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Abstract

How are perceptual decisions made? The answer to this seemingly simple question
necessitates that we specify the nature of perceptual representations on which
decisions are based. Recent work has taken for granted that the representation at
the decision stage consists of a full probability distribution over all possible stimuli.
However, to date, no empirical evidence has supported this assumption. Here I
present five possible perceptual representation schemes that allow the extraction of
different levels of sensory uncertainty. I review the empirical evidence from both
continuous and discrete judgments and show that, at present, only the most
primitive scheme based on a single point estimate can be rejected. In other words, at
least four different representational schemes are consistent with the available data
and therefore full probability distributions cannot be assumed. There is an urgent
need for empirical research to adjudicate between these theoretical possibilities.
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Introduction

Sometimes what we see is ambiguous or unclear. In such cases, we literally have to
decide what is in front of our eyes. The idea that perception is a process of inference
is as old as the study of perception itselfl. Nevertheless, despite a lot of progress, it
remains unknown what type of internal representation the observer forms in order
to make a decision.

Significant amount of theoretical work has assumed that perceptual decisions are
based on a representation of a full probability distribution over possible stimuli?-1°.
The idea was first developed about 20 years ago!31420 and has come to dominate
our understanding of how the brain performs perceptual inference. Two
particularly prominent theories include probabilistic population codes” and neural
sampling!? (Box 1).

Despite its popularity, the notion that full probability distributions are used to make
perceptual decisions is not based on any direct evidence. Instead, proponents have
often relied on theoretical arguments such as stating that the brain must represent
optimal solutions and therefore full probability distributions are needed!#18. The
empirical evidence cited in support of full probability distributions comes from just
two classes of findings: cue combination is often optimal22-25, and priors and
expectations bias perceptual decisions?6-32,

This paper explains why none of the empirical evidence to date actually necessitates
full probability distributions at the decision stage. It also critically examines the
theoretical arguments for and against full probability distribution. To facilitate the
discussion, I start by discussing possible schemes that support different levels of
uncertainty representation.

Box 1. Probabilistic population codes and neural sampling models

It has long been recognized that neurons in many sensory cortices have a specific
tuning curve that controls how they respond to stimuli that lie on a continuum?1.
The collection of responses by many neurons forms a population response from
which one can extract a full probability distribution over possible stimulil3.

At the same time, the representation of a given stimulus is different in different
stages of the visual hierarchy. Therefore, the representation in sensory cortex may
not be the same as the representation in decision-related areas. In other words,
even if full distributions could be extracted from the population response in sensory
areas such as V1 or MT, it does not follow that this information is necessarily
available at the decision stage.

Two popular models propose that full probability distributions are in fact available
on the decision stage. These models are probabilistic population codes” and neural

sampling with a large number of samples!?. Probabilistic population codes (Panel A
below) imply that the sensory population code can be used directly to form
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perceptual decisions. Neural sampling models (Panel B below), on the other hand,
propose that neurons take discrete samples from the stimulus in small time
intervals. These samples are then combined into a full distribution, provided that
enough samples can be taken. Note that taking a single sample results in a point
estimate (equivalent to Scheme 1 below), while taking only a few samples results in
a very imperfect representation of the full distribution (conceptually similar, but not
identical, to Schemes 3 and 4 below).

A Probabilistic B Neural sampling
population codes

Activity
Orientation
o
o
o
Orientation

Two prominent theories postulate the existence of full probability distributions at the
decision stage. (A) Probabilistic population codes assume that a population code is
formed by examining the activity (within a certain time window) of neurons tuned to
different values of a variable such as orientation. (B) Neural sampling models assume
that at every time step, the brain extracts a single sample based on the whole neural
population (left). Multiple samples are then joined together to form a distribution
(right). Thus, through very different means, both probabilistic population codes and
neural sampling postulate the existence of a full probability distribution (highlighted
in red for each model).

|I|I|lllllllll
Orientation Time

Five Schemes for the Nature of the Perceptual Representation

Many researchers appear to assume that perceptual representations consist either
of simple point estimates or full probability distributions. In fact, there are a number
of “intermediate” possibilities that often remain neglected. Here I present five
different schemes for the nature of the perceptual representation at the decision
stage. To compare between them, I consider separately continuous estimation and
discrete choice tasks (Box 2).

As an example of a continuous estimation task, [ will use the estimation of the
direction of a single moving bar. The moving bar gives rise to a population code
which can be represented as a sensory distribution in orientation space (Figure


https://doi.org/10.1101/108944
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/108944; this version posted October 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1A). The question is what part of this population code is available for making the
final decision.

As an example of a discrete choice task, I will use the decision about which of three
possible stimuli - a face, a house, or a tool — was presented. These stimuli are known
to be processed by relatively specialized areas within the ventral visual stream. The
sensory evidence for each of these three possibilities can then be extracted from the
level of activation of the corresponding brain areas (Figure 2A). Again, the question
is what part of these activation levels are available for making the final decision.

Box 2. Continuous and discrete representations

In everyday life, we make decisions about both continuous quantities (e.g., how tall
is this person, how fast is this car driving, how long has it been since lunch) and
discrete choices (e.g., who is this person next to me in this old photo, what animal
left these marks in the snow, is she pregnant). Theories regarding the nature of the
perceptual representation at the decision stage have typically focused exclusively on
tasks that require the estimation of continuous quantities. Part of the reason for this
limitation is that the literature on discrete decisions is dominated by 2-choice tasks
where different representational schemes are hard to distinguish. Nevertheless,
truly understanding the nature of the perceptual representations necessitates that
we specify the representation for both continuous and discrete quantities. The five
schemes presented here are each applied to both types of judgments. It is possible
that the brain representations for continuous and discrete judgments are
qualitatively different, but, without any evidence for such a possibility, this paper
assumes that each scheme should apply to both types of decisions.

Scheme 1. Single Point Estimate

The first possibility is that the perceptual representation at the decision stage
consists of a single point estimate. In the continuous estimation task, the direction of
a moving bar would be represented as a single orientation (e.g., 70°; Figure 1B).
This point estimate could be based on the mean, median, mode, or any other statistic
derived from the sensory distribution. In the discrete choice task, the representation
could simply consist of the most likely stimulus (e.g., face; Figure 2B). The critical
point is that in both cases only a single point estimate is passed onto the decision
stage.

By assuming the presence of a single point estimate, Scheme 1 does not allow the
estimation of sensory uncertainty. Indeed, on each trial, observers only have access
to a single value with no way of extracting any information about how likely or
unlikely that value is.

Scheme 2. Point Estimates for Task and Related Quantities
The second possibility is that the perceptual representation at the decision stage
consists of multiple point estimates. For example, in addition to the point estimate
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from Scheme 1, people may additionally estimate other potentially relevant
quantities such their own decision time and attentional state (Figures 1C, 2C).

Scheme 2 allows for an indirect estimate of the true level of uncertainty. For
example, decisions made more quickly and with higher attention are more likely to
be correct and therefore would be associated with lower uncertainty. Thus, in
Scheme 2, uncertainty about the stimulus does not stem from the sensory
representation of the stimulus but of other, potentially related quantities.

Scheme 3. Point Estimate with Strength of Evidence

The third possibility is that the perceptual representation at the decision stage
consists of a point estimate complemented by the strength of evidence for the point
estimate. The strength of evidence here comes from the amount of evidence for the
chosen option independent of all other information. For example, in the continuous
estimation task, the direction of a moving bar could be represented by a point
estimate (e.g., 70°), together with the level of activity of the neuron representing this
point estimate (Figure 1D). Similarly, in the discrete choice task, the representation
at the decision stage may consist of the identity of the stimulus with highest activity
(e.g., face), together with the level of that activity in face-selective regions (Figure
2D).

Unlike in Scheme 2, the additional information (e.g., the strength of evidence) in
Scheme 3 stems directly from the sensory distribution. However, because only
partial information is considered (the activity level for the winning choice but not
for the other choices), the uncertainty representation is incomplete.

Scheme 4. Partial Distribution

The fourth possibility is that the perceptual representation at the decision stage
consists of a point estimate, as well as at least one higher moment of the sensory
distribution (e.g., variance, skewness, kurtosis, etc.). For simplicity, in continuous
estimation tasks, [ will equate Scheme 4 with representing the mean and standard
deviation. On a single trial, the direction of a moving bar may therefore be
represented as 70° £ 30° (Figure 1E). Discrete tasks are more complicated since the
options (e.g., face, house, tool) do not have an intrinsic relationship like the different
orientations in a motion estimation task. In such discrete tasks, Scheme 4 can be
seen as representing a point estimate, together with the entropy H(X) of the sensory
representation (Figure 2E).

Scheme 4 features partial estimation of sensory uncertainty. This scheme carries
more information than Schemes 1-3 since, unlike them, it takes into account the
whole sensory distribution.

Scheme 5. Full Distribution

The final possibility is that the perceptual representation at the decision stage
consists of a full probability distribution. In other words, the full sensory
distribution is either replicated or simply accessed at the decision stage (Figures
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1F, 2F). Unlike Schemes 1-4, no point estimate is given a privileged representation;
rather, all information is made available for further computations.

This scheme is the only one that allows the complete estimation of sensory
uncertainty. The difference with Schemes 1-4 is particularly great in cases of
discrete representations, as well as in complex continuous cases such as skewed or
bimodal continuous distributions. Scheme 5 is also the only scheme that allows for
fully optimal decisions on every trial. As described above, these features have made
this scheme very popular among computational neuroscientists2-1°.
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Figure 1. Five schemes for the nature of the perceptual representation in
continuous tasks.

(A) A moving bar creates a Gaussian distribution in motion-sensitive MT neurons
tuned to different orientations. (B) Scheme 1: Single point estimate. Only a single point
estimate of the direction of motion of the bar is extracted at the decision stage. (C)
Scheme 2: Multiple point estimates. Several point estimates are extracted for variables
relevant to the task (e.g., the inset shows estimates of decision time and attentional
state). (D) Scheme 3: Strength of evidence. A point estimate and a strength-of-evidence
value are extracted. The strength of evidence corresponds to the height of the
distribution at the point estimate. (E) Scheme 4: Partial probability distribution. The
mean and standard deviation of the distribution of neuronal activity are extracted. (F)
Scheme 5: Full probability distribution. The whole distribution of neuron activity is
used but is transformed from “activity” to “probability” space. The information
extracted in each scheme is highlighted in red.
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Figure 2. Five schemes for the nature of the perceptual representation in
discrete tasks.

(A) An ambiguous stimulus creates various amount of activity in sensory cortex coding
for faces, houses, and tools. (B) Scheme 1: Single point estimate. Only a single guess
about the identity of the ambiguous stimulus is extracted at the decision stage. (C)
Scheme 2: Multiple point estimates. Several point estimates are extracted for variables
relevant to the task (e.g., the inset shows estimates of decision time and attentional
state). (D) Scheme 3: Strength of evidence. A single guess together with the activity in
sensory cortex corresponding to that guess are extracted. (E) Scheme 4: Partial
probability distribution. A single guess together with the entropy associated with it are
extracted. (F) Scheme 5: Full probability distribution. The complete sensory
distribution is used but is transformed from “activity” to “probability” space. The
information extracted in each scheme is highlighted in red.

Empirical Evidence

Having presented five possible schemes of the perceptual representation at the
decision level, I now explore the empirical evidence typically invoked in support of
Scheme 5. Remarkably, all arguments are indirect and at least 15 years old. Even
though not typically considered in this context, I also examine the evidence from
confidence ratings. In each case, I show that rather than providing support for
Scheme 5, the empirical evidence is consistent with all of Schemes 2-5, and even
place strong constraints on Scheme 5.

Cue Combination

Cue combination occurs when two or more pieces of information are combined to
form a single decision33. Such tasks are typically performed with stimuli that permit
continuous estimation. For example, the length of a bar could be estimated based on
a combination of visual and haptic information?3. When the information from each
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of these sensory modalities is noisy, their evidence is combined in order to arrive at
a better estimate than either sense can afford by itself.

Cue combination studies often find near optimal integration22-25, Such findings have
been cited as providing the strongest support for the existence of a full probability
distribution as in Scheme 52-11. Indeed, the existence of a full probability
distribution easily explains optimal cue combination?’. Importantly, Scheme 4 also
naturally fits with optimal cue combination since such combination only requires
the representation of the distributions’ mean and standard deviation. In fact,
assuming Gaussian variability of the underlying sensory distribution, Scheme 4
becomes equivalent to Scheme 5 when applied to cue combination.

What is less appreciated is that Scheme 3, and perhaps even by Scheme 2, can also
explain near optimal performance in cue combination studies. Scheme 3 requires
subjects to weight each stimulus’ point estimate by the strength-of-evidence value
associated with it. In cases of Gaussian variability, the height of the distribution is
directly related to its standard deviation (for a normalized distribution), so Scheme
3 can support optimal performance. Scheme 2 has more difficulties with near
optimal cue combination because of its indirect representation of sensory
uncertainty. Still, occasional near optimal performance is possible when parameters
such as decision time or attentional state are strongly correlated with performance.
Thus, only Scheme 1 is completely inconsistent with near optimal cue combination.

On the other hand, discussions of cue combination studies often ignore the fact that
many such studies find substantial suboptimalities34-42 (reviewed in 43). These
studies typically report that one of the cues was weighted more than its reliability,
relative to the other cue. Such findings are surprising if indeed perceptual decisions
are based on full probability distributions (Scheme 5). On the other hand, it is more
natural to expect that Schemes 2 and 3 (and, to a lesser degree, Scheme 4) will
sometimes lead to suboptimal cue combination since they rely on heuristics.

Priors, Expectations, and Confidence

Subjects are able to seamlessly incorporate priors acquired by experience?627 or
provided by an experimenter28-32 to improve their perceptual decisions. Similarly,
in the absence of any prior, subjects can provide confidence ratings that reflect the
probability of being correct*44>. (Priors and expectations are traditionally studied in
the context of both continuous and discrete tasks, while confidence studies typically
focus on discrete tasks.) These abilities constitute strong evidence against Scheme 1.
Indeed, this scheme does not feature any information on which appropriate use of
priors or meaningful confidence judgments could be based. Schemes 2-5 easily
explain how priors can be incorporated into decisions or meaningful confidence
ratings can occur: the influence of priors should decrease and confidence should
increase with higher attentional (Scheme 2), higher strength of evidence (Scheme
3), lower standard deviations (Scheme 4), or narrower distributions (Scheme 5).
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On the other hand, a number of suboptimalities exist in both the use of priors and
expectations, as well as in confidence ratings*3. For example, subjects typically
underuse priors that are explicitly provided by the experimenter28-32. They are also
frequently either under- or over-confident and are rarely able to calibrate their
confidence properly4446-52, Even more importantly, a large number of studies have
reported conditions matched on accuracy that produce different levels of
confidence#453-66, These findings strongly suggest the existence of heuristics and
biases in both the use of priors and in confidence computation.

Similar to cue combination tasks, the suboptimalities in combining priors with
sensory information and in confidence ratings present a problem for Scheme 5.
Indeed, at least in principle, the presence of complete probability distributions
should allow for fully optimal computations. On the other hand, Schemes 2-4 fit
much more naturally with these findings of suboptimality since the probability of
being correct has a complex relationship with their measures of uncertainty. These
considerations explain why Schemes 2-4 would predict the existence of biases in the
use of priors and confidence ratings.

Theoretical Arguments

As noted in the beginning, proponents of full probability distributions at the
decision stage often motivate their stance with theoretical arguments rather than
empirical evidence. Two main arguments are explicitly or implicitly advanced.

First, computational neuroscientists often prefer to build normative models of how
the visual system should or could deal with uncertainty. Full distributions are best
for normative computations. The belief that normative solutions are necessary is
further fueled by a number of findings of close to optimal performance22-25.
However, many other theorists have argued that there is no a priori reason to
expect that the brain implements normative solutions, especially in complex
situations®7-69. Further, an extensive literature shows that suboptimal behavior has
been observed in virtually every perceptual task that lends itself to optimality
analysis*3. On the balance, it is hard to argue that a mixture of optimal and
suboptimal performance points to representations that are specifically designed for
optimality (like Scheme 5). One can argue that in many situations the information
from the full distributions is not used optimally. While this is certainly possible, this
argument begs the question as to why full distributions would be represented in the
first place if they are often not used properly.

Second, proponents of full distributions often point out that a single point estimate
cannot explain many behavioral effects?351019 thus rejecting Scheme 1. Scheme 5 is
then presented as the only possible alternative. In this view, any finding that the
brain can extract uncertainty estimates from sensory representations is taken as
evidence that decisions are “Bayesian” or “probabilistic” (Box 3), which is later
equated with full probability distributions. As demonstrated by Schemes 2-4, many
other alternatives exist.
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Not only do theoretical arguments for Scheme 5 appear lacking, but there are at
least two arguments against the existence of full probability distributions. First,
real-life perception comes with an explosion in computational complexity. Such
complexity virtually guarantees that decisions will be based on heuristics rather
than fully principled computations®’-¢°. Even supporters of full probability
distributions admit that complex situations call for simplified computations®.
Perception evolved to serve us in real life rather than in the laboratory. Thus,
complex conditions are the norm rather than the exception for the brain. If
heuristics are necessary anyway, then perceptual representations that allow precise
estimation of uncertainty but are mostly applicable in very simple situations may be
an unnecessary luxury.

Second, perceptual judgments are known to become more optimal with
practice*+70.71, Such findings fit well with Schemes 2 and 3. The reason is that in
both of these schemes, the additional quantities (beyond the point estimate) such as
decision time and strength of evidence may predict one’s accuracy differently for
different tasks. Thus, both Schemes 2 and 3 require learning to calibrate how these
additional quantities should be used. However, it is less clear how and why learning
would make judgments more optimal in Schemes 4 and 5.

Box 3. Are perceptual decisions Bayesian? Are they probabilistic?

The possibility that perceptual representations at the decision stage do not consist
of full probability distributions has relevance to theories about “Bayesian brains,”
“Bayesian computation,” “probabilistic approach,” “probabilistic computation,” and
“probabilistic brains”?-%. These concepts sound similar but are often used with very
different meanings.

Are perceptual decisions Bayesian? Decisions are Bayesian as long as they follow
Bayes’ theorem. Much evidence suggests that they do, although specific
computations may deviate from optimality for a number of reasons*3. Importantly,
many Bayesian models only require a single point estimate and build the Bayesian
machinery around inferring how the point estimate varies over trials. Thus, all five
schemes are fully consistent with the notion that perceptual decisions are Bayesian.
In some cases, however, the term “Bayesian” is equated with “optimal.” As pointed
out above, it does not appear that all perceptual decisions are optimal, so under this
more restrictive definition, perceptual decisions should not be generally classified
as Bayesian.

Are perceptual decisions probabilistic? The term “probabilistic” is even more
challenging. Ma? distinguishes between probabilistic models (in which trial-to-trial
observations are stochastic; such models can feature representations consistent
with all five schemes) and models of probabilistic computation (which require the
representation of at least two moments of the sensory distribution; such models are
only consistent with Schemes 4 and 5). Nevertheless, Ma's terminology is not widely
used. Other papers equate phrases such as the “probabilistic approach”® and
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representing stimuli in a “probabilistic manner”1? with the existence of the full
probability distributions from Scheme 5. Thus, rejecting Scheme 5 means rejecting
the notion of probabilistic decisions in some but not other definitions of the term.

So, are perceptual decisions Bayesian and/or probabilistic? It depends on what one
means when using these terms. There is strong evidence for stochasticity and use of
Bayes’ theorem in perception but no evidence for full probability distributions or
complete optimality. Due to the ambiguity in existing terminology, future work
could refer to Schemes 1-5 in order to clarify the exact concept researchers seek to
advance. Increased clarity may also help avoid common logical traps such as stating
that the perceptual decisions follow Bayes’ theorem (true) and concluding that full
probability distributions are necessarily needed (false).

What Empirical Evidence Can Resolve the Issue?

[t is safe to say that Scheme 1 has been thoroughly debunked. However, it is much
harder to distinguish the rest of the schemes. The critical question is whether the
perceptual representation features anything more than a point estimate with some
uncertainty estimate (as in Schemes 2-4). Scheme 5 can of course come in different
flavors with various amounts of precision in the representation. Nevertheless, there
are at least two ways of adjudicating between Scheme 5 (even if instantiated with
relatively low precision) and Schemes 2-4.

First, one can employ stimuli that produce continuous but non-Gaussian
distributions of sensory evidence. As pointed out above, especially useful would be
bi- or tri-modal distributions. For such distributions, Schemes 2-4 can only
represent a single peak in the distribution, while Scheme 5 can represent all peaks
simultaneously.

Second, one can employ discrete choice tasks with multiple alternatives. Again,
Schemes 2-4 can represent only the most likely option (with an added uncertainty
estimate), while only Scheme 5 can represent the evidence for all options. Note that
more than two alternatives would be needed if Scheme 5 is to make qualitatively
different predictions than Schemes 2-4.

Both options above are constructed such that Scheme 5 represents meaningfully
more information than Schemes 2-4. Clever experimental designs can then be
leveraged in order for Schemes 2-4 vs. Scheme 5 to make different predictions. What
is critical to appreciate is that Scheme 5 can and should be empirically adjudicated
from Schemes 2-4.

Conclusion
The nature of the perceptual representation at the decision level is still a mystery.
Many theorists have strongly favored the idea that decisions are based on full
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probability distributions over possible choices. However, closer scrutiny
demonstrates that, at present, there is no evidence for such a proposition. Instead,
the empirical data strongly rejects only representations based on a single point
estimate (Scheme 1). At least three other possible representations based on a point
estimate and various types of additional information (Scheme 2-4) cannot currently
be clearly distinguished from full probability distributions (Scheme 5).

[s it possible that Scheme 5 is the correct one after all? Absolutely. However, before
empirical evidence is actually leveraged in support of it (thus falsifying Schemes 2-
4), we cannot and should not simply assume the existence of full probability
distributions at the decision level. There is an urgent need to address this question
empirically before more theoretical work on the subject is done.
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