences between groups, Hypothesis 2
makes another prediction about the variability expected
within each group. Specifically, the effects within each
group should depend on the frequency of the most
frequent rating. For example, among subjects who
rated confidence = 1 most frequently (i.e., Group
1), subjects with higher proportions of confidence
= 1 responses should exhibit larger cRT–confidence
slopes (βcRT∼Confidence), which is exactly what we found
(Bang: r = .48, p = 4.4 × 10−4; Haddara1: r = .44,
p = 0.01; Haddara2: r = .60, p = 0.005; Figure 3C).
Conversely, among subjects who rated confidence = 4
most frequently (i.e., Group 4), subjects with higher
proportions of confidence = 4 responses should exhibit
smaller cRT–confidence slopes (βcRT∼Confidence), which
is again what we found (Bang: r = −.62, p = 1.2 ×
10−7; Haddara1: r = −.38, p = 6.7 × 10−8; Haddara2:
r = −.75, p = 0.02). Therefore, Hypothesis 2 is further
supported by these within-group analyses (note that
Hypothesis 1 predicts no such correlations for any
group).

Having strongly supported Hypothesis 2, we
examined what that hypothesis predicts regarding
the overall cRT–confidence relationship when all
subjects are considered separately (i.e., the standard
analysis in the literature; Moran et al., 2015; Pleskac &
Busemeyer, 2010). According to Hypothesis 2, given
that different subgroups show different directions of
the cRT–confidence relationship, the direction of the
relationship in the whole group would be driven by
the most numerous subgroup. This is exactly what we
found. In one data set (Haddara1), most subjects had

a bias toward high confidence responses (Figure 4A),
which should result in a negative overall relationship
between cRT and confidence in the whole group.
Indeed, we found a strong negative correlation between
cRT and confidence at the population level in Haddara1
(slope = −30.95, 95% CI [−39.41, −22.47], t(417.24)
= −7.16, p = 3.6 × 10−12, Cohen’s d = −.35, BF10 =
1.5 × 109; Figure 4B). However, the other two data sets
(Haddara2 and Bang) featured relatively more balanced
subgroup sizes (Figure 4A), which should result in
much weaker overall relationships between cRT and
confidence in the whole group. Indeed, we found no
significant correlation between cRT and confidence at
the population level in Haddara2 (slope = 6.20, 95%
CI [−12.95, 25.36], t(74.52) = .64, p = 0.52, Cohen’s d
= .07, BF10 = .15; Figure 4B) and a slightly positive
correlation in Bang (slope = 11.78, 95% CI [1.88, 21.68],
t(186.92) = 2.34, p = 0.02, Cohen’s d = .17, BF10 =
1.16). These results suggest that previous results of the
population-level negative cRT–confidence relationship
were likely due to most subjects having high confidence
in those data sets. Indeed, this type of bias is clearly
present in the Moran et al. (2015) data set (see Figure 4
in that article) and in the Herregods et al. (2023) data set
(see Figure 7 in that article). These results demonstrate
that the group-level cRT–confidence relationship is not
fixed and depends on the overall level of bias toward
low- or high-confidence responses in each data set.

cRT–accuracy relationship

Having shown that the cRT–confidence relationship
is largely driven by the bias toward low- or high-
confidence responses, we further examined whether
the cRT–accuracy relationship is also driven by the
same bias. Similar to the cRT–confidence relationship
in Figure 3B, we found that cRT difference between
correct and error trials (cRTcorrect – cRTerror) became
smaller for the groups for which the most frequent
confidence rating was higher (Bang: slope = −18.80,
t(199) = −4.24, p = 3.4 × 10−5, Cohen’s d = −.30;
Haddara1: slope = −11.89, t(441) = −4.30, p =
2.1 × 10−5, Cohen’s d = −.20; Haddara2: slope =
−11.80, t(73) = −4.11, p = 1.0 × 10−4, Cohen’s d
= −.48; Figure 5A). In addition, similarly to the
group-level cRT–confidence relationship (Figure 4B),
we found that cRT was lower for correct compared with
error trials in Haddara 1 (t(442) = −11.67, p = 1.3 ×
10−27, Cohen’s d = −.55, BF10 = 2.2 × 1024; Figure 5B)
but not in the other two data sets (Bang: t(200) = −.13,
p = 0.90, Cohen’s d = −.009, BF10 = .07; Haddara2:
t(74) = −.62, p = 0.54, Cohen’s d = −.07, BF10 = .15).
These results show that just as with the cRT–confidence
relationship, the cRT–accuracy relationship is driven by
each subject’s confidence bias (i.e., the frequency with
which they choose each confidence rating).
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Figure 4. cRT–confidence relationship at the population level. (A) Number of subjects in each data set who used a specific confidence
rating most frequently. “Group k” consists of all subjects for whom k is the most frequently chosen confidence rating. In Haddara1,
most subjects used high confidence levels as their most frequent responses. This pattern is not present in Bang or Haddara2.
(B) Average cRT for each confidence level. As can be seen in the figure, cRT decreases monotonically for higher confidence levels in
Haddara1 but not in Bang or Haddara2. Insets are the histograms of slopes for different subjects. Error bars depict SEM.

Figure 5. The cRT–accuracy relationship is driven by the most frequently chosen confidence rating. (A) The cRT–accuracy relationship,
quantified as cRTcorrect – cRTerror, for each of the groups formed based on the most frequent confidence rating. (B) cRT for correct and
error trials. As with the confidence results, correct trials were associated with lower cRTs in Haddara1 but not in Bang or Haddara2.
Error bars show SEM. ***, p < 0.001; n.s., not significant.
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Figure 6. Correlations between RT and cRT. Scatterplots showing the across-subject association between mean cRT and mean RT for
each of the three data sets. Each dot corresponds to one subject. Diagonal lines indicate best-fitting regressions.

RT–cRT relationship

Finally, we examined the correlations between RT
and cRT to test whether the overall speed in decision
and confidence responses may be related. Indeed, we
found strong across-subject correlations between RT
and cRT (Bang: r = .69, p = 2.1 × 10−29, BF10 = 1.5
× 1026; Haddara1: r = .59, p = 2.8 × 10−43, BF10 =
7.5 × 1039; Haddara2: r = .41, p = 3.0 × 10−4, BF10 =
76.57; Figure 6). These results suggest that the same
factor contributes to response speed for both the
decision and the confidence rating.

Discussion

We set to adjudicate between two competing
hypotheses regarding cRT: Hypothesis 1, which
proposes that high-confidence responses are inherently
made faster regardless of which confidence response is
the most frequent, and Hypothesis 2, which proposes
that the most frequent confidence responses are
inherently made faster regardless of whether they are
high or low. Several previous studies found a negative
cRT–confidence relationship in the group as a whole
(Herregods et al., 2023; Moran et al., 2015; Pleskac &
Busemeyer, 2010). The authors interpreted these results
as evidence for Hypothesis 1 and used them to motivate
models where confidence is based on a postdecision
evidence accumulation process. Here we compared the
predictions of the two hypotheses using three large
data sets from the Confidence Database. We found that
the most frequent confidence responses were made
faster regardless of whether confidence was high or
low, supporting Hypothesis 2 and rejecting Hypothesis
1. These findings reveal the factors driving confidence
response times and challenge several postdecisional
models of confidence.

To be clear, our results do not falsify all postdecisional
models of confidence. Three prominent postdecisional

models—the 2DSD model with optional stopping
(Pleskac & Busemeyer, 2010), the collapsing confidence
boundary model (Moran et al., 2015), and the
recent Herregods et al. model (Herregods et al.,
2023)—postulate that cRT is intrinsically negatively
related to confidence (Hypothesis 1 above). Therefore,
by falsifying Hypothesis 1, our results directly challenge
these models. However, there are other postdecisional
confidence models that assume constant postdecisional
evidence accumulation time (Pleskac & Busemeyer,
2010). For example, unlike the 2DSD model with
optional stopping, which allows interjudgment time
to vary between trials, the main 2DSD model just
treats the interjudgment time as a constant exogenous
parameter in the model (Pleskac & Busemeyer, 2010).
While the original versions of these models are also
challenged by the current results (because these models
do not predict that cRT would vary with the frequency
of the confidence rating), it should be possible to
augment these models with extra parameters that make
the interjudgment time dependent on the frequency of
the confidence response.

We also want to clarify that our results do not
challenge the notion that information arriving after
the decision can be used to influence the eventual
confidence rating. There is considerable behavioral
and neural evidence that confidence judgments can
indeed be influenced by information or processing
that occurs after the initial decision has been made
(Boldt & Yeung, 2015; Desender et al., 2021; Pereira
et al., 2020). It is important to note, however, that
while many models do not explicitly incorporate the
possible influences of information coming after the
decision, virtually all existing models of metacognition
(Fleming & Daw, 2017; Green & Swets, 1966; Jang et
al., 2012; Maniscalco & Lau, 2016; Rausch et al., 2018;
Shekhar & Rahnev, 2021) can be extended to do so if
desired.

Why are the most frequent confidence ratings made
faster? One possible mechanism is that the motor
system is able to execute more frequent actions faster
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(Katzner & Miller, 2012; Mattes et al., 2002; Miller,
1998; Näätänen, 1971). Specifically, low response
frequency is thought to lead to poor motor preparation,
which results in slower responses (Näätänen, 1971). The
motor influence on response speed has been confirmed
by the finding that lateralized readiness potential (an
electrophysiologic indicator of motor preparation) is
larger for more frequent responses (Eimer, 1998; Miller,
1998) and by showing that the correlation cannot be
explained by properties of external stimuli, such as the
frequency of different stimuli (Katzner & Miller, 2012;
Mattes et al., 2002). Our findings extend this previous
work to confidence judgments and suggest that motor
influences might underlie the relationship between the
response frequency and cRT.

Although our work here focused on cRT, our
findings raise questions regarding potential influences
for decision RTs too. Indeed, similar to the results here,
it is commonly found that subjects are faster for the
choices they give more frequently (de Lange et al., 2013;
Rahnev et al., 2011). However, such contingencies are
usually assumed to arise exclusively from the evidence
accumulation process (e.g., as a consequence of a
biased starting point of the accumulation) (Brown &
Heathcote, 2008; Ratcliff & McKoon, 2008; Ratcliff &
Smith, 2004). Indeed, classical evidence accumulation
models of decision-making such as drift-diffusion
model (DDM) usually decompose RTs into decision and
nondecision time and assume that the nondecision time
is constant across all choices regardless of differences in
the frequency of different choices (Ratcliff & McKoon,
2008; Ratcliff & Smith, 2004). Our findings cast doubt
on this assumption and suggest that more frequent
choices have lower RTs not only because of effects
related to the decision process (e.g., starting point or
drift rate bias) but also due to nondecision times that
are faster for more frequent choices.

In conclusion, our work shows that cRT and
confidence are not intrinsically related, and instead,
cRT is simply lower for the most frequent confidence
responses. These results strongly challenge several
postdecision evidence accumulation models, constrain
future theories of confidence generation, and suggest
the need for more careful examination of standard
accumulation-to-bound theories of perceptual
decision-making.

Keywords: confidence response time, confidence
computation, perceptual decision-making, metacognition
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