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How Do Humans Give Confidence? A Comprehensive Comparison
of Process Models of Perceptual Metacognition

Medha Shekhar and Dobromir Rahnev
School of Psychology, Georgia Institute of Technology

Humans have the metacognitive ability to assess the accuracy of their decisions via confidence judgments.
Several computational models of confidence have been developed but not enough has been done to compare
these models, making it difficult to adjudicate between them. Here, we compare 14 popular models of con-
fidence that make various assumptions, such as confidence being derived from postdecisional evidence,
from positive (decision-congruent) evidence, from posterior probability computations, or from a separate
decision-making system for metacognitive judgments. We fit all models to three large experiments in
which subjects completed a basic perceptual task with confidence ratings. In Experiments 1 and 2, the
best-fitting model was the lognormal meta noise (LogN) model, which postulates that confidence is selec-
tively corrupted by signal-dependent noise. However, in Experiment 3, the positive evidence (PE) model
provided the best fits. We evaluated a new model combining the two consistently best-performing mod-
els—LogN and the weighted evidence and visibility (WEV). The resulting model, which we call
logWEV, outperformed its individual counterparts and the PE model across all data sets, offering a better,
more generalizable explanation for these data. Parameter and model recovery analyses showed mostly good
recoverability but with important exceptions carrying implications for our ability to discriminate between
models. Finally, we evaluated eachmodel’s ability to explain different patterns in the data, which led to addi-
tional insight into their performances. These results comprehensively characterize the relative adequacy of
current confidence models to fit data from basic perceptual tasks and highlight the most plausible mecha-
nisms underlying confidence generation.

Public Significance Statement
Several process models have attempted to describe the computations that underlie metacognition in
humans. However, due to lack of systematic, widespread comparisons between these models, there is
no consensus on what mechanisms best characterize the process of confidence generation. In this
study, we tested 14 popular models of metacognition on three large data sets from basic perceptual
tasks, using multiple quantitative as well as qualitative metrics. Our results highlight two mechanisms
as the most plausible, generalizable features of confidence—the selective corruption of confidence by
signal-dependent metacognitive noise and a heuristic strategy that uses stimulus visibility to estimate
confidence. Analyzing the qualitative patterns of confidence generated by the models provides addi-
tional insights into each model’s success or failure. Our results also help to establish a comprehensive
framework for model comparisons that can guide future efforts.

Keywords: metacognition, confidence, perceptual decision-making, computational modeling,
metacognitive noise
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As humans, we are capable of metacognitively evaluating the
quality of our own decisions via confidence estimates (Metcalfe &
Shimamura, 1994). A person with higher metacognitive ability has

greater insight into their decisions, reliably expressing lower confi-
dence for incorrect and higher confidence for correct decisions.
Accurate metacognitive evaluations can drive learning and
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information seeking in ways that maximize our chances of achieving
successful outcomes (Desender et al., 2018; Fleming, Dolan, &
Frith, 2012; Koriat, 2006; Nelson & Narens, 1990; Shimamura,
2000; Yeung & Summerfield, 2012). Thus, insight into the pro-
cesses underlying metacognition is important for both understand-
ing and improving people’s decision-making.
One of the most important avenues for understanding the compu-

tational mechanisms of metacognition involves the development and
comparison of process models of metacognition (Fleming & Daw,
2017; Jang et al., 2012; Maniscalco & Lau, 2016; Pleskac &
Busemeyer, 2010; Shekhar & Rahnev, 2021b). These models pre-
cisely specify a set of internal computations that generate the
observed choice and confidence judgments, and thus offer mecha-
nistic insight into the processes underlying metacognition. Among
many other issues, process models of confidence generation allow
us to determine the internal computations that transform an incoming
sensory signal into a choice and a confidence rating, as well as how
the processes that generate choice and confidence are related to each
other. Yet, while many different models of metacognition have been
developed in recent years, less attention has been given to comparing
and arbitrating between the full range of existing models. Here, we
set to perform a comprehensive comparison of existing models of
metacognition that could then allow us to gain greater insight into
the processes underlying metacognition.

Models of Metacognition

The last decade has witnessed a large proliferation of models of
metacognition designed to explain subjects’ choice and confidence
judgments (J. W. Bang et al., 2019; Fleming & Daw, 2017; Jang
et al., 2012; Maniscalco et al., 2016; Maniscalco & Lau, 2016;
Shekhar & Rahnev, 2021b). We performed an extensive search for
published process models of metacognition that can be tested by fit-
ting them to choice and confidence data. We only selected models
that are currently in use (e.g., we did not consider threshold models
developed in the first half of the 20th century that are now largely
abandoned). In the end, this process resulted in selecting 14 models
of metacognition (Table 1). These models represent a wide range of
hypotheses about the mechanisms underlying metacognition and
make diverse assumptions about the architecture of information pro-
cessing and computations that govern choice and confidence judg-
ments. Below, we provide a brief overview of the 14 models;
detailed descriptions are available in the Method.
Perhaps the most prominent among all 14 models is signal detec-

tion theory (SDT model; Green & Swets, 1966). In fact, 13 of the 14
models selected here are built in some way on top of SDT. The clas-
sic SDT model assumes the presence of Gaussian noise in the inter-
nal perceptual representations. Both the decision and confidence are
made by placing noiseless criteria on the internal activations.
Three different models have proposed relatively simple extensions

of SDTwhere confidence ratings are made less informative. The most
popular among these (J. W. Bang et al., 2019; Maniscalco & Lau,
2016; Shekhar & Rahnev, 2018, 2021a, 2021b) assumes the existence
of Gaussian metacognitive noise (Gauss model) that corrupts either
the signal or criteria for confidence. One prominent variant of the
Gauss model postulates that, in addition to the Gaussian metacogni-
tive noise, the signal on which the choice is made decays before the
confidence rating can be given (Decay model; Maniscalco & Lau,
2016), thus leading to two sources of corruption. Finally, a more

recent model also postulates the existence of metacognitive noise
but assumes that this noise follows a lognormal distribution (LogN
model; Shekhar & Rahnev, 2021b). Increasing the mean of a lognor-
mal distribution also increases its variance, thus making the confi-
dence criteria far from the decision criterion noisier. Because of this
property, we refer to the metacognitive noise in the LogN model as
being signal-dependent.

Another six models have proposed more substantive extensions of
SDT. The first one assumes the presence of additional, postdecisional
processing that adds more information before confidence is given
(Post-Dec model; Barrett et al., 2013). The second model proposes
that confidence is based on a weighted sum of evidence from SDT
and stimulus visibility (weighted evidence andvisibility [WEV])
model; Rausch et al., 2018, 2020). Finally, the last two models from
this group assume that confidence is based only on choice-congruent
(positive) evidence and ignores choice-incongruent (negative) evidence
(Maniscalco et al., 2016; Zylberberg et al., 2012). A complete disregard
of choice-incongruent evidence results in a pure positive evidence (PE)
model, while a partial disregard of choice-incongruent evidence leads to
a more flexible version of the PE model (PE-Flex model). A very pop-
ular model—the Bayesian confidence hypothesis (BCH)—proposes
that confidence is computed as the posterior probability of a correct
choice (BCH model; Sanders et al., 2016). Finally, a recent model pro-
poses that confidence represents an observer’s estimate of uncertainty in
the decision variable but that the metacognitive system only has access
to a noisy estimate of this uncertainty (confidence as a noisy decision
reliability estimate [CASANDRE] model; Boundy-Singer et al., 2023).

The next threemodels propose larger departures from SDT by pos-
tulating the existence of two different pathways or decision-making
systems (in comparison to all models above which are based on a sin-
gle evidence stream). The most popular among these is the dual chan-
nel model (DCmodel), which assumes that high- and low-confidence
decisions are based on separate information processing pathways
called “conscious” and “unconscious” channels (del Cul et al.,
2009; Maniscalco & Lau, 2016). The other two models both assume
that the signals for the primary decision and confidence arise from
correlated but separate Gaussian random variables. In the stochastic
detection and retrieval model (SDRM; Jang et al., 2012), confidence
is given by placing criteria directly on the confidence signal. In the
second-order confidence (SOC model; Fleming & Daw, 2017), con-
fidence is given based on a Bayesian computation of the probability
of being correct, similar to the BCH model. However, instead of
directly computing this probability from the decision variable, confi-
dence is estimated by a second-order inference of the possible states
of the decision variable via the observed confidence variable.

Finally, one model originally designed to fit response times (RT)
data—the two-stage dynamic signal detection (2DSD model;
Pleskac & Busemeyer, 2010)—has a structure that allows it to be fit
only to choice and confidence data, and is therefore included here
too. Conceptually, 2DSD is related to the Post-Dec model in that it
assumes that noisy confidence evidence is accumulated after the deci-
sion was made.

Previous Work Comparing Existing Models of
Metacognition

Despite the abundance of process models of metacognition, rela-
tively few studies have compared a wide range of existing models
with most model comparison work instead focusing on comparing
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several variants of the same model or only a few different models.
The earliest model comparison of a wide range of models was per-
formed by Maniscalco and Lau (2016) who fit several versions of
three broad classes of models (single channel, DC, and hierarchical)
to visibility data from a metacontrast masking experiment. Their
models included SDT, Gauss, Decay, and several variants of the
DC model with the Decay model performing the best. Two studies
by Rausch and colleagues used confidence data from a masking
task and fit the SDT, Gauss, Post-Dec, Decay, PE, DC, and WEV
models (Rausch et al., 2018, 2020), finding that the WEV model
provided the best fits. However, none of these studies included the
newly developed LogN, CASANDRE, and SOC models, or other
older models (BCH, SDRM, and 2DSD). In fact, to the best of our
knowledge, despite its popularity, the SOC model has never even
been fit to real data. Furthermore, none of the studies above per-
formed parameter recovery, which is important for characterizing
the identifiability of models (i.e., whether different sets of parame-
ters can produce the same data; Wilson & Collins, 2019), and
some of the studies did not perform model recovery. Therefore,
building on the previous research, here we sought to conduct system-
atic model comparison using an even wider range of models and per-
form both parameter and model recovery analyses.

The Current Approach

An endeavor to conduct a comprehensive model comparison neces-
sarily involves many choices on the part of the authors. Some of the
most important choices include what type of task manipulations to
use, what type of data to fit, and what variations of existing models

to include. We briefly discuss the choices we made in each of these
domains, as well as the advantages and disadvantages of these choices.

Task Manipulations

A critical step for any model comparison is choosing the types of
task manipulations to include. One possible approach is to include
manipulations that produce nontrivial qualitative results, which
can provide strong falsification for models that cannot explain
these results. This is the approach that many studies to date have
taken (Maniscalco & Lau, 2016; Rausch et al., 2018, 2020). Aweak-
ness of this approach is that such manipulations may impact the aux-
iliary assumptions of the models. For example, it is not well
understood whether the backward masking designs used in several
previous studies affect the variability of the internal distributions.
While it is possible for model comparisons to be extended such
that different combinations of auxiliary assumptions are tested for
each model, in practice this results in a very large set of models
and is rarely done. Here, we instead chose to examine data with no
manipulations at all (Experiment 1), as well as data with very simple
manipulations of difficulty via stimulus contrast (Experiment 2) and
motion coherence (Experiment 3).While this approach does not pro-
duce nontrivial qualitative results, it obviates the need to test a large
number of auxiliary assumptions.

Type of Data to Fit

Another critical choice an experimenter needs to make concerns
what type of data to fit. Most models to date operate only on choice

Table 1
Process Models of Confidence Generation

Model Full name Key reference Description

SDT Signal detection theory Green and Swets (1966) Confidence and choice are based on the same evidence
Gauss Gaussian meta noise Maniscalco and Lau (2016) Confidence is selectively corrupted by Gaussian metacognitive noise
LogN Lognormal meta noise Shekhar and Rahnev (2021b) Confidence is selectively corrupted by lognormal (signal-dependent)

metacognitive noise
Decay Noisy decay Maniscalco and Lau (2016) Signal for confidence undergoes Decay; corruption by Gaussian meta

noise
Post-Dec Postdecisional SDT Barrett et al. (2013) Additional sample of noisy evidence is added to the signal for

confidence
2DSD Two-stage dynamic signal

detection
Pleskac and Busemeyer (2010) Confidence and choice are based on two sequential stages of evidence

accumulation
PE Positive evidence Zylberberg et al. (2012),

Maniscalco et al. (2016)
Confidence is based only on decision-congruent evidence

PE-Flex Flexible positive evidence — Confidence gives more weight to decision-congruent evidence than
optimal

WEV Weighted evidence and visibility Rausch et al. (2018) Signal for confidence is a weighted sum of evidence and stimulus
visibility

DC Dual channel del cul et al. (2009), Maniscalco
and Lau (2016)

Choices associated with low and high confidence (conscious
experience) are generated by independent pathways

SDRM Stochastic detection and retrieval
model

Jang et al. (2012) Choice and confidence based on distinct but correlated evidence
samples

BCH Bayesian confidence hypothesis Hangya et al. (2016) Confidence is computed as the posterior probability of being correct
SOC Second order confidence Fleming and Daw (2017) Confidence is generated as posterior probability of correct choice based

on higher order inference
CASANDRE Confidence as a noisy decision

reliability estimate
Boundy-Singer et al. (2023) Confidence depends on a noisy estimate of the reliability of the decision

Note. Details on the 12 models of confidence generation examined here. SDT= signal detection theory model; Gauss=Gaussian meta noise model; LogN=
lognormal meta noise model; Decay= noisy decay model; Post-Dec= postdecisional SDT model; 2DSD= two-stage dynamic signal detection model; PE=
positive evidence bias model; PE-Flex= flexible positive evidence bias model; WEV=weighted evidence and visibility model; DC= dual channel model;
SDRM= stochastic detection and retrieval model; BCH=Bayesian confidence hypothesis model; SOC= second-order confidence model; CASANDRE =
confidence as a noisy decision reliability estimate model.
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and confidence data. However, several models have been developed
to jointly explain choice, confidence, and reaction time (Kiani et al.,
2014; Pleskac &Busemeyer, 2010; Ratcliff & Starns, 2013; Vickers,
1979). Beyond these three measures, it would be desirable for a
model to explain as much observable data as possible, including
pupillometry (e.g., pupil dilation), physiological measures (e.g.,
heart rate and skin conductance), and brain measures (e.g., electro-
encephalography and functional magnetic resonance imaging activ-
ity across sensory and higher-order areas) since these measures are
also related to confidence. In practice, however, no model can
explain every observable piece of data and it is unclear whether it
would be advantageous to even try to build such a model. While
explaining more observable data is certainly an asset for a model,
it adds an important layer of complexity and can shift the focus
away from the most basic phenomena. Here we chose to maximally
narrow our focus and fit models to choice and confidence data only.
It is our expectation that the obtained results will inspire and con-
strain any model that is designed to fit a wider range of data.
However, it should be noted that our decision to exclude RT results
in the exclusion of most models that are based on the drift-diffusion
modeling framework (except 2DSD). Accordingly, a majority of the
remaining models we include here are based on SDT, since SDT
remains one of the most popular frameworks for modeling two-
choice tasks, particularly when RTs are excluded.
The 2DSD model was originally developed to simultaneously

explain choice, confidence, and RT. However, in the current study,
we use the model to generate only choice and confidence, while sup-
pressing RT. We acknowledge that constraining the model in this way
might result in the model being underutilized. However, given that we
cannot fit any of the other models to RT, it becomes necessary to sup-
press RTs in the 2DSD model in order to fit it in our study.

Model Variants

Finally, for most models in the literature, it is possible to identify sev-
eral model variants. For example, SDRMhas three sources of noise (var-
iability in the decision criterion, variability in the confidence criteria, and
imperfect correlation between the choice and confidence variable) and
one could test model variants where between zero and three of these
noise sources are included (Jang et al., 2012). Similarly, concepts such
as the existence of two channels (Maniscalco&Lau, 2016) can be imple-
mented in several differentways. To keep themodel comparisonmanage-
able, here we chose to only fit the main version of each model. We only
made one exception for the PE model where, consistent with previous
findings (Maniscalco et al., 2016), we included a version where
choice-incongruent evidence is partially considered (PE-Flex model).

Summary of Study Design and Results

We performed the most comprehensive investigation to date on the
ability of existing models of metacognition to fit choice and confi-
dence data from simple perceptual experiments. We fit all 14 models
to three data sets that are substantially larger than in previous work
(Experiment 1: 59 subjects, 3,500 trials/subject; Experiment 2: 20
subjects, 2,800 trials/subject; Experiment 3: 45 subjects, 1,600 tri-
als/subject) and therefore allow for stronger conclusions. All experi-
ments featured simple perceptual tasks with Experiment 1 having a
single difficulty level, Experiment 2 having three difficulty levels
obtained by manipulating the contrast of a Gabor patch stimulus,

and Experiment 3 having eight difficulty levels obtained frommanip-
ulating motion coherence in a random dot motion stimulus. Model
recovery analyses showed that most models (except SDRM) can be
reliably discriminated from each other, but the recoverability
decreases substantially when only a single difficulty level is used.
On the other hand, parameter recovery analyses showed that most
models are uniquely identifiable, though three models (Decay,
SDRM, and SOC) showed poor recovery of at least one model param-
eter. Furthermore, we explored the extent to which each model can
capture qualitative patterns and found that most models failed to cap-
ture at least one qualitative effect. The only exception was the WEV
model that flexibly captured all the observed qualitative patterns
across the three experiments. Critically, the best-fitting model for
Experiments 1 and 2 was the LogN model, but the PE model was
found to provide the best fit for Experiment 3. Additionally, we tested
a newmodel that combines features from two of the most consistently
performing models (LogN andWEV), and found that it outperformed
the PE model as well as its individual counterparts, suggesting an
alternative mechanism for confidence that can be generalized across
data sets. These findings are consistent with many recent findings
on the neural mechanisms of confidence generation involving the pre-
frontal cortex (Allen et al., 2017; D. Bang & Fleming, 2018; Fleming
et al., 2010; Fleming, Huijgen, & Dolan, 2012; Morales et al., 2018;
Rounis et al., 2010; Shekhar & Rahnev, 2018; Wokke et al., 2017;
Yeon et al., 2020) and constrain hypotheses about the neural architec-
ture supporting metacognition.

Method

Data for Modeling

We fit the models to data from three experiments that contained a
large number of trials and involved a perceptual discrimination with
confidence ratings. All experiments have been previously reported:
Experiment 1 as Experiment 2 in Haddara and Rahnev (2022),
Experiment 2 as Experiment 4 in Shekhar and Rahnev (2021b),
and Experiment 3 as Experiment 1 in Orchard et al. (2022). Data
from all experiments have been made available through the
Confidence Database (Rahnev et al., 2020). This study was not pre-
registered. In all experiments, subjects reported normal or
corrected-to-normal vision and received monetary compensation
for their participation. The studies were approved by the local
Institutional Review Board. All study details for the experiments
can be found in the original publications; below, we briefly discuss
the basic experimental designs.

Experiment 1

A total of 75 subjects completed the experiment over the course of 7
days but 15 of them were excluded from the original publication
(Haddara & Rahnev, 2022) based on preregistered criteria. In the cur-
rent study, we excluded one additional subject because their metacog-
nitive score lay outside the plausible range of values (M-Ratio=−0.5;
a description of the measure M-Ratio is provided under the Analysis
section). Subjects were recruited online via Amazon’s Mechanical
Turk and each completed a total of 3,500 trials (500 trials per day;
20 blocks of 25 trials each). The first six blocks of trials (150 trials)
on Day 1 were part of a staircasing procedure to adjust the task diffi-
culty for the rest of the experiment and were therefore excluded from
the main analyses, resulting in 3,350 trials per subject.
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Each trial began with subjects fixating on a small white cross at
the center of the screen followed by presentation of a 7× 7 grid con-
taining the letters X and O for 500 ms (Figure 1a). After the stimulus
offset, subjects indicated which of the two letters appeared more fre-
quently in the grid and then rated their confidence on a scale from 1
to 4 (1= low confidence, 4= high confidence). Subjects’ responses
were untimed and collected via key presses. The average accuracy
across all 7 days of the experiment was 75%. The experiment was
designed using jsPsych 5.0.3.

Experiment 2

A total of 20 subjects participated in this experiment. Each subject
came for three sessions held on separate days and completed a total
of 2,800 trials. Each trial began with subjects fixating on a small
white dot at the center of the screen for 500 ms followed by presen-
tation of the stimulus for 100 ms (Figure 1b). The stimulus was a
Gabor patch (diameter= 3°) oriented either to the left (counter-
clockwise) or right (clockwise) of the vertical by 45°. The Gabor
patches were superimposed on a noisy background. The response
screen appeared after the stimulus offset and remained till the sub-
jects made a response. Subjects’ task was to indicate the direction
of the tilt (left/right) and simultaneously rate their confidence
using a continuous confidence scale (ranging from 50% correct to
100% correct for each type of response) via a single mouse click.
Because all models fit here require a discrete set of confidence crite-
ria to generate ratings, we transformed the continuous confidence
scale into a 6-point scale, using five equidistant criteria placed
between the lowest (50) and highest (100) possible ratings. This

procedure is equivalent to what was used in the original publication
(Shekhar & Rahnev, 2021b).

Three interleaved contrast values of 4.5%, 6%, and 8%were used.
The three levels of contrast yielded three increasing levels of accu-
racy (Contrast 1: M= 67%, SD= 2.7%; Contrast 2: M= 77%,
SD= 3.7%; Contrast 3: M= 89%, SD= 3.6%). In addition, to
incentivize the veridical use of the continuous confidence scale, par-
ticipants were awarded points based on how closely their confidence
reports matched their accuracy (Fleming et al., 2016). At the end of
the three sessions, participants’ cumulative scores were calculated
and they were rewarded a bonus based on their performance.

Stimuli were generated using the Psychophysics Toolbox
(Brainard, 1997) in MATLAB (MathWorks) and presented on a
computer monitor (21.5-in. display, 1,920× 1,080 pixel resolution,
60 Hz refresh rate). Subjects were seated in a dim room and posi-
tioned 60 cm away from the screen.

Experiment 3

Forty-five subjects participated in this experiment and completed
a total of 1,600 trials within a single session. Each trial began with
the presentation of the stimulus for 750 ms followed by the presen-
tation of a response screen. The stimulus consisted of a random dot
kinematogram—a circular aperture containing 200 moving dots
(100 black, 100 white; diameter= 0.07) and a red central fixation
mark (diameter= 0.35°). Each dot moved in a direction that was ran-
domly chosen from a wrapped Gaussian distribution with a mean of
22° either to the left or right of the vertical. Subjects were required to
simultaneously indicate the direction of motion (left/right) and their

Figure 1
Schematic of the Tasks in Experiments 1–3

Note. (a) Task in Experiment 1. Each trial began with fixation for 500 ms and was followed by the presentation of a grid containing the letters “X” and “O.”
Subjects had to first indicatewhich of these two letters appearedmore frequently in the grid and then rate their confidence in their response on a 4-point scale. (b)
Task in Experiment 2. Each trial began with fixation for 1 s followed by the presentation of a noisy Gabor patch tilted 45° either to the left or right of the vertical
for 100 ms. Subjects were instructed to indicate the tilt of the Gabor patch while simultaneously rating their confidence on a continuous scale from 50 to 100. (c)
Task in Experiment 3. Each trial began with presentation of the stimulus for 750 ms. The stimulus consisted of 200 black and white dots moving within a
circular aperture. Subjects simultaneously indicated the net direction of dot motion (left/right) and their confidence on a 4-point scale by clicking on a
wedge in the response screen. Figure adapted from “Internal Noise Measures in Coarse and Fine Motion Direction Discrimination Tasks and the
Correlation With Autism Traits,” by E. R. Orchard, S. C. Dakin, and J. J. A. van Boxtel, 2022, Journal of Vision, 22(10), Article 19 (https://doi.org/10
.1167/jov.22.10.19). CC BY 4.0. See the online article for the color version of this figure.
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confidence on a 4-point scale by a button press. The response screen
contained a confidence wheel (Figure 1c) divided into eight wedges.
The four wedges on the left/right indicated leftward/rightward
motion, respectively, and were numbered 1–4 to indicate the level
of confidence for that response.
The trials consisted of eight interleaved difficulty levels.

Difficulty was manipulated by varying the degree of randomness
(coherence) in dot motion. Specifically, each dot moved in a direc-
tion drawn randomly from a Gaussian distribution with M + 22°
and an SD of 0°, 35°, 45°, 60°, 70°, 80°, 90°, or 100°.When the stan-
dard deviation was 0°, all the dots moved in the same direction. The
eight levels of coherence yielded eight decreasing levels of accuracy
(98.8%, 96.4%, 93.4%, 82.19%, 74%, 66.4%, 61%, and 56.9%).

Model Details

We fit 14 process models:

1. SDT model
2. Gaussian meta noise (Gauss) model
3. Lognormal meta noise (LogN) model
4. Noisy decay (Decay) model
5. Postdecisional SDT (Post-Dec) model
6. WEV model
7. PE bias model
8. PE-Flex bias model
9. 2DSD model
10. BCH model
11. Confidence as a noisy decision reliability estimate (CASA

NDRE) model
12. DC model
13. SDRM
14. SOC model

Models 1–11 postulate the existence of a single system for the
generation of choice and confidence (single process models),
while Models 12–14 assume distinct decision-making systems/path-
ways for generating decisions (dual process models). Below, we give
details about each of the 14 models.

SDT Model

We implement the classic SDT model described by Green and
Swets (1966) under the assumption that confidence criteria are
placed on the evidence axis. SDT assumes that each trial generates
noisy sensory evidence, rsens, drawn from a Gaussian distribution
such that, rsens = N − msens

2 , s2
sens

( )
, when the stimulus belongs to

the first category, S1, and rsens = N msens
2 , s2

sens

( )
, when the stimulus

belongs to the second category, S2. Here, μsens is the distance
between the evidence distributions corresponding to the two stimu-
lus categories and σsens is the standard deviation of each distribution.
The primary decision about the identity of the stimulus is generated
by comparing rsens with a decision criterion, c0 such that rsens, c0
leads to a response “S1” and rsens≥ 0 leads to a response “S2.”
Confidence decisions are generated by a set of confidence criteria,

[c−n, c−n+1, …, c−1, c1, …, cn−1, cn], where n is the number of rat-
ings on the confidence scale. The criteria ci are monotonically
increasing with c−n=−∞ and cn=∞. When the primary response
is “S2,” confidence is generated using the criteria [c0, c1…, cn] such
that rconf falling within the interval [ci, ci+1) results in a confidence of

i + 1. When the primary response is “S1,” confidence is generated
using the criteria [c−n, c−n+1, …, c0] such that rconf falling within
the interval [ci, ci+1) results in a confidence of −i.

Critically, SDT assumes that the stimulus and confidence deci-
sions are based on the same sensory evidence, such that the signal
for confidence rconf= rsens and there is no additional noise is gener-
ating confidence.

Gaussian Meta Noise Model (Gauss)

The Gauss model is equivalent to SDT with the exception of the
additional assumption that the sensory evidence underlying confi-
dence, rconf, is selectively corrupted by additional “metacognitive
noise” such that, rconf = N(rsens, s2

meta), where σmeta is the amount
of metacognitive noise added to the sensory signal (J. W. Bang
et al., 2019; Maniscalco & Lau, 2016; Shekhar & Rahnev, 2018,
2021b). The model we implement here is the version that we have
used previously in Shekhar andRahnev (2018). Note that another inter-
pretation of the same model is that the metacognitive noise is added to
the confidence criteria rather than the sensory evidence; the two inter-
pretations result in equivalent models (Shekhar & Rahnev, 2021b).

The Gauss model can sometimes generate apparently nonsensical
scenarios where metacognitive noise causes rsens and rconf to lie on
opposite sides of the decision criterion c0. For example, rsens, c0
(and thus the Type-1 response is “S1”) but rconf. c0 (which corre-
sponds Type-1 response “S2”). When such “cross-over” scenarios
arise, the Gaussianmetanoise model is constrained to generate a con-
fidence of 1.

LogN Model

The LogN model is equivalent to SDT with the exception of the
additional assumption that metacognitive noise drawn from a log-
normal distribution is added to the confidence criteria (first imple-
mented in Shekhar & Rahnev, 2021b). The confidence criteria, ci,
thus follow the following lognormal probability distribution,
glognormal:

ci � glognormal(x | mi, s
2
meta)

=

1

(x− c0)
���������
2ps2

meta

√ e
−(ln (x−c0)−mi )

2

2s2
meta , x [ (c0, 1) if i . 0

1

(c0 − x)
���������
2ps2

meta

√ e
−(ln (c0−x)+mi )

2

2s2meta , x [ (−1, c0) if i , 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1)

where μi and s2
meta are the mean and variance of the Gaussian random

variable obtained by taking log of ci and i=− n + 1,…, − 1, 1,…,
n− 1. The parameters μi are constrained so that μ−n+1≤ · · · ≤ μ−1

and μ1≤ · · · ≤ μn−1. The confidence criteria, ci, are generated as
perfectly correlated random variables ensuring that the criteria, [c−n,
c−n+1, …, c−1, c1, …, cn−1, cn], are strictly increasing and do no
cross over each other. Additionally, all confidence criteria, ci, are
bounded on one end by c0 such that, there they do not cross over
the decision criterion (as in the Gauss model). The variance of each
confidence criterion, ci, is given by (es

2
meta − 1) × e2mi+s2

meta when
i. 0 and by (es

2
meta − 1) × e−2mi+s2

meta when i, 0, implying that var-
iance of the confidence criteria scales with their distance from the
decision criterion.
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We note that it is possible to alternatively model metacognitive
noise as noise in the confidence signal, rather than noise in the con-
fidence criteria. Here, we chose to model metacognitive noise as
trial-by-trial variability in the confidence criteria because we believe
that criterion noise is the more likely source of metacognitive noise.
Mechanistically, we can explain criterion noise as arising from
observers’ being unable to hold stable criteria across trials (random
criterion jitter) or from using other unmodeled sources of informa-
tion when computing confidence. On the other hand, the assumption
that metacognitive noise arises from the addition of noise to the con-
fidence signal does not offer such an immediate mechanistic expla-
nation for its source. Additionally, it assumes the existence of a
second-order representation of the confidence signal that is cor-
rupted by noise of unknown origin.

Noisy Decay Model (Decay)

The Decay model is equivalent to Gauss model (it assumes the
presence of Gaussian metacognitive noise) but additionally postu-
lates that the sensory signal underlying the perceptual decision,
rsens, undergoes a process of decay before reaching the stage of
confidence generation. We follow the implementation that is
described in Maniscalco and Lau (2016). Therefore, the sensory
signal for confidence is given by the formula rconf = N(rsens ×
pdecay, s2

meta), where pdecay ∈ [0, 1], represents the proportion of
the signal that is retained for confidence and σmeta is the metacogni-
tive noise.

Postdecisional SDT Model (Post-Dec)

The Post-Dec model is equivalent to SDT with the exception of
the additional assumption that the signal underlying confidence,
rconf, contains the original signal for the choice, rsens, as well as an
additional sample of postdecisional evidence. Therefore,

rconf �
N rsens − dpost × mstim

2
, dpost

( )
, if stimulus = S1

N rsens + dpost × mstim

2
, dpost

( )
, if stimulus = S2

⎧⎪⎪⎨
⎪⎪⎩

,

(2)

where δpost controls the amount of postdecisional evidence added to
rsens. The Post-Dec model we describe herewas first implemented by
Rausch et al. (2020).

WEV Model

The WEV model was first developed by Rausch et al. (2018).
Here, we use the version of their model that is described in
Rausch et al. (2020). The WEV model is equivalent to the Gauss
model (it assumes the presence of Gaussian metacognitive noise)
but postulates that confidence is also influenced by stimulus visibil-
ity along with the original sensory signal (Rausch et al., 2018).

Therefore, the signal underlying confidence is computed as a
weighted average of the sensory signal (rsens) and a visibility signal
such that:

Equation 3 (see below)

where wvis refers to the weight given to stimulus visibility, m̄stim

refers to the mean stimulus signal across all experimental condi-
tions, and σmeta refers to the Gaussian metacognitive noise in
the confidence sample. To obtain a measure of stimulus visibility,
the stimulus strength on the current trial is compared to the aver-
age stimulus signal across all experimental conditions. Due to the
need for averaging signal strengths across experimental condi-
tions, the WEV model requires that the data must consist of at
least two conditions with varying difficulty levels (otherwise,
the model becomes equivalent to the Gauss model). Therefore,
the WEV model cannot be fit to Experiment 1 which consists
of a single difficulty level and we only fit this model to
Experiments 2 and 3.

PE Model

The PE model assumes that confidence ratings are based only on
the evidence that favors the chosen response.We use a version of this
model that has been previously described by Maniscalco et al.
(2016). The PE model considers separately the internal evidence
for each of the two choices, rS1 and rS2 , such that:

rs1 � N
mstim

2
− c0, s

2
sens

( )
&rs2 � N(c0, s

2
sens), if stimulus = S1

rs1 � N(−c0, s
2
sens) &rs2 � N

mstim

2
+ c0, s

2
sens

( )
, if stimulus = S2

,

(4)

where c0 reflects the observer’s inherent bias to favor one response
over another. Perceptual decisions are generated based on compari-
sons between rs1 and rs2 such that rs1 . rs2 results in a response of
“S1” and rs1 ≤ rs2 results in a response of “S2.”
To generate the signal for confidence, the model only considers
evidence in favor of the response that has been made, such that
the sensory signal underlying confidence is given as: rconf =
rcongruent, where rcongruent = rS1 when stimulus response is “S1”
and rcongruent = rS2 when stimulus response is “S2.” The confi-
dence decision is generated by defining a distinct set of confidence
criteria for each response type—[ci0 , ci1 , ci2 . . . cin−1 , cin ], where n
is the number of ratings on the confidence scale and i= {1, 2}
refers to the class of stimulus responses (“S1” or “S2”). The criteria
cij are monotonically increasing with ci0 = −1 and cin = 1when
i= 2 and monotonically decreasing with ci0 = 1 and cin = −1
when i= 1. Confidence responses are generated such that
rconf falling within the interval [cij , cij+1 ) results in a confidence
of j + 1.

rconf =
N (1− wvis) × rsens − wvis × (mstim − m̄stim)

2
, s2

meta

( )
, if response = S1

N (1− wvis) × rsens + wvis × (mstim − m̄stim)
2

, s2
meta

( )
, if response = S2

⎧⎪⎪⎨
⎪⎪⎩

, (3)
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PE-Flex Model

We also implemented a more PE-Flex model in which the confi-
dence decision selectively overweighs evidence in favor of the response
that has been made. The model was inspired by previous findings that
the PE bias can be ameliorated via feedback and perhaps other factors
(Maniscalco et al., 2016). However, the version of the PE model we
implement here has never been used before. The PE-Flexmodel is iden-
tical to the PE model except that the confidence signal, rconf, is a
weighted difference of decision-congruent and incongruent evidence
such that: rconf=wpe × rcongruent− (1−wpe) × rincongruent, where
wpe∈ [.51, 1] controls howmuchweight is given to decision-congruent
evidence (setting wpe to 1 makes this model identical to the PE model).

2DSD Model

The original 2DSD model generates choice and confidence along
with reaction times via a diffusion process (Pleskac & Busemeyer,
2010). In this model, the choice and RT are generated as in
Ratcliff’s diffusion model (Ratcliff & McKoon, 2008), whereas con-
fidence is generated by running the diffusion process for an additional
period after the choice has been made. However, since it is difficult to
compare models fit to different sets of data (one that include and do
not include RT), we suppress the RT generation in the 2DSD model
while preserving the way the model generates choice and confidence.
Choice probabilities that arise from a diffusion process have been

previously derived by Ratcliff (1978) as:

p(R1|S1) = e
4du
s2

( )
− e

2d(u−z)
s2

( )

e
4du
s2

( )
−1

p(R2|S2) = e
−4du
s2

( )
− e

−2d(u+z)
s2

( )

e
−4du
s2

( )
−1

, (5)

where p(Ri|Sj) corresponds to the probability of responding “Ri”when
stimulus Sj is presented, δ is the diffusion ratewhich controls the rate at
which the sensory signal gets incorporated into the decision, z is the
starting point of the diffusion process (a positive value of z results
in a bias toward “S2” responses), θ is the choice threshold which con-
trols the amount of evidence required to make a choice, and σ is the
drift coefficient that controls the noise in the diffusion process. We
can then calculate the probability of making incorrect choices simply
as: p(R2|S1)= 1− p(R1|S1) and p(R1|S2)= 1− p(R2|S2).
2DSD assumes that postdecisional evidence accumulation contin-

ues after the perceptual choice and that confidence is derived from
the evidence that is collected during the second stage of diffusion.
Pleskac and Busemeyer (2010) show that due to the noisy accumu-
lation process, at the end of the second stage of diffusion, the final
accumulated evidence for confidence (rconf) follows a Gaussian dis-
tribution, such that when stimulus S1 is presented:

rconf � N(−td− u, s2t), if response = S1
N(−td+ u, s2t), if response = S2

{
, (6)

where τ is the strength of the postdecisional signal. Similarly, when
the stimulus S2 is presented:

rconf � N(td− u, s2t), if response = S1
N(td+ u, s2t), if response = S2

{
. (7)

Since choice and confidence in this model are generated from dis-
tinct processes, the confidence criteria are not constrained by the
decision criterion. Therefore, the set of criteria that generate confi-
dence for “S1” responses and the criteria that generate confidence
for “S2” responses form distinct sets, each extending from −∞ to
∞. For each response type, we define the criteria as
[ci0 , ci1 , ci2 . . . cin−1 , cin ], where n is the number of ratings on the
confidence scale and i= {1, 2} refers to the class of stimulus
responses, Si. The criteria cij are monotonically increasing with ci0 =
−1 and cin = 1 when i= 2 and monotonically decreasing with
ci0 = 1 and cin = −1when i= 1. Confidence responses are gener-
ated such that rconf falling within the interval [cij , cij+1 ) results in a
confidence of j + 1.

BCH Model

A Bayesian observer computes the posterior probability associ-
ated with each stimulus class and chooses the stimulus class that
maximizes the posterior. However, in all our experiments both
stimulus classes are equally likely to occur (i.e., priors are
equal). Therefore, the posterior probability of a choice depends
only the likelihood of the observed evidence under each stimulus
class and the primary decision depends only on comparison of
likelihoods, and choices are generated identical to the SDT
model.

The posterior probability of each choice is computed as:

P(Si|rsens) = 1

e
−2rsensmi

s2sens + 1
. (8)

Assuming Gaussian evidence distributions where rsens �
N( mi, s

2
sens), i = [1, 2], and mi = − mstim

2 for stimuli belonging to
S1, andmi = mstim

2 for stimuli belonging to S2. The observer generates
choices by comparing the posterior odds to a decision criterion, such
that “S1” responses are generated when the posterior odds, P(S1|r)P(S2|r) .
t0 and “S2” responses are generated otherwise, where t0 ∈ [0, 1].
In the BCH model, confidence is defined as the posterior probabil-
ity of a correct choice. Therefore, confidence is generated by com-
paring the maximum posterior estimate: max{P(S1|r), P(S2|r)} to
a set of confidence criteria defined in the posterior probability
space, [t−n, t−n+1, …, t−1, t, …, tn−1, tn], where n is the number
of ratings on the confidence scale. The criteria are monotonically
increasing with t−n= 0 and tn= 1. When the primary response is
“S2,” confidence is generated using the criteria [t0, t1,…, tn], such
that P(S2|r) falling within the interval [ti, ti+1) results in a confi-
dence of i + 1. When the primary response is “S1,” confidence is
generated using the criteria [t−n, t−n+1, …, t0], such that P(S1|r)
falling within the interval [ti, ti+1) results in a confidence of −i.
It should be noted that the BCH model becomes discriminable
from the SDT model only in the presence of more than one task
condition and under the assumption that confidence criteria
remain fixed across the different task conditions. While the SDT
model assumes that confidence criteria are fixed in the evidence
space, the BCH model assumes that criteria are fixed in the poste-
rior probability space—leading to differences in how different
task conditions interact with confidence. Therefore, the BCH
was not fit to Experiment 1 which consists of a single difficulty
level and we only fit this model to Experiments 2 and 3.
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CASANDRE Model

Generation of the primary choice in the CASANDRE model fol-
lows standard SDT assumptions. For confidence, the model assumes
an additional stage of processing based on the observer’s estimate of
the reliability of their choices (Boundy-Singer et al., 2023).
Therefore, in CASANDRE, the confidence variable represents
choice reliability, rconf, as rconf = |rsens−c0|

ŝsens
. This definition of choice

reliability is based on the reasoning that stronger evidence samples
(rsens) and lower sensory uncertainty (σsens) lead to more consistent
choices. Critically, the model assumes that the observer does not
have direct access to the level of sensory uncertainty and relies on
a noisy estimate, ŝsens, modeled as a random variable drawn
from a lognormal distribution with a mean equal to the true value
of sensory uncertainty (σsens):

ŝsens � glognormal(x | ssens, s
2
meta) =

1

x
���������
2ps2

meta

√ e
−(ln (x)−ssens )2

2s2
meta , (9)

where σmeta, termed as “meta-uncertainty” captures the uncertainty
in their estimate of sensory uncertainty.
Since choice and confidence are generated from distinct pro-

cesses, the confidence criteria are not constrained by the decision cri-
terion. Therefore, we define two sets of confidence criteria to
generate confidence for “S1” and “S2” responses, with each set
extending from 0 to∞. For each response type, we define the criteria
as [ci0 , ci1 , ci2 . . . cin−1 , cin ], where n is the number of ratings on the
confidence scale and i= {1, 2} refers to the class of stimulus
responses, Si. The criteria cij are monotonically increasing with ci0 =
0 and cin = 1. Confidence responses are generated such that rconf
falling within the interval [cij , cij+1 ) results in a confidence of j + 1.

DC Model

DCmodels were originally developed to explain the phenomenon
of blindsight where observers can perform a visual task above
chance level without being consciously aware of the stimuli. Such
models assume that perceptual decisions associated with low confi-
dence (assumed to be equivalent to no conscious experience) and
high confidence (assumed to involve conscious experience) are pro-
cessed by independent channels. Specifically, the “conscious” chan-
nel processes decisions associated with high confidence, whereas the
“unconscious” channel processes low confidence decisions. The
model therefore has a peculiar structure where on each trial it is
first necessary to determine the predicted confidence before it can
be determined which channel should be used for the primary deci-
sion. We implemented a version of the DC model that generates
decisions associated with low conscious experience (i.e., low confi-
dence) by combining inputs from both the “conscious” and “uncon-
scious” channels. The model version has been previously shown to
have the best performance among all variants within this class of
models (Maniscalco & Lau, 2016).
According to the DC model, internal evidence for the conscious

and unconscious channels, rconscious and runconscious, are generated
independently from Gaussian distributions, such that:

rconscious �
N −mconscious

2
, s2

sens

( )
, if stimulus = S1

N
mconscious

2
, s2

sens

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ (10)

and

runconscious �
N −munconscious

2
, s2

sens

( )
, if stimulus = S1

N
munconscious

2
, s2

sens

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ ,

(11)

where μconscious and μunconscious are the means of the evidence distri-
butions for the conscious and unconscious channels and
μunconscious= wunconscious × μconscious. The parameter wunconscious∈
[0, 1] controls the fraction of evidence present in the conscious
channel that is available to the unconscious channel.

The evidence coming from these two channels is then combined into
a weighted sum such that rconscious + unconscious= rconscious × wcombined

+ runconscious × (1−wcombined), where the weight given to evidence
from the conscious channel is wcombined = mconscious

mconscious + munconscious
.

Confidence decisions are first generated from rconscious by setting
the confidence criteria, [c−n, c−n + 1,…, c−1, c1,…, cn−1, cn], on the
decision axis for the conscious channel, where n is the number of rat-
ings on the confidence scale. The criteria ci are monotonically
increasing with c−n=−∞ and cn=∞. When the primary response
is “S2,” confidence responses greater than 1 (conscious decisions)
are generated using the criteria [c1,…, cn] such that rconscious falling
within the interval [ci, ci+1) results in a confidence of i + 1. When the
primary response is “S1,” confidence responses greater than 1 are
generated using the criteria [c−n, c−n+1,…, c−1], such that rconscious
falling within the interval [ci, ci+1) results in a confidence of −i.
Finally, confidence responses of 1 (unconscious decisions) are
given when c−1≤ rconscious + unconscious≤ c1.

The stimulus judgments for “unconscious” decisions (decisions
associated with a confidence of 1), are based on comparisons of rcon-
scious + unconscious with the decision criterion c0. If confidence is larger than 1,
stimulus decisions are based on the response indicated by the confi-
dence criteria for the conscious channel. For instance, if rconscious,
c−1, the stimulus is classified as S1, whereas if c1, rconscious, the stim-
ulus is classified as S2. However, if there is a conflict between stimulus
classifications indicated by the conscious and combined channels, the
stimulus decision provided by the conscious channel prevails, but
confidence for that decision is set to 1. For example, if rconscious +

unconscious. c0 (the combined channel indicates a response of S2)
but rconscious, c−1 (the conscious channel indicates a response of
S1), the stimulus would be classified as S1 (in accordancewith the con-
scious channel) but confidence would be set to 1.

SDRM

SDRM assumes that the evidence variables for the primary deci-
sion and confidence, rsens and rconf, are generated from bivariate
Gaussian distributions such that:

rsens �
N −msens

2
, s2

sens

( )
, if stimulus = S1

N
msens

2
, s2

sens

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ (12)

and

rconf �
N −msens

2
, s2

sens

( )
, if stimulus = S1

N
msens

2
, s2

sens

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ . (13)
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Importantly, the two evidence samples are correlated and can be
described by the following covariance structure:

rsens
rconf

( )
� N(−m, S), if stimulus = S1

N(m, S), if stimulus = S2

{
, (14)

where m = msens
2 , msens

2

[ ]
and the covariance matrix S =

s2
sens rs2

sens
rs2

sens s2
sens

[ ]
is such that s2

sens specifies the variance in the sen-

sory evidence samples for both choice (rsens) and confidence (rconf)
and ρ∈ [0, 1] controls the correlation between them.
Stimulus decisions are generated by comparing rsens with a noisy

decision criterion drawn from a Gaussian distribution,
C0 � N(c0, s2

dec), where c0 is the mean criterion location and
s2
dec quantifies the trial-by-trial variability of the decision criterion.

Note that SDRM is the only model considered here that includes
noise in the decision criterion. To generate confidence, a distinct
set of confidence criteria, [ci0 , ci1 , ci2 . . . cin−1 , cin ], are defined for
each response type where n is the number of ratings on the confi-
dence scale and i= {1, 2} refers to the class of stimulus responses
(“S1” or “S2”). The criteria cij are monotonically increasing with
ci0 = −1 and cin = 1 when i= 2, and monotonically decreasing
with ci0 = 1 and cin = −1 when i= 1. Confidence responses are
generated such that rconf falling within the interval [cij , cij+1 ) results
in a confidence of j + 1. The model assumes that confidence criteria
on each trial are drawn from Gaussian distributions such that:

cij � gGauss(x | mij , s
2
meta) =

1���������
2ps2

conf

√ e
−

(x−mij
)2

2s2
conf ,

x [ (−1, 1),

(15)

where mij and s2
conf are the mean and variance of the Gaussian dis-

tribution controlling criterion variability with i= {1, 2} referring to
the response class and j= {1,…, n} indexing the criterion. To main-
tain the order of the criteria, the parametersmij are constrained so that
mi1 ≤ mi2 · · · ≤ min−1

.

SOC Model

SOC assumes that the sensory evidence samples for the perceptual
and metacognitive systems are generated from a bivariate Gaussian
distribution (Fleming & Daw, 2017), such that:

rsens �
N −msens

2
, s2

sens

( )
, if stimulus = S1

N
msens

2
, s2

sens

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ (16)

and

rconf �
N −msens

2
, s2

conf

( )
, if stimulus = S1

N
msens

2
, s2

conf

( )
, if stimulus = S2

⎧⎪⎨
⎪⎩ . (17)

These evidence samples obey the following covariance structure:

rsens
rconf

( )
� N(−m, S), if stimulus = S1

N(m, S), if stimulus = S2

{
, (18)

where m = msens
2 , msens

2

[ ]
, the covariance matrix is

S = s2
sens rssenssconf

rssenssconf s2
conf

[ ]
, s2

sens and s2
conf specify the vari-

ance in the sensory evidence samples for choice (rsens) and confi-
dence (rconf), and the parameter ρ∈ [0, 1] controls the correlation
between the two samples.

According to SOC, the perceptual system generates a binary
response (R) by comparing rsens to a decision criterion, c0, such
that rsens. c0 leads to the response “S2” and rsens≤ c0 leads to
the response “S1.” The metacognitive system computes confidence
as the posterior probability that the perceptual decision is correct
(i.e., R= Swhere S is the true stimulus identity). This posterior prob-
ability computation is considered a “second-order” computation
because the metacognitive system uses rconf to infer the probability
distribution across all possible decision variables, rsens, that could
have generated the observed response, R. This type of inference is
possible because the metacognitive system is assumed to have
knowledge of the covariance structure, Σ, that governs the relation-
ship between the two decision variables, rsens and rconf. A measure
of confidence can then be computed by marginalizing across this
probability distribution. Therefore, the probability of a given
response, R, being correct, is computed as:

p(R = S|rconf , R, S) = p(S1|rconf , R, S), if R = S1
1− p(S1|rconf , R, S), if R = S2

{
,

(19)

where p(S|rconf, R, Σ) is the posterior probability of stimulus S, con-
ditional on the confidence variable rconf, the observed response, R,
and the covariance structure, Σ, describing the association between
the confidence and decision variables.

For a detailed breakdown of the Bayesian computation of p(S|
rconf, R, Σ), see Fleming and Daw (2017). Briefly, the posterior prob-
ability of a correct response can be computed as:

p(S|rconf , R, S) = p(R|rconf , S, S)p(S|rconf , S)∑
S p(R|rconf , S, S)p(S|rconf , S)

, (20)

where p(R|rconf, S, Σ) refers to the likelihood of the observed
response given the stimulus S, and p(S|rconf, Σ) refers to the prior
probability of the stimulus, both probabilities being conditional on
rconf and Σ.

In this model, confidence is generated in terms of posterior prob-
ability, which lies within the interval [0, 1]. To transform these prob-
ability values into discrete confidence ratings, two sets of confidence
criteria are defined: ci0 , ci1 , ci2 . . . cin−1 , cin , where n is the number of
ratings on the confidence scale and i= {1, 2} refers to the class of
stimulus responses (S1 or S2). The criteria cij are monotonically
increasing with ci0 = −1 and cin = 1 when i= 2, and monotoni-
cally decreasing with ci0 = 1 and cin = −1 when i= 1.
Confidence responses are generated such that rconf falling within
the interval [cij , cij+1 ) results in a confidence of j + 1.

Model Parameters

General Parameters

For most models the primary decision about the identity of the
stimulus was generated using the same two parameters: μstim,
which controls the strength of the sensory signal, and c0, which
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controls the location of the decision criterion. The only exception is
for 2DSD where these two parameters are substituted with equiv-
alent parameters from the diffusion model—δ (drift rate) and z
(starting point). Without loss of generality, the sensory noise,
σsens, was set to 1 for all models except CASANDRE and was
thus not considered a free parameter. For CASANDRE, we instead
fixed the stimulus strength parameter, μstim, to 1 and allowed σsens
to vary because confidence in this model is derived directly from
values of sensory uncertainty, rather than stimulus strength. It is
standard practice to model changes in stimulus strength as changes
in the mean of stimulus distributions (keeping their variance fixed).
In fact, several of the models we use in these studies have been fit to
data under the same assumptions (Maniscalco et al., 2016;
Maniscalco & Lau, 2016; Rausch et al., 2018, 2020). However,
we note that it is possible to alternatively model these effects as
changes in the variance of stimulus distributions (keeping the
means fixed) or as changes in both the mean and variance of stim-
ulus distributions. Future studies should explore the effects of
these assumptions on model performances. In Experiment 1,
which only featured a single difficulty level, we used a single
free parameter for μstim, whereas in Experiments 2 and 3, which
featured three and eight stimulus levels, respectively, we fit μstim
separately to each contrast/coherence level. For CASANDRE,
we fit σsens separately to each contrast/coherence level. It should
also be noted that for SDRM, which alone assumes a noisy deci-
sion criterion, the parameter c0 refers to the Gaussian distribution
from which the trial-by-trial values are sampled (for all other mod-
els, the decision criterion is fixed at c0). Finally, a set of 2× (n-1)
confidence criteria were specified to generate the confidence rat-
ings where n refers to the number of ratings on the confidence
scale (n= 4 for Experiments 1 and 3, and n= 6 for Experiment
2). The confidence criteria were assumed to be the same across
the different contrasts in Experiments 2 and 3 to provide maximum
constraints to the models. Therefore, all models shared equivalent
eight (Experiment 1), 14 (Experiment 2), or 15 (Experiment 3)
general parameters.

Model-Specific Parameters

Each model makes unique assumptions about how metacognitive
processes operate to transform the sensory signal into a confidence
rating, often requiring additional parameters (Table 2). We note
that the confidence generation parameters for three models—
Decay, PE-Flex, and DC—vary with the level of stimulus contrast.
For Decay and DC, the decision to allow these parameters to vary
with stimulus contrast levels was made in order to remain consistent
with their original instantiations (Maniscalco & Lau, 2016). For the
PE-Flex model, we allowed the confidence-specific parameter to
vary with stimulus contrast because this made the model perform
significantly better for Experiment 2 (Supplementary Results in
the online supplemental materials). Therefore, we present the more
flexible version of the PE-Flex model here.

Model Fitting

Model fitting was based on a maximum likelihood estimation
(MLE) procedure that searched for the set of parameters that maxi-
mize the log-likelihood associated with the full probability dis-
tribution of responses. The log-likelihood was computed using the

following formula:

Log − likelihood =
∑
i,j,k

log(pijk) × nijk , (21)

where pijk and nijk are the response probability and number of trials,
respectively, associated with the stimulus class i= {1, 2}, confi-
dence response j= {− 4,− 3,− 2,− 1,1,2,3,4} for Experiments 1
and 3, and j= {− 6,− 5..− 1, 1, …6} for Experiment 2 (where
negative confidence responses correspond to S1 responses), and
task difficulty level, k= 1 for Experiment 1; k= {1,2,3} for
Experiment 2, and k= {1,2,3,4,5,6,7,8} for Experiment 3. The
parameter search was conducted using the Bayesian Adaptive
Direct Search (BADS) toolbox, Version 1.0.5 (Acerbi & Ma,
2017).

TheMLE procedure requires us to compute the response probabil-
ities associated with each type of confidence response for a given set
of model parameters. For SDT, Gauss, LogN, Decay, 2DSD, BCH,
CASANDRE, WEV, and SDRM, we derived the expression for
computing the response probabilities from the model’s assumptions
and estimated these probabilities either numerically or analytically
(see Supplementary Methods in the online supplemental materials).
However, for Post-Dec, PE, PE-Flex, DC and SOC, we were unable
to derive analytical expressions for computing response probabili-
ties. Therefore, we simulated these models using 1 million trials
and estimated response probabilities as the proportion of trials that
were associated with each type of confidence response. The very
large number of trials used minimized the increased noisiness for
stimulation-based fitting and we did not observe a penalty for
these models in our model recovery analyses. To obtain more reli-
able estimates of model fits for each model, we ran the fitting proce-
dure five times for each of these models and chose the fits that were
associated with the highest log-likelihood values. We generally
observed similar model and parameter recovery for models for
which analytical expressions were or were not available, thus sug-
gesting that our fitting procedure did not unduly disadvantage the
models without analytical expressions.

Model Selection

The ultimate goal of model comparisons is to select the model
which is most likely to have generated the observed data. In order
to quantify the plausibility of each model, we evaluated how closely
the models fit the observed data using the Akaike information crite-
rion (AIC) and the Bayesian information criterion (BIC). Both AIC
and BIC measure the goodness-of-fits generated by a model, while
including penalties for the number of free parameters. BIC applies
a harsher penalty than AIC, thus tending to favor simpler models.

AIC and BIC were computed using standard formulas: AIC=
− 2logL + 2k and BIC=− 2logL + klog(n), where k refers to the
total number of free parameters of the model and n refers to the
number of trials in the data. Lower values of AIC and BIC indicate
better quality of fits. To assess whether AIC differences between
models are significant, we obtained bootstrapped 95% confidence
intervals (CIs) on the summed AIC differences between models by
subsampling the individual AIC differences with replacement and
summing across the subsamples. The bootstrapped intervals were
computed from 100,000 data samples using the MATLAB func-
tion bootci which uses a bias corrected and accelerated percentile
method. Confidence intervals that do not contain zero are indicative
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of a significant difference in the AIC values of themodels being com-
pared. The same procedure was also used for BIC values.
Model selection based on AIC/BIC comparisons rely on the

fixed-effects assumption that all subjects generate behavior using a
single model, with the implication that the winning model explains
the behavior of all subjects. However, an alternative approach is to
treat models as random effects such that the generative model can
vary between subjects. Within this approach, each model is assigned
a certain probability of being the generative model (model fre-
quency; pmodel) and we select the model that is has the highest fre-
quency in the population (note that this procedure is similar to a
random-effects statistical test rather than a count of how many sub-
jects are described best by each model). In addition to model fre-
quencies, random-effects analyses also allow us to compute
exceedance probabilities, pexc, which measures the higher-order
probability that a given model is the most frequent model in the
set of models being compared. We used the Variational Bayes
Analysis toolbox (Daunizeau et al., 2014) to estimate the model fre-
quencies (pmodel) and their protected exceedance probabilities
(pexc).

Model and Parameter Recovery

Model recovery is a crucial prerequisite for model selection as it
validates our ability to practically discriminate between models
using the data we have. The goal of model recovery analyses is to
assess whether models can be uniquely identified from the data
they generate. For this purpose, we first generate data from a chosen

model and then fit all the models to these data. The chosen model is
deemed to be recoverable when it can be reliably identified as the
best-fitting model for the data that it has generated. If a model that
generated the data is liable to be confused with other models, it
implies that these models cannot be distinguished from each other
and therefore, comparisons between these models may not be valid.

For these analyses, we simulated 50 data sets (treated as separate,
synthetic subjects) from each model by uniformly sampling their
parameters across their plausible range of values. For each model
and parameter, we determined these plausible ranges based on the
minimum and maximum values observed from model fits. To be
able to practically evaluate model recovery, models were simulated
using the same number of trials that were originally contained in
each of the two experiments. All the models were fit to each simu-
lated data set. We then computed model frequencies (pmodel) for
each data set to determine the probability that the model that gener-
ated the data set is assigned as the generative model for those data.
SDRM was excluded from model recovery analyses in Experiment
3 because the time cost for fitting the model made recovery unfeasi-
ble. Specifically, SDRM takes on average 24–36 hr to fit a single
data set and model recovery for each experiment requires fitting
the model to 50 data sets generated by each of the 14 models requir-
ing us to fit SDRM to a total of 700 data sets.

Parameter recovery, on the other hand, can tell us whether a model’s
parameters can be uniquely identified. Inability to recover a model’s
parametersmay suggest that there is redundancy in themodel’s descrip-
tion and indicates that we may be unable to identify the unique contri-
bution of that parameter to the process we are trying to model.

Table 2
Model-Specific Parameters Associated With Each of the 14 Models

Model Additional parameters

Total number of
parameters

Expt 1 Expt 2 Expt 3

SDT None 8 14 15
Gauss σmeta (meta noise) 9 15 16
LogN σmeta (meta noise) 9 15 16
Decay σmeta (meta noise), ρdecay (proportion of sensory signal available for confidence) 10 18 24
Post-Dec δpost (postdecisional signal) 9 15 16
2DSD τ (postdecisional signal) 9 15 16
PE None 8 14 15
PE-Flex wpe (weight given to PE) 9 17 23
WEV wvis (weight given to stimulus visibility), σmeta (meta noise) — 16 17
BCH None — 14 15
CASANDRE σmeta (meta uncertainty) 9 15 16
DC wunconscious (proportion of the available signal accessed by the unconscious channel) 9 17 23
SDRM σdec (noise in decision criterion), σconf (noise in confidence criteria), ρ (correlation

between evidence samples for primary choice and confidence)
11 17 18

SOC σconf (noise in confidence criteria), ρ (correlation between evidence samples for primary
choice and confidence)

10 16 17

Note. All models have an equivalent set of general parameters that describe how the primary decision is generated. However, the
models differ in their assumptions about how confidence is generated, thus requiring a unique set of parameters to describe
confidence decisions. The parameters indicated in bold text are dependent on the stimulus contrast/coherence levels (i.e., there is a
separate free parameter for each contrast/coherence). Therefore, for Experiments 2/3, which feature three/eight difficulty levels,
each of these parameters increase the total number of free parameters by three/eight. The WEV model was not fit to Experiment 1
because in the presence of a single difficulty level, the model becomes equivalent to the Gauss model. Expt= experiment; SDT=
signal detection theory model; Gauss=Gaussian meta noise model; LogN= lognormal meta noise model; Decay= noisy decay
model; Post-Dec= postdecisional SDT model; 2DSD= two-stage dynamic signal detection model; PE= positive evidence bias
model; PE-Flex= flexible positive evidence bias model; WEV=weighted evidence and visibility model; BCH=Bayesian
confidence hypothesis model; CASANDRE= confidence as a noisy decision reliability estimate model; DC= dual channel model;
SDRM= stochastic detection and retrieval model; SOC= second-order confidence model.
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To assess, parameter recovery for each model, we simulated a synthetic
experiment (separately for each experiment) by randomly sampling
each of its parameters along the observed range of values andmatching
the number of trials from the corresponding experiment. Then, we fit
the model to the simulated data and correlated the parameters recovered
from the fits to the true values of those parameters.

Qualitative Analyses

In addition to quantifying each model’s ability to fit the data, we
also wanted to obtain qualitative insight into why models succeeded
or failed in capturing these data. Therefore, we tested models on
their ability to fit observed behavior. Specifically, we assessed how
closely they can fit individual differences in several measures includ-
ing metacognitive ability, z-transformed receiver operating character-
istic curve (zROC) shapes (Shekhar & Rahnev, 2021b), the folded-X
pattern (FXP; Hangya et al., 2016), and task performance. Task per-
formance was quantified using the SDT-derived measure for stimulus
sensitivity, d′. Themeasure is computed as d

′ = w−1(HR)− w−1(FAR)
where HR and FAR refer to the observed hit rate and false alarm
rates, respectively, and w−1 is the inverse of the cumulative standard
normal distribution that transforms cumulative probabilities into
z-scores. Metacognitive ability was quantified using the measure
M-Ratio computed as the ratio between metacognitive sensitivity
meta-d′ and their task sensitivity d′ (Maniscalco & Lau, 2012).
The zROC functions were the standard plots of the relationship
between an observer’s z-transformed hit rate (zHR) and
z-transformed false alarm rate (zFAR) for different locations of the
classification criterion. Finally, the FXP refers simply to plotting
average confidence for correct and incorrect trials as a function of
stimulus difficulty. The name of the pattern comes from the fact
that as the task becomes easier (d′ increases), confidence for
correct responses increases but confidence for incorrect responses
decreases. We computed these measures for each individual subject
while also generating the correspondingmodel fits for that subject by
simulating each model with its best-fitting parameters. To avoid any
confound arising from trial counts, we simulated models using the
same number of trials as contained in the actual experiments.

Likelihood-Ratio (LR) Test

Some of the models that we include in this study are nested within
others and differ only by the addition of a single parameter. For these
pairs of models, we performed nested comparisons to assess the use-
fulness of the additional parameter by conducting LR tests. The LR
test allows us to determine whether the improvement in model fits
resulting from the additional of a parameter are large enough to con-
sider the parameter useful for explaining the data. For each subject
within a comparison, we computed the LR test statistic as LR=
2(l̂−l̂0) where l̂ and l̂0 refer to the maximum log-likelihood estimates
of the full and reduced models, respectively. We then assessed the
significance of the LR value at α= .05. If the p value associated
with the LR was smaller than .05, we rejected the reduced model
in favor of the full model, concluding that the additional parameter
was necessary to explain the data for that individual subject.

Transparency and Openness

All data, as well as code for analysis and model fitting, are avail-
able at https://osf.io/g8f9x.

Results

We tested competing theories of the mechanisms of confidence
generation by fitting 14 process models to three large data sets that
feature simple perceptual discrimination tasks and confidence rat-
ings (Figure 1). We used a variety of different criteria for judging
the quality of the fit—including both AIC and BIC scores, as well
as both fixed- and random-effects modeling. Furthermore, to gain
deeper understanding into the underlyingmechanisms, we examined
several aspects of each model including model recovery, parameter
recovery, and ability to fit qualitative behavioral effects.

Model Recovery

Before performing model comparisons, it is critical to validate our
ability to discriminate between models using the data that we have.
Therefore, we performed model recovery analyses by quantifying
the probability that a model that generated a given data set would
be correctly identified as the generative model for that data set. To
compute this probability for each model, we fit all the models to
50 synthetic data sets generated by that model and computed the
model frequencies (pmodel) associated with each model. A high
pmodel value for a given model indicates good recoverability for
that model. We computed pmodel values using both AIC and BIC
scores. We found that AIC-derived model frequencies yielded rea-
sonably high recovery probabilities for most models. Overall recov-
ery was highest for Experiment 2 which featured multiple difficulty
levels as well as a large number of trials per difficulty level
(Figure 2). Specifically, the average pmodel value for generating mod-
els was .65 in Experiment 1, .88 in Experiment 2, and .77 in
Experiment 3, with 26 out of 39 values above .85. Conversely,
BIC-derived model frequencies were heavily biased toward the
SDT and PE models (since these models have the lowest number
of parameters; Figure S1 in the online supplemental materials) and
thus resulted in lower pmodel values for all experiments (.40 for
Experiment 1, .75 for Experiment 2, and .66 for Experiment 3).
These results suggest that, in the context of the current models and
data, AIC provides a more appropriate measure for model compari-
sons and therefore we use it as the primary comparison measure in
the rest of the article.

Examining the exact pattern of model confusion revealed in
Figure 2 leads to several important insights. First, seven models
(SDT, Gauss, LogN, Post-Dec, PE, WEV, and BCH) show consis-
tently high pmodel values (..72) across all experiments, suggesting
that we can confidently arbitrate between these models using the
data sets that we have. Note that the WEV and BCH models were
only fit to Experiments 2 and 3 because the models require data
sets that contain at least two different difficulty levels. Second,
three other models (Decay, CASANDRE, and SOC) feature low to
medium recoverability for Experiment 1 (pmodel between 0 and
.52) but high recoverability for Experiments 2 and 3 (pmodel was
between .77 and .98), suggesting that these models only become dis-
tinguishable from the rest in the presence of multiple difficulty lev-
els. Third, there are four models that show inconsistent recovery
across the three experiments. While PE-Flex shows high recoverabil-
ity for Experiment 2 (pmodel= .98), its recovery probability drops for
both Experiments 1 (pmodel= .53) and 3 (pmodel= .51), suggesting
that the model requires multiple difficulty levels as well as a large
number of total trials to become discriminable from others models.
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On the other hand, 2DSD, and DC show good recovery for
Experiments 1 and 2 (pmodel. .86), but relatively poor recovery
for Experiment 3 (pmodel , .51), implying that recovery of these
models is more sensitive to the total number of trials. Finally, the

SDRM model produced low recoverability values in both experi-
ments (pmodel≤ .11) with SDRM-generated data fit best by the
2DSD model. This result implies that SDRM may not be practically
distinguishable from 2DSD in the current data sets. Note that SDRM

Figure 2
Model Recovery Analyses
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Note. For each of the 50 simulated data sets from each model, we computed AIC-derived model frequencies (pmodel) across all models. The values along the
diagonal represent the probability that the model that generated the data is assigned as the generative model for that data set. Seven models—SDT, Gauss,
LogN, Post-Dec, PE, WEV, and BCH—show consistently high model frequencies (.0.72) across all experiments. Two of the models—Decay and
SOC—and show inconsistent recovery (being recoverable only for Experiments 2 and 3) whereas SDRM is always confused with at least one other model
in each experiment. We observe better overall recovery for Experiment 2 compared to Experiments 1 and 3, suggesting discriminability of models is maxi-
mized both by having multiple difficulty levels within an experiment as well as including a high number of trials per condition. Note that the WEV and BCH
models were only fit to data from Experiments 2 and 3 because in the presence of a single difficulty level (as in Experiment 1), they become equivalent to the
Gauss and SDT models, respectively. Also note that SDRM was not included in model recovery analysis for Experiment 3 because of the heavy time cost
associated with fitting SDRM to 700 data sets. AIC=Akaike information criterion; SDT= signal detection theory model; Gauss=Gaussian meta noise
model; LogN= lognormal meta noise model; Decay= noisy decay model; Post-Dec= postdecisional SDT model; 2DSD= two-stage dynamic signal detec-
tionmodel; PE= positive evidence bias model; PE-Flex= flexible version of the PEmodel; CASANDRE= confidence as a noisy decision reliability estimate
model; DC= dual channel model; SDRM= stochastic detection and retrieval model; SOC= second-order confidencemodel;WEV=weighted evidence and
visibility model; BCH=Bayesian confidence hypothesis model. See the online article for the color version of this figure.
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was excluded from model recovery in Experiment 3 because of the
heavy time cost associated with fitting the model to 700 data sets (see
Method for more details).
In general, Experiment 2, which consists of multiple interleaved

difficulty levels as well as a large number of total trials, affords
the best recoverability for models. The improvement in recovery
for Experiment 2 over Experiments 1 and 3 suggest that the recover-
ability of models is constrained by both the number task conditions
in the experiment as well as the total number of trials (Experiment 2
had 2,800 trials per subject, whereas Experiment 3 had 1,600 trials
per subject). While including a greater number of difficulty levels in
an experiment is beneficial for model recovery, having fewer trials
can lead to worse recovery in spite of this benefit.

Parameter Recovery

Beyond model recovery, we also assessed how well it is possible
to recover the parameters of each generating model. This parameter
recovery analysis revealed that, for most models, all parameters can
be uniquely identified with very high fidelity (Supplementary
Results and Figures S2 and S3 in the online supplemental materials),
at least for designs with trial numbers as high as in the current exper-
iments. Nevertheless, there were several notable exceptions such as
the decay parameter in the Decay model (for Experiment 1), the
decision noise parameter in the SDRM model (for Experiments 1
and 2), and the correlation parameters in both the SDRM (for
Experiment 1) and SOC models (for all experiments). All three of
these models feature at least two sources of noise that can at least par-
tially mimic each other and therefore recovering all of their parame-
ters may require more complexmanipulations. In the context of basic
tasks like the ones used here, stable parameter recovery for these
models may require using reduced versions of the models where
some sources of noise are ignored. Finally, as with the model recov-
ery analyses, we found an overall better parameter recoverability in
Experiment 2, suggesting that both the presence of multiple diffi-
culty levels and a large number of total trials are important for accu-
rate parameter recovery.

Model Comparisons

Having examined both model and parameter recovery for all mod-
els, we turned to the central question of the article, namely how well
did the different models fit the empirical data. Overall, we found that
the LogN model provided the best fits for Experiments 1 and
2. However, for Experiment 3, which featured eight difficulty levels,
the PE model emerged as the best-fitting model.
For Experiments 1 and 2, LogN had lower AIC scores (indicating

better fit) than all other models (Figure 3 and Tables S1 and S2 in the
online supplemental materials). These AIC differences favoring
LogN were significant when assessed with 95% bootstrapped confi-
dence intervals for all pairs of models except for the WEV model in
Experiment 2 (95% CI [−32.33, 517.34]). In fact, only SDRM in
Experiment 2 was within 100 AIC points of the LogN model show-
ing the substantial advantage of LogN over all competing models. In
Experiment 1, the next best-fitting models were CASANDRE (124.7
AIC points worse), SOC (218.56 AIC points worse), SDRM (223.86
AIC points worse), PE-Flex (294.71 AIC points worse), and 2DSD
(374.09 AIC points worse), with the remaining models having sub-
stantially higher AIC values (over 1,000 AIC points worse). In

Experiment 2, the next best model was SDRM (73.71 AIC points
worse), followed by CASANDRE (119.3 AIC points worse) and
WEV (162.55 AIC points worse), with other models producing
much higher AIC values (over 225 AIC points worse). Examining
the subject-level data from both experiments (Figure S4 in the online
supplemental materials) shows that no other model fit more individ-
ual subjects better than LogN.

Model fitting for Experiments 1 and 2 yielded relatively consistent
results, with LogN, CASANDRE, and SDRM models being in the
top four for both experiments. However, for Experiment 3, we
observed a shift in the pattern of model performances. The PE
model (which was previously ranked in the bottom three for
Experiments 1 and 2) was found to be the best-performing model.
The next best-fitting model was WEV (268.07 points worse), with
all other models producing substantially worse AIC scores (over
1,063 points worse). The AIC scores favoring PE were significant
for all pairs of models when assessed with 95% bootstrapped confi-
dence intervals, except for the WEV model (95% CI [−30.03,
803.49]).

Directly comparing AIC values constitutes a fixed-effects analy-
sis, which tacitly assumes no variability in the population.
Because this may not be a reasonable assumption (i.e., it is possible
that different subjects are described best by different models), we
also performed a random-effects analysis, which assumes that the
true model can vary between subjects. Specifically, we computed
model frequencies (pmodel) that reflect the probability of a given
model being the generative model in our data set. Note pmodel is a
model-based measure (Daunizeau et al., 2014) and is not the same
as computing the proportion of subjects for which a given model
yields the lowest AIC/BIC values. The results corroborated the con-
clusions of our fixed-effects analyses. For Experiments 1 and 2, the
LogN model yielded the highest model frequencies (Experiment 1:
pmodel= .43; Experiment 2: pmodel= .48). The only other models in
Experiment 1 with model frequencies higher than .01 were PE-Flex
(pmodel= .31), 2DSD (pmodel= .18), and SDT (pmodel= .07). For
Experiment 2, there were two models with model frequencies higher
than .01: WEV (pmodel= .40) and CASANDRE (pmodel= .07).
Finally, for Experiment 3, the PE model was assigned the highest
model frequency (pmodel= .59), with three other models having
model frequencies higher than .01: WEV (pmodel= .24), Decay
(pmodel= .11), and BCH (pmodel= .05).

It should be noted that the fixed-effects (Figure 3; left column) and
random-effects (Figure 3; right column) analyses produced some
important differences (e.g., SDRM was ranked high in fixed- but
low in random-effects analyses, whereas the opposite was true for
PE-Flex). While the exact sources of these discrepancies are unclear,
these results underscore the benefit of performing different types of
analyses and only placing confidence in results that are consistent
across analyses.

In addition to model frequencies, the random-effects analyses
also allow us to compute protected exceedance probability (pexc),
which measures the second-order probability that a model is the
most likely generative model across all subjects. Given that the
LogN model had the highest model frequencies in Experiments 1
and 2, it is not surprising that it had the highest exceedance prob-
ability (Experiment 1: pexc= .87; Experiment 2: pexc= .77). The
only other models with nonzero exceedance probabilities were
PE-Flex in Experiment 1 (pexc= .13) and WEV in Experiment 2
(pexc= .23). For Experiment 3, the PE model had the highest
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Figure 3
Model Fitting Results
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Note. The plots show comparisons based on AIC values for (a) Experiment 1, (b) Experiment 2, and (c) Experiment 3.
The LogNmodel significantly outperforms all other models for Experiments 1 and 2, but the PEmodel is the best-fitting
model for Experiment 3. (Left) Summed differences in AIC values between each model and the winning model. Higher
positive values indicate worse fits. Error bars represent bootstrapped 95% confidence intervals. Insets present a
zoomed-in version of the same data from the main figure. (Right) Random-effects analysis of model frequencies.
The LogN model is identified as the most likely generative model in the population based on model frequencies and
exceedance probabilities (insets) for Experiments 1 and 2. For Experiment 3, the PE model is the most likely generative
model in the population. AIC=Akaike information criterion; PE= positive evidence bias model; WEV=weighted
evidence and visibility model; Decay= noisy decay model; PE-Flex= flexible version of the PE model; Post-Dec=
postdecisional SDT model; LogN= lognormal meta noise model; Gauss=Gaussian meta noise model; SDT= signal
detection theory model; SDRM= stochastic detection and retrieval model; DC= dual channel model; CASANDRE=
confidence as a noisy decision reliability estimate model; SOC= second-order confidence model; 2DSD= two-stage
dynamic signal detection model; BCH=Bayesian confidence hypothesis model; pmodel=model frequencies; pexc=
protected exceedance probabilities. See the online article for the color version of this figure.
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exceedance probability (pexc= 0.996) with no other model having
an exceedance probability greater than .005.
The analyses above were performed on AIC values because the use

of AIC resulted in more robust model recovery (see above).
Nevertheless, to assess the robustness of our model selection results,
we repeated all analyses using BIC and BIC-derived model frequen-
cies (Supplementary Results, Figure S5, and Tables S3 and S4 in the
online supplemental materials). Fixed-effects BIC analyses once
again favored the LogN model over all others for Experiments 1
and 2 (Figure S6 in the online supplemental materials). However,
random-effects analyses favored SDT and PE over LogN. These
results are not surprising since the model recovery analyses demon-
strated that BIC is heavily biased toward SDT and PE as the models
with fewest parameters (Figure S1 in the online supplemental materi-
als). For Experiment 3, fixed-effects BIC as well as BIC-derived
random-effects analyses favored the PE model over all others, with
the WEV model being the next best-performing model.
There was some disagreement between the three experiments, the

two types of analyses (fixed- and random-effects), and two
goodness-of-fit measures (AIC and BIC). Therefore, to obtain an
overall picture from all model selection analyses, we pooled together
all results by assigning ranks to models based on their performance
for each measure. For instance, a rank of 1 was assigned to the model
that provided the best fit and a rank of 12 (for Experiment 1) or 14
(for Experiments 2 and 3) for the model that provided the worst fit
according to that measure. We then computed the average rank of
each model across all the four analyses—AIC-derived fixed-effects,
AIC-derived random-effects, BIC-derived fixed-effects, and
BIC-derived random-effects. We found that the LogN performed
best overall with an average rank of 1.25 for Experiment 1 and 1.5
for Experiment 2 (where 1 is the highest mean rank a model can
achieve; Figure 4). The next two best-performing models for
Experiment 1 were PE-Flex (average rank= 3.75) and 2DSD (aver-
age rank= 4.25), whereas the next two best-performing models for
Experiment 2 were CASANDRE (average rank= 3.25) and WEV
(average rank= 3.5). For Experiment 3, PE was the best-performing
model with an average rank of 1, followed by the WEVmodel (aver-
age rank= 2) and the LogN model (average rank= 5.75).
Averaging the ranks across the three experiments still favored the

LogNmodel (average rank= 2.83), with the three othermodels substan-
tially behind (SDT: average rank= 5.25; CASANDRE: average rank=
6.16; PE: average rank= 6.16). However, the WEV model, which was
fit only to Experiments 2 and 3, obtained an average rank of 2.75 across
the two experiments, outperforming the LogN model (average rank
across Experiments 2 and 3= 3.5). Taken together, these results
imply that model performance is not fully generalizable across different
stimuli and tasks, possibly because none of the models fully describes
the underlying confidence mechanisms. Later, we explore a new
model that combines mechanisms from two existing models to investi-
gate if a single model can provide good fits across all three experiments.

Qualitative Fits to Different Patterns in the Data

While quantitative model comparisons help us select the model that
best describes the data, they do not reveal the reasons behind why
models fail or succeed in providing a good fit. Therefore, to gain
more qualitative insight into the performance of the models, we tested
how closely eachmodel can explain different qualitative aspects of the
data. Some of these qualitative patterns have been proposed to directly

index different underlying computations, but these proposals have not
been tested by examining whether a wide variety of models can
explain them. Specifically, here we focused on four aspects of the
data: the observed metacognitive ability (quantified with M-Ratio),
the shape of the zROC functions, the confidence for both correct
and error trials (known to typically form a FXP), and the stimulus sen-
sitivity (d′). Beyond testing the ability of these qualitative patterns to
index specific computations, these analyses might offer clues for the
reasons behind poor fits to the data for a given model.

Explaining Observed Metacognitive Ability

The first qualitative pattern in the data that we examined is the
observed metacognitive ability (quantified using the measure
M-Ratio). For each model in the three experiments, we plotted the
observed value of M-Ratio against the value obtained from the best
fit for that model (Figure 5). To quantify the strength of the correspon-
dence between empirical observations and model fits, we examined
the regression slope between the two. A slope of 1 corresponds to
an excellent overall qualitative fit in the group (though it is still possi-
ble to observe deviations for individual subject), whereas a slope of 0
indicates no relationship between the model’s fits and observations.
For Experiments 1 and 2, we found that the models that consistently
provided the best quantitative fits (had the lowest AIC scores) for both
experiments (LogN, CASANDRE, and SDRM) yielded moderate to
high slopes for both experiments, ranging between .46 and 1 (all
slopes significantly different from 0, p, .05). On the other hand,
the models that provided the worst AIC fits across both experiments
(Post-Dec, PE, and DC) were always observed to have slopes close
to 0 (none of the slopes were significantly different from 0, p. .05).
In contrast, for Experiment 3,M-Ratio is less reliable in distinguishing
between models that perform well and models that perform poorly.
The individual model fits toM-Ratio also become less precise overall,
with none of the slopes exceeding 0.2. The best-fitting PE model has
the second lowest slope of 0.02.

For Experiments 1 and 2, however, examining the errors of each
model reveals several effects of interest. Both the SDT and Post-Dec
models always generate M-Ratio values close to 1, which is unsurpris-
ing because bothmodels lack built-inmechanisms to allow them to cap-
ture metacognitive inefficiency. One previously unappreciated effect is
that the PE model always generates M-Ratio values around 0.5. This
phenomenon likely emerges from the fact that the confidence ratings
in this model ignore half of the available evidence (i.e., the evidence
for the decision-incongruent choice). Nevertheless, it is important to
note that other versions of the PEmodel that include bothmetacognitive
noise and postdecisional evidence accumulation can still generate a
range of M-Ratio values (Maniscalco et al., 2021). Finally, while the
Gauss, Decay, and DC models are able to generate a range of different
M-Ratio values, their fits tend to often deviate from the observed value.
These results suggest that their respective mechanisms for inducing
metacognitive inefficiency—Gaussian metacognitive noise and the
presence of “unconscious” processing channel—are unlikely to capture
well the underlying mechanisms of confidence generation.

Explaining Observed zROC Functions

In our previous work, we showed that zROC functions for percep-
tual decision-making tasks show a characteristic downward curva-
ture which is indicative of a decrease in metacognitive sensitivity
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for higher confidence criteria (Shekhar & Rahnev, 2021b). This pat-
tern served as the inspiration for developing the LogN model but we
did not examine if other models can also capture it. Perhaps surpris-
ingly, we found that, when averaged across subjects, all models are
able to capture the basic downward curvature reasonably well in
Experiment 1 (Figure 6, top). This is true even for the SDT model
that is known to theoretically result in straight zROC functions.
The likely reason for the downward curvature observed for SDT
and other models here is that low trial counts for the extreme criteria
result in a misestimation of d′ (an issue extensively examined in
Shekhar & Rahnev, 2021b). The two worst-fitting models in
Experiment 2 (BCH and SOC) show large deviations from the
observed data but still capture the overall downward shapes
(Figure 6, middle). In Experiment 3, which has eight difficulty lev-
els, the zROC curves show much larger deviations from the data for
all models. However, the downward curvature is still apparent for all
models.While the issues with misestimation are not insurmountable,
removing this confound requires excluding a large proportion of the
data and is somewhat ad hoc (Shekhar & Rahnev, 2021b). As such,
when considered in isolation, the qualitative shape of zROC func-
tions may not be a reliable criterion for evaluating a model’s perfor-
mance or revealing the underlying mechanisms of confidence.

Explaining Observed Confidence for Correct and Incorrect
Trials (FXP)

One of the well-known signatures of confidence is that it increases
with stimulus discriminability for correct responses and decreases

with stimulus discriminability for incorrect responses (Hangya et al.,
2016; Sanders et al., 2016). When these two opposing relationships
are plotted together, they resemble a folded-X shape. Since we need
more than one stimulus discriminability (task difficulty) level to con-
struct the FXP this pattern was only analyzed for Experiment 2.

Critically, we did not consistently observe the FXP in the data
from these experiments. For Experiment 2, confidence for incorrect
trials decreased with increasing contrast levels according to the FXP.
However, for Experiment 3, we observed a different pattern where
confidence for both correct and incorrect trials increased with
increasing stimulus discriminability.

We find that all models except PE, SOC, and BCHgenerate the FXP,
which can be observed in their fits to both Experiments 2 and 3
(Figure 7). For the PE, SOC, and BCH models, on the other hand,
we observe an increase in confidence for incorrect responses with
increasing stimulus discriminability. This observation emerges natu-
rally from the PE model’s computations which ignore evidence incon-
gruent with the choice, resulting in confidence being directly
proportional to the stimulus strength, regardless of the accuracy of the
chosen response. On the other hand, for the Bayesian models (BCH
and SOC), this result appears to contradict the notion that the FXP is
a signature of Bayesian confidence (Hangya et al., 2016). However,
there is no real contradiction because the emergence of the FXP is con-
ditional on certain experimental conditions andmodel assumptions (see
Discussion). Lastly, the WEV model is the only model that appears to
flexibly fit both the patterns observed in Experiments 2 and 3, owing to
its flexible computation of the confidence signal by adjusting theweight
given to evidence over stimulus strength.

Figure 4
Average Model Ranks Across Quantitative Measures of Comparison
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Note. We ranked all models according to their performance for each of the four measures—AIC-derived fixed-effects, AIC-derived random-effects,
BIC-derived fixed-effects, and BIC-derived random-effects—and then averaged these ranks. For Experiments 1 and 2, the LogN model exhibited the highest
average rank (where 1 is the maximum average rank that can be achieved by a model). For Experiment 3, the PE model had the highest average rank across the
different measures. However, the performance of the PE model was inconsistent across the three experiments. In contrast, theWEVmodel showed consistently
good performance for both Experiments 2 and 3. AIC=Akaike information criterion; BIC=Bayesian information criterion; LogN= lognormal meta noise
model; PE-Flex= flexible version of the PE model; 2DSD= two-stage dynamic signal detection model; CASANDRE= confidence as a noisy decision reli-
ability estimate model; SDT= signal detection theory model; SOC= second-order confidence model; PE= positive evidence bias model; Gauss=Gaussian
meta noise model; SDRM= stochastic detection and retrieval model; Post-Dec= postdecisional SDTmodel; Decay= noisy decay model; DC= dual channel
model; WEV=weighted evidence and visibility model; BCH=Bayesian confidence hypothesis model. See the online article for the color version of this
figure.
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Figure 5
Model Fits for Individual Metacognitive Ability
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In Experiment 2, the SOC, PE, and BCH models which cannot fit
the FXP were observed to be the worst-performing models.
However, in Experiment 3, the PE and WEV models’ ability to
explain the observed pattern of confidence for correct and incorrect
responses possibly underlies their high-performance relative to all
the other models. These results suggest that whenever empirical vio-
lations of the FXP are observed (Rausch et al., 2020), this specific
qualitative pattern can serve as an important indicator of model per-
formance. However, the FXP does not fully explain performance for
all models. Specifically, even though SOC and BCH are able fit the
pattern of confidence observed in Experiment 3, they are ranked at
the bottom.

Explaining Observed Stimulus Sensitivity

The final qualitative pattern that we examined is whether models
can appropriately capture the observed stimulus sensitivity (d′).
Importantly, all models have free parameters that specifically corre-
spond to stimulus sensitivity (in Experiments 2 and 3, where we had
multiple difficulty levels, all models feature a separate stimulus
sensitivity-related free parameter for each difficulty level).
Therefore, not surprisingly, most models were able to fit the
observed d′ values very well in both Experiments 1 and 2
(Figure 8). However, one notable exception was the poor fits by
BCH and SOC in Experiments 2 and 3). This failure may explain
why BCH and SOC provided the worst quantitative fits in those
experiments, in spite of their success in fitting the observed pattern
of confidence for correct and incorrect choices for Experiment 3. We
speculate for the possible reasons behind this deviation in the
Discussion.

Examining the Deviations for All Four Qualitative
Patterns

To summarize the results from the four qualitative patterns in the
data (M-Ratio, zROC functions, FXP, and d′), we calculated the
mean absolute error in each model’s fits with respect to the observed
data for each subject and averaged the error across subjects
(Figure 9). In general, we find that the average errors in all four pat-
terns correlate with the ranking of each model according to AIC fits,
though the relationship is imperfect for each of the four patterns. The
positive relationship between these errors and model performance
also becomes noisier as the complexity of the task increases from
Experiment 1 to Experiment 3, implying that for complex experi-
mental designs, qualitative analyses may become less reliable in
accounting for model performances.

Examining the Plausibility of Individual Model
Parameters

Some of the models that we have used in this study feature
completely different architectures than any other model (e.g.,
2DSD, SDRM, and SOC). However, some pairs of models differ
only in a single parameter. Formally, the simpler model (the one
with fewer parameters) is said to be “nested” within the more com-
plex model. Here, we examine all pairs of nested models to evaluate
whether the parameters added by the more complex models enhance
their ability to explain the data. To do so, we perform a LR test and
examine if there is statistically significant evidence for the additional
parameters. Note that the LR should never be smaller than 0 because
the more complex model should always be able to fit the data at least
as well as the simpler model. However, 111 of the 685 LR values we
observed were negative (16%), indicating that the more complex
model likely became stuck in a local minimum. Even though such
cases are easy to correct by simply using the fit from the simpler
model, we have kept them here for purposes of full transparency
(correcting them would not change any of the conclusions we
draw below).

Metacognitive Noise

Two pairs of models differ only by whether they include metacog-
nitive noise as a model parameter: Gauss is equivalent to SDT with
Gaussian metacognitive noise, whereas LogN is equivalent to SDT
with lognormal metacognitive noise The LR test rejected the simpler
SDT model in favor of the Gauss model for 15 out of 59 subjects in
Experiment 1, for 8 of the 20 subjects in Experiment 2, and for 14
out of 45 subjects in Experiment 3 (Figure 10a). On the other
hand, the test rejected the SDT model in favor of the LogN model
for 34 of the 59 subjects in Experiment 1, 11 of the 20 subjects in
Experiment 2, and 22 out of 45 subjects in Experiment 3 (Figure
10b). These results mimic our previous studies where we also
found the Gauss and LogN models to be an improvement over
SDT (J. W. Bang et al., 2019; Shekhar & Rahnev, 2021b). These
results suggest that metacognitive noise is necessary to explain con-
fidence ratings for a significant proportion of subjects (on average
54% of subjects across experiments). For the remaining subjects,
we find that SDT is sufficient to explain behavior. Our previous
work (Shekhar & Rahnev, 2021b) showed that individual differ-
ences in metacognitive ability can impact the performance of mod-
els. Specifically, the model evidence for LogN increases as subjects’
metacognitive scores decrease—with model evidence favoring SDT
for subjects who have close to ideal M-Ratio. These findings are in
line with our previous work and suggest that the assumption of

scores are generally able to more reliably capture individual variations in metacognitive ability (as indicated by higher values of
slopes for the models in the top row for both experiments). For Experiment 3, the model fits for M-Ratio become less precise
and the distinction in M-Ratio fits between models in the top and bottom rows becomes less clear. AIC=Akaike information cri-
terion; LogN= lognormal meta noise model; CASANDRE= confidence as a noisy decision reliability estimate model; SOC=
second-order confidence model; SDRM= stochastic detection and retrieval model; PE-Flex= flexible version of the PE model;
2DSD= two-stage dynamic signal detection model; Gauss=Gaussian meta noise model; Decay= noisy decay model; SDT= sig-
nal detection theory model; Post-Dec= postdecisional SDT model; PE= positive evidence bias model; DC= dual channel model;
WEV=weighted evidence and visibility model; BCH=Bayesian confidence hypothesis model; Pred.= predicted; Obs.=
observed; avg= average. See the online article for the color version of this figure.
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Figure 6
Model Fits for zROC Functions Averaged Across Subjects
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Note. zROC functions plot the zHRs against zFARs. zROC functions are plotted separately for each task condition in
Experiments 2 and 3. As can be seen from the plots, most models are able to fit the general shape of the zROC functions
with relatively high precision for Experiments 1 and 2. However, for Experiment 3, which has eight difficulty levels, the fits
become much less precise. The models are arranged according to their AIC scores for each experiment. zROC= z-transformed
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lognormal metacognitive noise may be necessary only for a subset of
subjects with imperfect metacognitive scores.

Postdecisional Evidence Accumulation for Confidence

SDT and Post-Dec differ only in that the Post-Dec model includes
a parameter for postdecisional accumulation of evidence related to
the confidence rating. The LR test, however, failed to reject the
SDT model for 55 out of 59 subjects in Experiment 1 and for all
20 subjects in Experiment 2 (Figure 10c). For Experiment 3, how-
ever, the Post-Dec model was favored over the SDT model in 23
out of 45 subjects. Based on these experiments, evidence for postde-
cisional evidence accumulation remains inconsistent. We also tested
whether Post-Dec was favored particularly for subjects who show
hypermetacognitive efficiency (i.e., M-Ratio. 1). We found no evi-
dence for Post-Dec among these subjects in Experiments 1 and 2: the
LR test could not reject SDT over Post-Dec for all five such subjects
in Experiment 1 and all seven such subjects in Experiment 2. In
Experiment 3, the LR test favored Post-Dec over SDT for 15 out
of 27 subjects. These results suggest that, in the absence of model-
based evidence, observations of hypermetacognitive efficiency
(M-Ratio. 1) should not automatically be interpreted as support
for postdecisional evidence accumulation.

Decay of the Confidence Signal

The Gauss and Decay models differ only in that the Decay model
includes a parameter that allows the sensory signal to undergo decay
before confidence is given. The LR test could not reject the simpler
Gauss model for all 59 subjects in Experiment 1, but the evidence in
Experiment 2 was mixed with the Decay model being favored for 12
out of the 20 subjects (Figure 10d). However, for Experiment 3, the
Decay model was clearly favored for 44 out of 45 subjects. These
results suggest that the explanatory power provided by the signal
decay parameter may depend on qualitative features of the data,
such that the decay parameter may prove useful for certain stimulus
and experimental designs.

Partial PE Bias in Confidence

The PE and PE-Flex models differ only in that the PE-Flex model
includes a parameter that allows for flexible, partial (instead of com-
plete) neglect of decision-incongruent evidence. The LR test clearly
favored the PE-Flex model for Experiments 1 and 2: it was preferred
for 45 out of 59 subjects in Experiment 1 and for 18 out of 20 sub-
jects in Experiment 2 (Figure 10e). However, for Experiment 3, the
PE model was favored over the PE-Flex model for 29 out of 45 sub-
jects. These analyses provide mixed evidence about whether the pre-
sumed PE bias in confidence is complete or partial.

Stimulus Visibility Effect on Confidence

The Gauss and WEV models differ only in that the WEV model
includes a parameter that allows for the direct influence of task per-
formance (named “stimulus visibility”) in confidence ratings. The
LR test rejected the simpler Gauss model for 10 out of 20 subjects
in Experiment 2 and for 38 out of 45 subjects in Experiment 3
(note that WEV could not be fit in Experiment 1; Figure 10f).
These results suggest that the addition of weighted visibility indeed
benefits model fits, particularly for experimental designs such as in
Experiment 3. We further explore the conditions that favor the visi-
bility parameter in the Discussion.

Combining LogN and WEV: The logWEV Model

Our results showed that model ranks were relatively consistent
across Experiments 1 and 2 but were drastically different for
Experiment 3 (Figure 4). Specifically, models such as LogN,
CASANDRE, and SDRM—which always featured in the top five
models across Experiments 1 and 2—showed a steep drop in perfor-
mance for Experiment 3 (LogN ranked sixth, CASANDRE ranked
11th, and SDRM ranked ninth). On the other hand, the PE model
which was always found in the bottom three for Experiments 1
and 2, provided the best fits for Experiment 3. Of all these models,
however, the WEV was the only model that performed consistently
well across both Experiments 2 and 3 (ranked fourth in Experiment 2
and second in Experiment 3) and was able to fit all the observed
qualitative patterns in the data across experiments.

At the outset, these results suggest that in Experiment 3, the
assumption of LogN alone fails to explain confidence. Although
the LogN model was the best model in Experiments 1 and 2, for
Experiments 2 and 3 the WEV model either performed equally
well or outperformed LogN. However, the WEV model reduces to
the Gauss model for Experiment 1 (with a single task level),
which performs significantly worse than LogN (ranking seven out
of 12). Finally,WEVwas the only model that could explain the qual-
itative patterns of confidence across all experiments. Based on these
observations, we wanted to test whether a model that incorporates
features from both these successful models could allow for a
model that performs consistently well across all the experimental
paradigms tested here and fits all the qualitative features across dif-
ferent data sets.

We developed the logWEV model by modifying the WEV model
such that the confidence variable (which is aweighted sum of evidence
and stimulus visibility) is corrupted by lognormal rather than Gaussian
noise (see Supplementary Methods in the online supplemental materi-
als for more details). We fit the logWEV model to Experiments 2 and
3, and compared its performance to the models that were previously
ranked in the top five for each study (Figure 11). In terms of AIC

receiver operating characteristics; zHR= z-transformed hit rate; zFAR= z-transformed false alarm rate; AIC=Akaike informa-
tion criterion; LogN= lognormal meta noise model; CASANDRE= confidence as a noisy decision reliability estimate model;
SOC= second-order confidence model; SDRM= stochastic detection and retrieval model; PE-Flex= flexible version of the PE
model; 2DSD= two-stage dynamic signal detection model; Gauss=Gaussian meta noise model; Decay= noisy decay model;
SDT= signal detection theory model; Post-Dec= postdecisional SDT model; PE= positive evidence bias model; DC= dual
channel model; WEV=weighted evidence and visibility model; BCH=Bayesian confidence hypothesis model. See the online
article for the color version of this figure.
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Figure 7
Model Fits for the FXP Averaged Across Subjects for Experiment 2

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

LogN

1 2 3
Contrast level

1

2

3

4

5
C

on
fid

en
ce

SDRM

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

CASANDRE

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

WEV

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

2DSD

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

Decay

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

PE-Flex

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

Gauss

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

SDT

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

Post-dec

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

DC

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

PE

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

SOC

1 2 3
Contrast level

1

2

3

4

5

C
on

fid
en

ce

BCH

Correct trials Incorrect trials Data

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

PE

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

WEV

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

Decay

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

PE-Flex

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

Post-dec

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

LogN

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

Gauss

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

SDT

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

SDRM

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

DC

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

CASANDRE

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

SOC

2 4 6 8
Coherence level

1

2

3

4

C
on

fid
en

ce

2DSD

2 4 6 8
Coherence level

1

2

3

4
C

on
fid

en
ce

BCH

Correct trials Incorrect trials Data

Note. The FXP is considered a classic signature of confidence that can be used to infer the underlying computations (Sanders et al., 2016). In
Experiment 2, all but two models were able to capture the qualitative pattern well. Only the two models with the lowest AIC scores, PE and SOC, showed
substantial deviations in that, for both models, confidence increased with stimulus discriminability for incorrect responses. The models are arranged
according to their AIC scores. In Experiment 3, we did not observe the FXP. Rather, confidence for both correct and incorrect choices increased
with stimulus discriminability. Most models—except PE, WEV, BCH, and SOC—failed to reproduce this pattern. Error bars show SEM. FXP=
folded-X pattern; AIC=Akaike information criterion; LogN= lognormal meta noise model; SDRM= stochastic detection and retrieval model;
CASANDRE= confidence as a noisy decision reliability estimate model; WEV=weighted evidence and visibility model; 2DSD= two-stage dynamic
signal detection model; Decay= noisy decay model; PE-Flex= flexible version of the PE model; Gauss=Gaussian meta noise model; SDT= signal
detection theory model; Post-Dec= postdecisional SDT model; DC= dual channel model; PE= positive evidence bias model; SOC= second-order
confidence model; BCH=Bayesian confidence hypothesis model. See the online article for the color version of this figure.
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Figure 8
Model Fits for Individual First-Order Task Performance (d′)
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scores, the logWEV model was the second best-fitting model for
Experiment 2 although its scores were not significantly different from
the winning LogN model (AIC difference= 68.44, 95% CI [−75.01,
332.07]). For Experiment 3, the logWEV model was the best-fitting
model with AIC differences being significant for all pairs of models
(PE= 215.45, 95% CI [80.45, 412.41]; WEV= 483.53, 95% CI
[234.46, 985.56]; Decay and PE-Flex. 1,279 AIC points). We also
performed random-effects analyses with the AIC scores to obtain
model frequencies and exceedance probabilities. For Experiment 2,
the logWEVmodel had the third highest model frequency and exceed-
ance probability after the LogN andWEVmodels (pmodel= .19; pexc=
.05). For Experiment 3, the logWEV model had the second highest
model frequency and exceedance probability (pmodel= .38; pexc=
.42), although these scoreswere onlymarginally lower than thewinning
PE model (pmodel= .41; pexc= .58). Looking at overall model rank-
ings across different measures (AIC/BIC) and analyses (fixed/random
effects), the logWEV model ranked second (average rank= 2.75) for
both Experiments 2 and 3. The logWEV model’s overall rankings
were a significant improvement over the WEV model in both experi-
ments (average rank of 4.75 for Experiment 2 and 4 for Experiment
3) and the LogN model in Experiment 3 (average rank for
Experiment 2= 1.5; average rank for Experiment 3= 7.75).
Finally, we assessed the logWEV model’s ability to fit qualitative

patterns in the data—namely d′ and M-Ratio scores for individual
subjects, zROC functions, and the FXP. As seen in Figure 11, the
logWEV model provided close fits to the observed data across
both experiments. As noted previously, the poor performance of
most models including LogN in Experiment 3 could be attributed
to their inability to fit the observation that confidence increased
with stimulus discriminability for correct as well as incorrect
choices. Since the LogWEVmodel incorporates the stimulus visibil-
ity effect, it was able to fit this pattern for Experiment 3. Together,
these results suggest that logWEV model may offer a promising
combination of the LogN and WEV models that generalizes well
across different experimental designs and is able to reproduce all
their observed qualitative features.

Discussion

We comprehensively examined the ability of 14 of the most pop-
ular process models of metacognition to fit data from basic percep-
tual discrimination experiments from three large data sets of
increasing complexity. In Experiments 1 and 2, the LogN model
was robustly selected as the model that provided the best fit to the
data. In Experiment 3, the PE model yielded the best fits to the
data. Finally, we tested a composite model that combines two of
the most consistently well-performing models—LogN and
WEV—and found that the resulting logWEV model performed bet-
ter than any other individual model across the three experiments.
These results shed light on the most plausible mechanisms

underlying confidence generation and lay a solid foundation for
future computational work on confidence generation.

The Generalizability of Model Results Across Data Sets

Our results showed good agreement between Experiments 1 and
2, but Experiment 3 seemed to produce very different results com-
pared to the first two experiments. Specifically, the models that per-
formed best for Experiments 1 and 2 (LogN, CASANDRE, and
SDRM) were some of the worst-performing models in Experiment
3, whereas the best-performing model for Experiment 3 (PE) was
in the bottom three in Experiments 1 and 2. Furthermore,
Experiments 2 and 3 produced qualitatively different patterns of con-
fidence for correct and error trials: while Experiment 2 generated the
classic FXP, Experiment 3 showed a clear violation of this pattern.
One possible explanation for these differences is that they are caused
by the differences in stimuli. Specifically, in Experiment 2, the stim-
ulus was a Gabor patch embedded within noise in such away that the
overall contrast of the stimulus (noise + Gabor patch) was always
held constant. This may have made the difficulty of the stimulus
harder to perceive, thus making it harder for subjects to use heuristic
computations based on low-level stimulus cues about task difficulty.
However, in Experiment 3, task difficulty was manipulated by
changing the variance of motion of the dots, which is more readily
apparent (high variance increases the seeming overall randomness
of dot motion) and thus low-level stimulus cues about task difficulty
are easier to use. This explanation is consistent with our observation
that the WEV model—which can flexibly adapt the weight given to
such cues—is able to maintain good fits in both experiments,
whereas models such as PE and LogN—which are more rigid in
their assumptions about the evidence used for confidence—only per-
form well in one but not the other experiment. These differences
highlight the need to use different experimental designs in order to
capture all relevant components of confidence computations.

The LogN Model

The LogN model was the best-fitting model across Experiments 1
and 2. LogN assumes that the primary decision is made identically to
SDT and only diverges from SDT by introducing lognormal meta-
cognitive noise. Our results build on previous studies in demonstrat-
ing that metacognitive noise is necessary to capture confidence
ratings well (J. W. Bang et al., 2019; Maniscalco & Lau, 2016;
Shekhar & Rahnev, 2021b; Xue et al., 2021). However, it is impor-
tant to keep several caveats in mind. First, metacognitive noise likely
occurs due to a constellation of factors such as serial dependence,
stimulus variability, arousal, and so forth (Shekhar & Rahnev,
2021a) and including these factors as explicit components in a
model is likely to reduce the need for this nonspecific noise term.
Second, while there seems to be good evidence that metacognitive
noise is likely to be signal-dependent and that confidence and

decision reliability estimate model; SOC= second-order confidence model; SDRM= stochastic detection and retrieval model;
PE-Flex= flexible version of the PE model; 2DSD= two-stage dynamic signal detection model; Gauss=Gaussian meta noise
model; Decay= noisy decay model; SDT= signal detection theory model; Post-Dec= postdecisional SDT model; PE= positive
evidence bias model; DC= dual channel model; WEV=weighted evidence and visibility model; BCH=Bayesian confidence
hypothesis model; Pred.= predicted; Obs.= observed. See the online article for the color version of this figure.

Figure 8 (continued)
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decision criteria are unlikely to cross, the exact shape of its underly-
ing distribution may not be exactly lognormal. Third, the two exper-
iments here used a very simple design; more complex designs would
require more complex models. For example, if the stimulus manip-
ulation changes not only the mean but also the variance of the under-
lying distributions, then confidence criteria may vary accordingly
(Adler & Ma, 2018a; Denison et al., 2018). The LogN can easily
accommodate criteria changing with the variance of the internal dis-
tributions or other external manipulations but is silent about such
manipulations. Lastly, we see a drop in the LogN model’s perfor-
mance for Experiment 3, suggesting that the model does not fully
capture the complexity of confidence computations across different
tasks. Overall, we see the LogN model as a simple but solid founda-
tion which future modeling efforts can build on. The LogN model’s
success also carries implications for the characteristics of noise in
neural systems, although the causal factors underlying signal-
dependent noise remain to be elucidated.

The WEV Model

TheWEVmodel performed verywell in our study—it was the sec-
ond best-fitting model in both the experiments in which it was tested
in terms of overall rank. In fact, it was the only model whose perfor-
mance generalized across the data sets in Experiments 2 and 3 and it
was the only model that was able to flexibly capture all the qualitative
features across data sets. Furthermore, the inclusion of the “visibility”
parameter led to an improvement over the simpler Gauss model
(which is otherwise equivalent to WEV except for the extra parame-
ter) in a substantial proportion of subjects (50% in Experiment 2 and
84% in Experiment 3). Therefore, the notion that confidence is influ-
enced by a visibility heuristic should be taken seriously and investi-
gated further. Nevertheless, we believe that more work is needed to
clarify how the stimulus “visibility” used in the model generalizes
across paradigms. In practice, this label fits better in the metacontrast
masking designs examined by Rausch et al. (2018, 2020) where

Figure 9
Average Deviations for Each of the Qualitative Patterns
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Note. We plotted the average deviation for each model for each of the four qualitative patterns we examined (M-Ratio, zROC functions, FXP, and d′).
Models are arranged according to their AIC scores. All qualitative patterns are related to the models’ AIC values but none of the relationships are perfect.
zROC = z-transformed receiver operating characteristics; FXP= folded-X pattern; AIC=Akaike information criterion; LogN= lognormal meta noise model;
CASANDRE= confidence as a noisy decision reliability estimate model; SOC= second-order confidence model; SDRM= stochastic detection and retrieval
model; PE-Flex= flexible version of the PE model; 2DSD= two-stage dynamic signal detection model; Gauss=Gaussian meta noise model; Decay= noisy
decay model; SDT= signal detection theory model; Post-Dec= postdecisional SDT model; PE= positive evidence bias model; DC= dual channel model;
WEV=weighted evidence and visibility model; BCH=Bayesian confidence hypothesis model. See the online article for the color version of this figure.
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longer stimulus-onset asynchronies lead to both higher perfor-
mance and higher subjective visibility of the stimuli. In contrast,
the “visibility” label fits less well in the current designs where all
stimuli were easy to detect (though the two alternatives were hard
to discriminate between). In the context of the tasks used in this
study, we think that a “sensitivity” or “discriminability” bias may
be a more appropriate characterization of this heuristic where
observers are able to maintain and use an internal estimate of
their own d′ to inform their confidence. However, the WEV
model assumes that the observer’s internal estimates of stimulus
discriminability are perfect (i.e., noiseless and unbiased), which
is unlikely to be true. It is also an open question how such “discrim-
inability” is computed and used in more real-world scenarios where
more than two alternatives are available (Rahnev, 2020).
Nevertheless, it should be noted that issues of generalizability
emerge for most current models and are not specific to the assump-
tions made by the WEV model.

Implications for Various Proposals Related to Confidence
Computation

Confidence as the Probability of Being Correct

The notion that confidence is computed as a Bayesian probability
of being correct has gained substantial popularity in recent years
(Hangya et al., 2016; Pouget et al., 2016; Sanders et al., 2016).
Two out of the 14 models examined here—the SOC and BCH mod-
els—implemented this proposal (all of the rest implement a more tra-
ditional, distance-to-criterion computation). The results were stark:
SOC had the second lowest average AIC value in Experiment 1
(where the presence of a single difficulty level obviated the differ-
ence between Bayesian and distance-to-criterion computations)
but provided some of the worst fits of all models in Experiments 2
(where the presence of three difficulty levels led to a large difference
between Bayesian and distance-to-criterion computations). Even the

Figure 10
Examining the Plausibility of Individual Model Parameters

Note. For each of the three experiments, we compared six pairs of nested models that only differ in the presence of
a single parameter: (a) SDT versus Gauss (parameter: Gaussianmetacognitive noise), (b) SDT versus LogN (param-
eter: lognormal metacognitive noise), (c) SDT versus Post-Dec (parameter: postdecisional evidence accumulation),
(d) Gauss versus Decay (parameter: confidence signal decay), (e) PE versus PE-Flex (parameter: partial use of PE),
and (f) Gauss versus WEV (parameter: stimulus visibility effect; Experiments 2 and 3 only becauseWEV is equiv-
alent to Gauss in Experiment 1). The plots show the LR scores between the full (Model 2 in each pair) and reduced
(Model 1 in each pair) models. For a substantial proportion of subjects (always over 50%), there is evidence in favor
of either type of metacognitive noise, for partial (as opposed to complete) PE bias as well as the stimulus visibility
effect. Conversely, there is little consistent evidence for postdecisional evidence accumulation or confidence signal
decay across the three experiments. The dashed vertical line marks the critical LR value at the 0.05 significance
level. For LR values falling above the dashed line, one can reject the reduced model in favor of the full model.
Expt= experiment; SDT= signal detection theory model; Gauss=Gaussian meta noise model; LogN= lognor-
mal meta noise model; Decay= noisy decay model; Post-Dec= postdecisional SDT model; WEV=weighted evi-
dence and visibility model; PE= positive evidence bias model; PE-Flex= flexible positive evidence bias model;
LR= likelihood ratio. See the online article for the color version of this figure.
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Figure 11
Results for the logWEV Model in Experiments 2 and 3
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Note. (Top) Results for Experiment 2. Summed AIC differences between the best-fitting model and the previous top
five models. AIC comparisons show that the logWEV model is the second best-fitting model, although the AIC differ-
ence with the best-fitting LogNmodel is not significant. Random-effects analyses show that the logWEVmodel has the
third highest model frequency after the LogN and WEV models. Qualitative analyses show that the logWEV model is
able to fit individual d′,M-Ratio scores, zROC functions, and the FXP. (Bottom) Results for Experiment 3. The logWEV
model is the best-fitting model with the lowest AIC scores (the other four models have significantly higher AIC scores).
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BCHmodel which was fit only to Experiments 2 and 3, consistently
ranked in the bottom three for these experiments. These findings
using the simple design in Experiments 2 and 3 accord well with sev-
eral other recent empirical investigations with more complex designs
that also cast doubt over the Bayesian computation of the probability
of being correct as underlying confidence ratings (Adler & Ma,
2018a, 2018b; Bertana et al., 2021; Denison et al., 2018; Li &
Ma, 2020; Locke et al., 2020).
The FXP is popularly assumed to be a signature of Bayesian con-

fidence computations. This pattern was first demonstrated by
Hangya et al. (2016) via simulations of a model that implements
Bayesian confidence. However, both the Bayesian models we imple-
ment here—BCH and SOC—fail to generate this pattern. Instead,
confidence in these models increases with stimulus discriminability
for both correct and incorrect trials. This apparent discrepancy can
be resolved when we account for the differences in model assump-
tions and experimental design. In their article, Hangya et al.
(2016) defined stimulus discriminability as the magnitude of internal
evidence for a single stimulus level. In our study, in contrast, we
define stimulus discriminability based on the stimulus itself (specif-
ically, its contrast/coherence) and externally vary this attribute.
Indeed, Hangya et al. (2016) specifically noted that the emergence
of the FXP relies on the assumption that the observers have no inher-
ent knowledge of the different experimental conditions.
Furthermore, in a follow-up article by the same group, Sanders et
al. (2016) varied stimulus discriminability externally, but their
model still assumed that observers have no ability to discriminate
between different levels of the stimulus and instead assumed single
underlying stimulus level. Our Bayesian models, however, do not
make this assumption and allow observers to account for the differ-
ent stimulus conditions, which explains the observed violation of the
FXP. More importantly, the BCH model is indistinguishable from
standard SDT when modeling a single stimulus level. The models
can only be distinguished when they account for more than one stim-
ulus condition.

Postdecisional Accumulation or Decay of Evidence for
Confidence

One popular proposal regarding the computation underlying con-
fidence is that it is at least partly based on a process of either accu-
mulation or decay that occurs after the primary decision has been
made (Calder-Travis et al., 2020; Pleskac & Busemeyer, 2010;
Wokke et al., 2020). Three of the current models implemented dif-
ferent versions of this general proposal: Post-Dec and 2DSD imple-
mented postdecisional accumulation, whereas Decay implemented
postdecisional signal loss. For Experiments 1 and 2, we found no
evidence that these model features lead to improved model fits for

the current data sets. In fact, using a LR test to compare Post-Dec
to its reduced version that lacks postdecisional accumulation
(SDT) and Decay to its reduced version that lacks postdecisional sig-
nal loss (Gauss), we found evidence against the postdecisional
parameters introduced by both models. Furthermore, although a
small proportion of subjects displayed hypermetacognitive effi-
ciency (M-Ratio. 1; 12 out of 79 subjects across both experi-
ments), Post-Dec did not provide a better fit for even these
subjects compared to SDT. For Experiment 3, however, evidence
supported the decay and postdecisional mechanisms in a majority
of the subjects. These inconsistent findings between data sets sug-
gest that the utility of postdecisional mechanisms may depend on
the stimulus set and experimental design. Further work is required
to exactly characterize the conditions where such postdecisional
mechanisms become useful. Of course, postdecisional processes
certainly operate in cases where the stimulus continues to be pre-
sented after a decision has been made (Rollwage et al., 2018,
2020; Schulz et al., 2020) and are also likely to be important
when decisions are made in a speeded manner. However, when
this is not the case (such as in the current experiments), these mech-
anisms may not always improve fits in the context of simple percep-
tual discrimination tasks.

Architectures With Different Signals for Decision and
Confidence

Eleven out of the 14 models examined here (SDT, Gauss, LogN,
Decay, Post-Dec, WEV, PE, PE-Flex, BCH, CASANDRE, and
2DSD) included a single evidence stream used for both the decision
and confidence. However, the remaining three models (DC, SDRM,
and SOC) postulated architectures where the signals for the decision
and confidence are fundamentally different (though still correlated).
None of these models were preferred consistently across the three
experiments, thus casting doubt at the ideas that different signals
underlie the primary decision and confidence judgments. The DC
model specifically always ranked in the bottom three models for
all experiments, strongly suggesting that the idea of different chan-
nels for high- and low-confidence decisions is not viable. One
important caveat in these results is that the model recovery analyses
showed very poor recoverability for SDRM in Experiments 1 and 2,
and for SOC in Experiment 1 (both models were typically confused
with 2DSD). However, both SDRM and SOC were almost never
confused with the winning models, thus making it unlikely that
the lack of good fits for SDRM and SOC is primarily due to
model recoverability issues. This confusability underscores the
necessity of conducting model recovery analyses in future modeling
studies, especially for models that propose separate signals for deci-
sion and confidence.

The logWEVmodel has the second highest model frequency and exceedance probability in the population. The logWEV
model is again able to capture all the qualitative patterns of d′, M-Ratio, zROC, and the FXP. AIC=Akaike information
criterion; logWEV=WEV model with lognormal meta noise; PE= positive evidence bias model; WEV=weighted
evidence visibility model; Decay= noisy decay model; PE-Flex= flexible version of the PE model; Pred.= predicted;
Obs.= observed; avg= average; BCH=Bayesian confidence hypothesis model; WEV=weighted evidence and vis-
ibility model; pexc= protected exceedance probabilities; pmodel=model frequencies; zHR= z-transformed hit rate;
zFAR= z-transformed false alarm rate; zROC= z-transformed receiver operating characteristics; FXP= folded-X pat-
tern. See the online article for the color version of this figure.

Figure 11 (continued)
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PE Bias

One of the most prominent proposals regarding the computa-
tions underlying confidence is that they selectively ignore decision-
incongruent evidence (Maniscalco et al., 2016; Peters et al., 2017;
Zylberberg et al., 2012). The “positive evidence bias” was origi-
nally proposed by Zylberberg et al. (2012) based on reverse corre-
lation analyses that suggested that decision-incongruent evidence
does not influence confidence reports. However, to the best of our
knowledge, these initial findings have not been replicated and other
studies using reverse correlation analyses have found that confidence
appears to in fact be sensitive to decision-incongruent evidence
(Weise et al., 2021). Our results demonstrate that a pure PE bias (as
implemented in the current PE model) is untenable in the absence
of additional mechanisms. Indeed, the PE model provided some of
the worst model fits for Experiments 1 and 2, and also resulted in
constant M-Ratio values at 0.5 (which strongly contradicts empirical
reality). TheM-Ratio result had not been appreciated before but is sen-
sible in retrospect since according to the PEmodel, confidence ignores
half of the available information. Surprisingly, the PEmodel emerged
as the best model for Experiment 3 and its good performance was
associated with its ability to explain the observed pattern of increasing
confidence for incorrect choices. However, we believe it is unlikely
that this result underlies a true shift in the observers’ confidence gen-
eration strategies across data sets and that a more general and flexible
strategy underlies their observed behavior. Indeed, the new logWEV
model—which does not include a PE bias—performed at least as well
as PE for Experiment 3.
The PE-Flex model performed markedly better but still worse than

models with no PE bias assumption. However, it should be noted that
a recent article implemented a pure PE bias in the context of sequential
sampling—where the confidence signal could accumulate both extra
information and extra noise—and was able to successfully fit the
observed M-Ratio values (Maniscalco et al., 2021). Therefore, to
fully evaluate the notion of PE bias, it is necessary to systematically
vary the different auxiliary assumptions or to devise manipulations
that directly test the predictions of the PE computations.
This conclusion may appear surprising given the success of what

has been dubbed “positive evidence”manipulations. In these manip-
ulations, stimuli with high signal and high noise are matched in per-
formance to stimuli with low signal and low noise, but the
high-intensity stimuli are routinely found to produce higher confi-
dence (Koizumi et al., 2015; Samaha et al., 2016; Zylberberg
et al., 2012). Because high-intensity stimuli produce stronger evi-
dence for both the decision-congruent and decision-incongruent
choices, such confidence-accuracy dissociations can be naturally
explained as a result of a PE bias. However, critically, such dissoci-
ations can also be explained in several other ways, such as by assum-
ing that increasing both the signal and noise in a stimulus affects
both the signal and variability in the internal evidence distributions.
In fact, a recent study showed that high confidence for high-intensity
stimuli is observed even in neural networks trained to take all evi-
dence into account (Webb et al., 2021). Therefore, we suggest that
empirical confidence-accuracy dissociations where high-intensity
stimuli with matched d′ produce higher confidence rating be
renamed to “high-intensity–high-confidence” effect. The names
“positive evidence bias” and “response-congruency effect” presup-
pose a mechanistic explanation rather than simply describing an
empirical effect.

Confidence as an Estimate of Decision Reliability

A recent model proposed the idea that confidence is derived from
observers’ subjective estimates of decision reliability (CASANDRE;
Boundy-Singer et al., 2023). Critically, the model assumes that an
observer can maintain only a noisy representation of their own deci-
sion noise (quantified as meta-uncertainty), allowing the model to
account for inefficient metacognition. The CASANDRE model per-
formed well in Experiments 1 and 2 where it was the second and
third best-performingmodel, respectively (according to AIC scores).
However, like other models, it did not provide a good fit to
Experiment 3, suggesting that model does not fully capture the com-
plexity of confidence computations across different tasks.

One important observation regarding the CASANDREmodel is that
it appears somewhat related to the LogN model. This was especially
the case for Experiment 1 where CASANDRE could not be reliably
distinguished from LogN (50% probability of recovery) and most sub-
jects showed nearly identical AIC scores, suggesting that the models
may be similar in the presence of a single difficulty level.
Nevertheless, CASANDRE performed significantly worse (though
by a relatively small margin) than the LogN model in all three exper-
iments.We note that Boundy-Singer et al. (2023) previously found that
CASANDRE and LogN performed equivalently for Experiment 2,
whereas we find that LogN performed better by an average of about
six AIC points in that experiment. This discrepancy comes from the
fact that Boundy-Singer et al. (2023) compared their CASANDRE
model fits the LogN model fits from Shekhar and Rahnev (2021b)
where we used a less optimal fitting algorithm. In the current study,
we use the BADS algorithm (Acerbi & Ma, 2017), which is a much
more efficient search algorithm compared to our previous custom-built
procedure. Using BADS led to an overall improvement in the LogN
model’s performance (by about six AIC points on average) compared
to our previous fits, but produced the same results for CASANDRE
compared to Boundy-Singer et al.’s fits.

General Modeling Considerations

Model and Parameter Recovery

Model and parameter recovery have rarely been performed in the
context of previous models of metacognition. While our results sug-
gested that, within the context of our large experiments, that both
model and parameter recovery for existing models is high, there
were several important exceptions. First, model recovery was notably
worse in Experiment 1 where only a single difficulty level was pre-
sent, thus emphasizing the need for using conditions with varying dif-
ficulty. Second, model recovery was also worse in Experiment 3
compared to Experiment 2. Even though Experiment 3 contained
more task conditions, it had fewer overall trials (1,600) compared to
Experiment 2 (2,800), suggesting that larger trial numbers are impor-
tant for reliably discriminating between models. Third, some seem-
ingly unrelated models such as SDRM and 2DSD were confused
with each other, which may suggest the presence of deeper links
between the models. Fourth, several specific parameters such as cor-
relations between the evidence for decision and confidence could not
be recovered robustly, suggesting that the fitted values for such param-
eters need to be interpretedwith extreme caution. Overall, these results
underscore the importance of both model and parameter recovery
analyses in future model development. Nevertheless, it is important
to note that some models (e.g., SDRM) that showed relatively poor
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model recovery nevertheless produced good models fits, a phenome-
non that requires further focused investigation.

Qualitative Patterns in the Data

Several qualitative patterns have been proposed to directly reveal
different aspects of the computations underlying confidence ratings.
For example, the inverted-U shape of zROC curves has been seen as
directly suggesting the existence of signal-dependent metacognitive
noise (Shekhar & Rahnev, 2021b). However, we found that the
zROC pattern was at least qualitatively explained by most existing
models, thus questioning whether they can be used to directly
infer the details of the internal computations.
Similarly, the FXP—the observation that easier stimuli lead to an

increase in confidence for correct trials but a decrease in confidence
for error trials—has been proposed as a signature of “statistical confi-
dence” (Hangya et al., 2016). However, we only observed this pattern
for Experiment 2. In Experiment 3, confidence increased with stimu-
lus discriminability irrespective of whether the choice was correct or
incorrect. Such violations of the FXP have also been previously
reported by others (Rausch et al., 2018, 2020), suggesting that the
FXP is not a reliable signature of confidence. Rather, the patterns of
confidence observed for correct versus incorrect choices may be
important to understand how different stimulus features or experimen-
tal paradigms interact with the confidence generation process.
A model’s ability to fit individual variations in M-Ratio values as

well as d′ was also found to reasonably constrain model perfor-
mances. These measures were particularly useful for understanding
why certain models perform poorly.
Overall, qualitative patterns in the data remain important for

understanding why a model may not provide a good fit but may
have limited utility in and of themselves to constrain the modeling
of metacognition. Furthermore, as experiments become more com-
plex, the qualitative features of a data set become less informative
in terms of explaining model performances.

Parameter Dependence on Difficulty Level

Three of the models (Decay, DC, and PE-Flex) included parame-
ters that depend on task difficulty. While there is nothing mathemat-
ically wrong with such model specifications, it is questionable how
plausible they are. The issue is that if the internal computations differ
based on the difficulty level, the system should first have perfect
knowledge about the difficulty level on each trial. However, most
experiments (including our Experiments 2 and 3) interleave the dif-
ferent difficulty levels and do not inform subjects about the difficulty
level used on each trial. There could, of course, be mechanisms that
work to infer the condition that each trial comes from (e.g., the con-
trast in Experiment 2) but such an inference process is likely to be
imperfect and should ideally be modeled too.

Limitations and Generality Constraints

Exploring the Full Space of Model Variants

Here we focused on fitting well-defined existing models but did not
examine the full space of possible models. For example, the Decay,
SDRM, and SOC models feature Gaussian metacognitive noise but
may in theory be improved by the use of lognormal metacognitive
noise instead. Similarly, most models can be augmented by adding

postdecisional evidence accumulation, signal decay, visibility weight-
ing, metacognitive noise, decision noise (which currently only features
in SDRM), or a lapse rate parameter. In addition, models such as
SDRM and Decay include multiple sources of corruption and a full
investigation would test reduced versions of these models. Finally,
since the beginning of our work, there have been several new models
of metacognition that did notmake it in our list (Guggenmos, 2022; Hu
et al., 2021; Mamassian & de Gardelle, 2022). Future modeling work
can build on the current results by exploring model variants with com-
binations of features, additional reduced model versions, as well as
adding new models as they are formulated.

Using Generic Rather Than Targeted Task Data

Another limitation of the current study is that we included either
no difficulty manipulation (Experiment 1) or a very simple difficulty
manipulation (change in contrast or coherence levels; Experiments 2
and 3). In this sense, our data were “generic” rather than targeted
toward testing any specific model. This decision was deliberate on
our part as complex manipulations can lead to violations in the aux-
iliary assumptions made by the models. Nevertheless, this choice
makes it difficult to draw conclusions about any specific proposed
mechanism and instead only allows the comparison of fully formed
models. Convincingly confirming or falsifying any proposed mech-
anism of confidence computation would thus require more targeted
manipulations that specifically address predictions made by that
mechanism.

Not Fitting RT or Other Types of Data

Finally, our focus in this study wasmaximally narrow by only con-
sidering choice and confidence data but ignoring a host of other rel-
evant measures such as RT, brain activity, pupil dilation, and arousal.
It is possible that including additional types of data would require
fundamentally different types of models with only a loose connection
to the existing models. Nevertheless, we hope that our results that
focus only on the most basic data would still have implications for
more complex models that try to capture additional types of data.

Conclusion

Using extensive model comparisons, we demonstrate the
strengths and weaknesses of 14 popular models of metacognition
across three large data sets. These results provide tentative support
for two mechanisms—the presence of signal-dependent metacogni-
tive noise and a selectively visibility bias that only affects confi-
dence. Indeed, a new model based on both of these mechanisms—
the logWEV model—provides the best overall performance across
all three experiments. The present comprehensive assessment of
models of metacognition provides a solid foundation for future
efforts to build even better models of confidence generation.
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