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Rahnev DA, Bahdo L, de Lange FP, Lau H. Prestimulus hemodynamic
activity in dorsal attention network is negatively associated with decision
confidence in visual perception. J Neurophysiol 108: 1529–1536, 2012. First
published June 20, 2012; doi:10.1152/jn.00184.2012.—Attention is
thought to improve most aspects of perception. However, we recently
showed that, somewhat surprisingly, endogenous attention can also
lead to low subjective perceptual ratings (Rahnev et al., 2011). Here
we investigated the neural basis of this effect and tested whether
spontaneous fluctuations of the attentional state can lead to low
confidence in one’s perceptual decision. We measured prestimulus
functional magnetic resonance imaging activity in the dorsal attention
network and used that activity as an index of the level of attention
involved in a motion direction discrimination task. Extending our
previous findings, we showed that low prestimulus activity in the
dorsal attention network, which presumably reflected low level of
attention, was associated with higher confidence ratings. These results
were explained by a signal detection theoretic model in which lack of
attention increases the trial-by-trial variability of the internal percep-
tual response. In line with the model, we also found that low
prestimulus activity in the dorsal attention network was associated
with higher trial-by-trial variability of poststimulus peak activity in
the motion-sensitive region MT!. These findings support the notion
that lack of attention may lead to liberal subjective perceptual biases,
a phenomenon we call “inattentional inflation of subjective percep-
tion.”

attention; functional magnetic resonance imaging; spontaneous fluc-
tuation; perceptual decision making

A LARGE NUMBER OF STUDIES have clearly demonstrated that
endogenous attention improves perception (for review, see
Carrasco, 2011). However, the exact relationship between the
two can be fairly complex (Reynolds and Heeger, 2009). We
recently showed that attention can lead to low subjective visibility
ratings (Rahnev et al., 2011). This is in line with another study that
demonstrated that attention can improve accuracy without influ-
encing confidence (Wilimzig et al., 2008). Together, these stud-
ies suggest that accuracy can dissociate from confidence under
attention. In Rahnev et al. (2011), we proposed a formal model
that accounts for this effect. According to the model, lack of
attention increases the variability of the internal perceptual
response, and confidence ratings are given using the same
unified criteria for both attended and unattended stimuli (Fig.
1). Thus, the “low attention” distributions are marked by high
variability. This makes these distributions, compared with the
“high attention” distributions, extend further into the high
confidence regions, thus producing more high confidence trials.

Here we used functional magnetic resonance imaging
(fMRI) to investigate the neural bases of the above effects
(Rahnev et al., 2011). In particular, we tested whether sponta-
neous fluctuations of attention would lead to differential effects
on accuracy and confidence ratings, as well as whether such
effects would be accompanied by a decrease in variability of
the perceptual signal (as predicted by our model). We mea-
sured the prestimulus blood-oxygenated level dependent
(BOLD) activity in the dorsal attention network (DAN) (Cor-
betta and Shulman, 2002), which is implicated in directed
attention and working memory and is part of the task-positive
system in the brain. The name “dorsal attention network”
distinguishes it from the “ventral attention network,” which is
specialized for the detection of behaviorally relevant stimuli,
particularly when they are salient or unexpected (Corbetta and
Shulman, 2002). The fluctuations of BOLD activity in the
DAN have been investigated in a number of previous resting-
state studies (Fox et al., 2005, 2006, 2007; Sadaghiani et al.,
2009, 2010) and have been theorized to reflect the attentional
level of the subject (Eichele et al., 2008; Sapir et al., 2005). As
in previous studies (Hesselmann et al., 2008a,b; Sadaghiani
et al., 2009), we focused on prestimulus activity in the DAN
because it is not contaminated by stimulus-related activity and
reflects ongoing neural fluctuations.

Based on our previous findings, we hypothesized that high
prestimulus BOLD activity in the DAN would be associated
with low confidence ratings and higher accuracy in the motion
discrimination task. Furthermore, we predicted that these ef-
fects would be accompanied by an increase in the variability of
the perceptual signal as measured by the variance in the evoked
responses in the motion-sensitive region MT!.

METHODS
Participants. Fifteen volunteers (9 women; mean age " 22; range "

19–26 yr) participated in the experiment. All subjects were naive
regarding the purposes of the experiments, had normal or corrected-
to-normal vision, and signed an informed-consent statement approved
by the local ethics committee (CMO region Arnhem-Nijmegen, The
Netherlands).

Stimulus and procedure. In each trial (Fig. 2), subjects were
required to indicate the overall direction of motion of white dots
(density " 2.4 dots/degree2; speed " 6 degrees/s) presented inside a
black annulus (outer circle radius " 10°; inner circle radius " 1°).
The motion direction was either contracting or expanding. Incoherent
dots moved randomly with the same speed as coherent dots. All dots
had infinite lifetime: they were never removed from the screen during
the motion presentation. A small fixation square was presented for the
duration of the trial, and subjects were required to maintain fixation on
it. The stimuli were presented on gray background and were generated
using the Psychophysics Toolbox (Brainard, 1997) in MATLAB.
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We employed a sparse event-related design (Hesselmann et al.,
2008a,b; Sadaghiani et al., 2009) where each trial began with 20–40 s of
no motion stimuli. This period allowed for the BOLD signal to return
to baseline after each trial. We then presented 100 ms of coherent
motion and followed it with a “mask” of 400 ms of random motion.
The masking was employed to increase task difficulty and to avoid
retrospection based on iconic memory (Sperling, 1960). We elected to
use motion stimuli because of ease of control of the stimulus proper-
ties and localization of the relevant brain regions. These have also
been used in previous studies of spontaneous fluctuations of BOLD
activity (Hesselmann et al., 2008a; Sapir et al., 2005). Subjects were
required to indicate the direction of motion (expanding/contracting)
and give a confidence rating with separate button presses made with
their right hand. Confidence was judged on a four-point scale, where
one represented low and four represented high confidence. Subjects
were instructed to use the scale as evenly as possible. Nevertheless,
since some subjects had a bias toward using one side of the confidence
scale, and to maximize power, we defined what constituted high and
low confidence for each subject individually using a median split.
Overall low confidence was defined as a rating of one or two for nine
subjects and as a rating of one for the other six subjects. If both button
presses were not completed within 6 s, the trial was marked as
unanswered and excluded from further analyses. Subjects completed
104 trials separated in two scans of 52 trials. Each scan took about 26
min. After these two scans, we acquired a 307-volume “resting state”
scan (Fox and Raichle, 2007) that took about 10 min.

Before the fMRI experiment, each subject took part in a 1-h
training session on a separate day, in which the subject practiced 520
trials that were identical to the trials in the scanner but for a shorter
intertrial interval of 1–3 s. During the first half of the training session,

subjects were given trial-by-trial feedback. The feedback was discon-
tinued during the second part of the training to prepare subjects for the
experiment in the scanner environment. Based on the data from the
training session, motion coherence levels were chosen for each subject
to produce #65% correct responses (mean motion coherence "
30.6%, SD " 27.5%). Just before the fMRI experiment, subjects
practiced for an additional 5 min (68 trials) to remind them of the task.

Behavioral analyses. We analyzed our data to check for the
existence of trial-to-trial contingencies. For each subject, we investi-
gated whether a correct or high confidence response on the current
trial predicted correct or high confidence response on the subsequent
trials. To do that, we estimated the proportion of correct and high
confidence trials following correct, error, high confidence, and low
confidence trials. We then compared these proportions for correct and
error trials, as well as for high and low confidence trials. The
comparison was done between subjects using a paired-sample t-test.

fMRI acquisition. Images were acquired on a 3-Tesla Trio MRI
system (Siemens, Erlangen, Germany). Functional images were ac-
quired using a 32-channel coil, with a single shot gradient echo-planar
imaging sequence (repetition time: 1,950 ms; echo time: 30 ms; 31
ascending slices; voxel size: 3 $ 3 $ 3 mm; flip angle " 80°; field of
view " 192 mm). A high-resolution anatomical image was acquired
using a T1-weighted MP-RAGE sequence (repetition time: 2,300 ms;
echo time: 3.03 ms; voxel size: 1 $ 1 $ 1 mm).

fMRI preprocessing. Analysis was performed using SPM5 (Well-
come Department of Imaging Neuroscience, London, UK). The first 6
vol of each scan were discarded to allow for scanner equilibration.
Preprocessing consisted of realignment through rigid-body registra-
tion to correct for head motion, slice timing correction to the onset of
the first slice, coregistration of the functional and anatomical images,
segmentation of the anatomical image, normalization to Montreal
Neurological Institute space using the gray matter image obtained
from the segmentation, interpolation of functional images to 2 $ 2 $
2 mm, and smoothing with a Gaussian kernel with a full width at
half-maximum of 8 mm.

Definition of brain networks. We defined the attention, the default,
and the alertness networks using a separate 10-min resting state scan
and employing seed-based analyses as in previous studies (Fox et al.,
2005, 2006; Sadaghiani et al., 2009, 2010). Briefly, using the Mars-
BaR toolbox for MATLAB, we extracted the time courses for the
resting state scan for spheres with 10 mm radius. We used seeds in the
right intraparietal sulcus (27, %58, 49) for the attention network (Fox
et al., 2006; Sadaghiani et al., 2009), the posterior cingulate cortex
(%5, %49, 40) for the default network (Fox et al., 2005; Sadaghiani
et al., 2009), and dorsal anterio cingulate cortex (0, 15, 40) for the
alertness network (Sadaghiani et al., 2010). Each time course was
high-pass filtered (1/128 Hz), and the time courses for all gray matter
voxels, all white matter voxels, and all cerebral spinal fluid voxels
were regressed out in a multiple regression (Sadaghiani et al., 2009).
This step was similar to the “global signal regression” that is typically
performed in such experiments (Fox et al., 2005) whereby the average
signal from the whole brain is regressed out. This preprocessing step
is useful in that it removes BOLD activity from physiological (i.e.,
nonneuronal) origin (Fox et al., 2009), but it has been criticized for
inducing artificial anticorrelations between networks (Anderson et al.,

Fig. 1. Signal detection model based on Rahnev et al. (2011). According to
signal detection theory (Green and Swets, 1966), stimuli with contracting (gray
curve) or expanding (black curve) motion produce overlapping distributions on
a single decision dimension. Based on previous research (Gorea and Sagi,
2000), decision criteria are assumed to be the same for the different attention
conditions. The model postulates that lower attention leads to increased
variability of the perceptual signal (hence the wider distributions in the lower
panel). Due to the higher variability of the “low attention” distributions, they
produce a higher percentage of high confidence trials, because the tails of the
distributions extend further into the “high confidence” regions.

Fig. 2. Task design. We employed a sparse design with
intertrial intervals (ITI) of 20–40 s to allow for the
blood-oxygenated level dependent (BOLD) signal to
return to baseline. During that period, subjects viewed
stationary dots. Trials consisted of 100 ms coherent
dot motion that was followed by a “mask” of random
motion (400 ms). Subjects were asked to judge the
motion direction (expanding/contracting) and then
provide a confidence rating on a 1– 4 scale.
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2011; Murphy et al., 2009). Nevertheless, the primary interest in this
study was investigating the influence on behavior of the prestimulus
activity in a specific network (the DAN) and thus we wanted to isolate
its influence independent of physiological and other global influences.
On the other hand, we were not concerned with potential anticorre-
lations that could result from this processing step.

The resulting time courses were used as regressors in separate
general linear models (GLM) for each subject; the three networks
were defined as the set of voxels correlated at P & 0.001 with the
respective regressor. Each of the three networks was then combined at
the second level. Each subject-specific network was a combination of
that subject’s network masked with the corresponding group network.

To test for the robustness of the findings, the DAN was alterna-
tively identified using independent components analysis (ICA). We
employed the GIFT toolbox (Calhoun et al., 2001) for MATLAB to
extract the networks consistent across all subjects (Damoiseaux et al.,
2006). We used the Infomax algorithm to find 16 components. The
attention network was identified among these 16 components and was
defined using a z-score threshold of 1. The region MT! was removed
from the attention networks defined using either seed-based methods
or ICA.

Prestimulus activity analyses. After the networks were defined for
each subject, we analyzed the data from the first two runs in which
subjects engaged in the motion discrimination task. We extracted time
courses for each network using the MarsBaR toolbox (http://marsbar.
sourceforge.net/) and regressed out nuisance variables such as head
motion and global signal fluctuations as above. Prestimulus activity
was defined as the average of the two volumes preceding the onset of
the motion stimulus. We used paired sample t-tests and repeated-
measures ANOVAs to test whether prestimulus activity differed
significantly between high and low confidence trials, as well as
between correct and incorrect trials. Even though we tested for the
effects in three different networks (see above), we did not correct for
multiple comparisons because our main hypothesis was about the
effects in the DAN, and the other networks were just included for
completeness.

We also investigated whether prestimulus activity in the dorsal
attention system influenced the variability in MT!. For each subject,
we categorized trials as either having low or high prestimulus DAN
activity if the prestimulus activity in the network was lower or higher
than the average activity for that subject. We then computed the Fano
factor of the MT!-evoked activity for these two types of trials. The
evoked activity was defined as the maximum BOLD activity of the
three scans that had highest activity on average (across all subjects
and all trials). The Fano factor was defined as the variance divided by
the mean for the evoked activity for each of the two types of trials for
each subject (Carandini, 2004; Churchland et al., 2010; Gur et al.,
1997).

MT! localizer. We identified MT! using a separate localizer scan
after the main experiment and the resting state scan. Sixty blocks of
moving dots (block duration of 16 s) were alternated with 10 blocks
of stationary dots (block duration of 16 s), resulting in #19 min scan
duration. Motion-sensitive areas were obtained using the contrast
moving dots ' stationary dots. Local maxima near the ascending limb
of the inferior temporal sulcus were defined bilaterally and combined
to form area MT! separately for each subject (Hesselmann et al.,
2008a). MT! defined in this was used as a region of interest in a
separate GLM analysis (see below).

Standard GLM analysis. Regressors for the first-level analysis of
evoked activity were obtained by convolving the unit impulse time
series for each condition with the canonical hemodynamic response
function. The motion stimulus was modeled with duration of 500 ms.
Our model included four regressors, reflecting the combination of two
levels of accuracy (correct/error) and two levels of confidence (high/
low). We included 12 nuisance regressors related to head motion:
three regressors related to translation and three regressors related to
rotation of the head, as well as their derivatives (Lund et al., 2005).

Simulations. We performed simple computer simulations to inves-
tigate whether our model (Fig. 1) can provide an adequate explanation
of the results, especially given that we did not observe a statistically
significant effect of prestimulus BOLD signal in the DAN on motion
discrimination accuracy (see RESULTS). The main idea of the model is
that attention decreases the variability of the perceptual signal. We
implemented this intuition in the equations below. We formalized
that:

S!t" ! E!t" " NP#t, A!t"$
where S is the evidence available to the perceptual system, E is the
evidence present in the stimulus, NP is the amount of physiological
noise inherent in the system, A is the level of attention in the current
trial, and t indicates the trial. The prestimulus BOLD signal in the
DAN was modeled as:

B!t" ! eA # A!t" " NB!t"
where B is the BOLD signal, NB is the noise present in the BOLD
signal, and eA controls the effect of attention on the BOLD signal.

We modeled the level of attention present in each trial (A) using a
uniform distribution in the interval (0, 1). The evidence present on
each trial (E) was sampled from a normal distribution with a mean $E
and standard deviation %E to reflect the fluctuations in the presentation
of the random dot motion. NP and NB were modeled as Gaussian
distributions with means $P and $B and standard deviations %P and
%B, respectively. Since the absolute amount of evidence was not of
interest, $E was set to one and $P was set to zero. For simplicity, we
assumed a linear influence of attention on the decrease of variability
in the perceptual signal and therefore modeled %P as %P " m % d $
A, where, m is the mean value of the noise in NP while d controls the
degree of attentional decrease of the variability in NP. Finally, since
the random variables E and NP are both normally distributed, their
sum will also be normally distributed and have a standard deviation
that is the sum of the standard deviations of E and NP. Therefore,
rather than fitting %P and %E separately, we fit only their sum.

The perceptual decision was made by comparing S(t) to zero:
positive values indicated correct responses, while nonpositive values
were coded as incorrect response. On the other hand, confidence was
determined by comparing S(t) to a set of criteria (c1, c2). High
confidence ratings were given if S(t) & c1 or if S(t) ' c2. Because of
lack of significant bias for expanding or contracting motion in our
experiment, for simplicity, c1 was set to %c2. Thus, the set of
confidence criteria we used was (%c, c).

We fitted the above equations with the average data from all 15
participants using a simulated annealing procedure (Kirkpatrick et al.,
1983). Each iteration of the fitting procedure generated 1,500,000
trials (roughly corresponding to 1,000 times the data from our exper-
iment) based on the current values of the parameters. The fitting
function attempted to minimize the error in overall percent of correct
answers, overall confidence, and the mean prestimulus BOLD activity
for all high confidence, low confidence, correct, and error trials. To
test for the robustness of our findings, the fitting was done four
different times using different starting values for the parameters. We
varied the starting values of the parameters to avoid getting “stuck” in
local minima. Each of the four fits provided a good fit to the data. Here
we report the results from the first fit, which produced the best match
to the observed values; the results of the other fits were consistent with
the best one. Using the parameters from the best fit, we generated
10,000 experiments that consisted of 15 subjects each completing 100
trials (15,000,000 trials total) and checked the power to detect signif-
icant effects on confidence and accuracy.

RESULTS

We first checked for the existence of trial-to-trial contingen-
cies in accuracy or confidence ratings. Paired-sample t-tests
demonstrated that accuracy on the current trial predicted nei-
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ther accuracy [t(14) " %0.83, P " 0.42] nor confidence
[t(14) " %1.3, P " 0.21] on the subsequent trial. Similarly,
confidence on the current trial predicted neither accuracy
[t(14) " 0.2, P " 0.85] nor confidence [t(14) " %1.04, P "
0.32] on the subsequent trial. Thus, it appeared that there were
no reliable trial-to-trial contingencies indicating that our sub-
jects were generating stochastic behavioral responses.

We identified the DAN using standard seed-based methods
(Fig. 3A, see METHODS; other methods of identifying the net-
work, such as ICA, gave similar results, see Table 1). Con-
firming our prediction, we found that high prestimulus BOLD
activity in the DAN was associated with low confidence ratings
[F(1,13) " 6.68, P " 0.02; Fig. 3, B and C]. On the other hand,
prestimulus activity in this network was not reliably associated
with accuracy [F(1,13) " 0.45, P " 0.52]. There was also no
interaction between confidence and accuracy [F(1,13) " 0.02,
P " 0.89]. The above analyses were performed using repeated-
measures ANOVA. However, one subject needed to be ex-
cluded from that analysis because he did not have any high
confidence error trials (i.e., one of the cells in the 2 $ 2 design
was empty). To include that subject, one could perform a
simple t-test on the main effect of confidence and accuracy.
This led to the same pattern of results for both confidence

[t(14) " 2.69, P " 0.02] and accuracy [t(14) " 0.55, P "
0.59].

Since the present experiment is based on detection of coherent
motion, we also examined the BOLD signal in the motion-
sensitive area MT!. Although this area is sometimes considered
to be part of the DAN, in the above analysis, we delineated it as
a distinct region so that we could look at its effects separately.
Unlike the effect in the DAN, prestimulus activity in MT! was
not associated with the subjects’ confidence ratings [t(14) " 1.31,
P " 0.21]. This lack of significant effect on confidence suggests
that the difference between high and low confidence trials in the
DAN was not driven by fluctuations of activity in MT!. Simi-
larly, prestimulus activity in MT! for error trials (mean activ-
ity " %0.03) and correct trials (mean activity " %0.01) was not
significantly different [t(14) " 0.39, P " 0.7]. Furthermore,
standard GLM analyses showed that, for poststimulus evoked
activity, high activity in MT! was associated with a high level of
confidence ratings [t(14) " 2.98, P " 0.01]. Thus, in this study,
the activity in MT! played a bigger role in reflecting stimulus
processing rather than prestimulus fluctuation of attentional states.

We further tested the relationship between confidence and
prestimulus activity in two other networks. We found that
prestimulus activity in neither the default mode network (Dam-

Fig. 3. Prestimulus dorsal attention network (DAN) activity was negatively associated with confidence. A: we identified the DAN using standard seed-based
methods (see METHODS). The network included the frontal eye fields and intraparietal regions. B: counterintuitively, the prestimulus activity was higher for low
confidence than for high confidence trials. There was no reliable difference in prestimulus activity for correct compared with error trials. The vertical dashed line
shows the average time of the second button press (the confidence response). C: to facilitate our statistical analysis, we separated the trials by confidence and
accuracy and plotted the prestimulus activity, which was defined as the average BOLD activity in the two scans prior to stimulus onset. D: to check if attention
changed the variability of the internal perceptual response, we computed the Fano factor for the distributions of evoked responses of MT! for the trials that had
either low or high prestimulus DAN activity. Fano factor was lower in the latter distribution, suggesting that lack of attention increased the variability of the
perceptual signal. The error bars represent the standard error of the mean.
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oiseaux et al., 2006; Eichele et al., 2008; Fox et al., 2005;
Sadaghiani et al., 2009) nor the alertness network (Sadaghiani
et al., 2009, 2010) predicted confidence or accuracy on the task
(all P values '0.1; Table 1).

The results on the DAN corroborate our computational
model (Fig. 1). One of the crucial assumptions of the model is
that lack of attention increases the trial-by-trial variability of
the perceptual signal. We provided an indirect test of this
assumption by investigating whether prestimulus activity in
DAN affected the variability in the evoked activity in MT!, a
region that likely codes the perceptual signal. We computed the
Fano factor of the distributions of evoked MT! activity, a
measure that has been used extensively to characterize neural
variability (for example, see Carandini, 2004; Churchland
et al., 2010; Gur et al., 1997). Confirming our model’s predic-
tion, high prestimulus activity in DAN led to a lower Fano
factor in MT! [t(14) " 2.56, P " 0.02; Fig. 3D]. No such
relationship was found for the default network [t(14) " %0.71,
P " 0.49] or the alertness network [t(14) " 0.4, P " 0.7]. We
considered the alternative interpretation that the result for DAN
was due to a ceiling effect: if the prestimulus BOLD activity is
already high in DAN then prestimulus activity may be rela-
tively high in MT!, and thus evoked activity in MT! could
potentially show ceiling effects. To explore this possibility, we
computed the skewness of the distributions of evoked activity
in MT!. A ceiling effect would manifest itself as negative skew-
ness. Nevertheless, we found that skewness was positive for trials
with either low (skewness " 0.30) or high (skewness " 0.28)
prestimulus DAN activity, and there was no significant difference
in skewness between the two distributions (P " 0.92).

Finally, to test whether our model (Fig. 1) in which attention
decreases the variability of the perceptual signal can explain
the observed data, we carried out simple computational simu-
lations in which attention modulated linearly the standard
deviation of the signal detection distributions (see METHODS).
These simulations were largely motivated by the fact that we
did not observe a statistically significant effect of prestimulus
BOLD signal in the DAN on motion discrimination accuracy,
yet this was one of the predictions of our detection theoretic
model (Fig. 1). We performed the computational simulations
four different times and obtained good fits of the data all four
times (Table 2 reports the fit of the first simulation that
provided the best fit). Furthermore, the parameter that con-
trolled the attentional decrease of the variability of the percep-
tual signal was consistently positive across all four fits (see
METHODS), suggesting that attention indeed decreased percep-
tual noise (note that the parameter was not constrained and that
it could have taken negative values). For the fitted values of the
parameters, we generated 10,000 replications of our experi-
ment (by generating 15 sets of 100 trials for each replication).
We compared the simulated prestimulus BOLD responses and
found that simulated BOLD activity was significantly higher
for low (compared with high) confidence trials on 7,188 trials
(i.e., 72% of all simulations), whereas it was significantly
higher for correct (compared with error) trials on 1,306 trials
(i.e., 13% of all simulations). Thus our simulations suggest that
there is a large difference in our statistical power to detect
effects on confidence vs. effects on accuracy, which may
explain why in our dataset only the effect on confidence was
significant. Therefore, the lack of a significant effect of pre-
stimulus BOLD signal in the dorsal attentional network onT
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accuracy may well be due to the lack of statistical power (as
estimated from these simulations), and thus does not necessar-
ily contradict our detection theoretic model (Fig. 1).

DISCUSSION

We found that low prestimulus DAN activity was associated
with high confidence in a motion discrimination task, as well as
higher trial-by-trial variability in poststimulus peak activity in
MT!. Our signal detection theoretic model (Fig. 1) predicted
this pattern of results though its last prediction (that low
prestimulus DAN activity should lead to lower accuracy) was
not confirmed. Overall, our data provide preliminary support of
our noise-based account of the phenomenon of “inattentional
inflation of subjective perception” (Lau and Rosenthal, 2011;
Rahnev et al., 2011).

Our results are novel in a number of ways. First, they
demonstrate that attention may lead to dissociations between
accuracy and confidence ratings. This is especially surprising
since many previous studies have reported that accuracy and
confidence typically increase or decrease together (e.g., Busey
et al., 2000). Second, our analysis on the influence of prestimu-
lus activity in the DAN on the evoked activity in MT!
suggests that attention decreases the trial-by-trial variability of
the perceptual signal. Our model implies that this noise reduc-
tion is a critical feature that explains the observed dissociation
between accuracy and confidence. On the other hand, most
previous models of attention focus primarily (or exclusively)
on the attentional increase on gain and have placed less focus
on attention’s influence on the trial-by-trial variability of the
internal perceptual response (e.g., Desimone and Duncan,
1995).

One may worry that our finding of prestimulus BOLD in the
DAN being negatively correlated with confidence could seem
contradictory to previous single-neuron recording research. For
example, Kiani and Shadlen (2009) investigated the response
of LIP neurons when monkeys were given the opportunity of
choosing a safe option (thus indicating low confidence in their
decision). The researchers found that the monkeys chose the
safe option when the activity in LIP neurons was at an
intermediate level and therefore the activity in the recorded
neurons did not provide strong evidence for either decision
option. Thus Kiani and Shadlen’s results could be interpreted
as predicting that the population response of LIP neurons
would not distinguish between high and low confidence re-
sponses. Nevertheless, although Kiani and Shalden found neu-
rons that commonly code for both accuracy and confidence,
this finding does not necessarily imply that we cannot find
dissociation elsewhere in the brain, or even within the same
region. Also, Kiani and Shadlen’s study was mainly concerned
with poststimulus neuronal activity and did not investigate

prestimulus activity, which is the focus of the current study.
Finally, the relationship between measures of individual neu-
rons and a population measure like fMRI can be complex, and
higher activity for low compared with high confidence has
indeed been reported in previous fMRI studies for parietal and
frontal areas (Fleming et al., 2012). Thus, we believe that Kiani
and Shadlen’s work is not incompatible with our current results
reporting higher prestimulus DAN activity for low confidence
trials.

In another study on the spontaneous fluctuation of activity in
the DAN, Sadaghiani et al. (2009) reported that low prestimu-
lus DAN activity led to more hits in an auditory detection task.
Sadaghiani et al.’s findings may suggest that low level of
attention improves detection capacity, at least for auditory
stimuli. However, the increase in detection rate can be attrib-
uted to either an enhancement of capacity or a change of
detection criterion toward the liberal direction (responding
“yes” more often). Compatible with this interpretation, we
previously reported empirical and theoretical data that demon-
strated that there is a close relationship between high subjective
perceptual ratings and more liberal detection criteria (Rahnev
et al., 2011). Thus our results that high prestimulus activity in
DAN leads to low confidence ratings suggest that Sadaghiani
et al.’s findings may be partially explained by a liberal detec-
tion bias caused by lack of attention.

Alternatively, Sadaghiani and colleagues (2009) suggest that
the negative relationship between prestimulus DAN activity
and detection performance may be due to the fact that sounds
are not spatial (but see Tark and Curtis, 2009). In contrast with
our results, in their study, DAN did not show considerable
evoked activity. Given the differences in task (discrimination
vs. detection) and stimuli used (motion patches vs. auditory
tones) between our study and that of Sadaghiani et al. (2009),
it is possible that the influence of DAN depends on the specific
context of the experiment as well. We should note that our
detection theoretic account of Sadaghiani et al.’s findings and
their own interpretation are not necessarily mutually exclusive.

In a related study, Hesselmann et al. (2008) investigated the
influence of prestimulus activity in MT! on the perception of
coherent motion. They found that high prestimulus activity in
right MT! biases subjects to perceive coherent motion. Here
we used motion that was always coherent, and subjects simply
needed to identify the direction of that motion. We did not find
significant differences in prestimulus activity in MT! for error
and correct trials. It is likely that prestimulus activity in MT
influences the perception of coherence but does not necessarily
lead to more accurate identification of the direction of motion.

Although the finding that attention decreased the variability
of the sensory responses (Fig. 3D) is compatible with previous
research (Mitchell et al., 2007; Bressler and Silver, 2010;

Table 2. Fit from our computational simulations

Measure
Prestim DAN in Low

Confidence Trials
Prestim DAN in High

Confidence Trials
Prestim DAN in
Correct Trials

Prestim DAN in
Error Trials

Correct
Trials, %

High Confidence
Trials, %

Observed value %0.129 %0.246 %0.172 %0.206 0.626 0.528
Fitted value %0.126 %0.242 %0.173 %0.212 0.624 0.528

We carried out simple computer simulations (see METHODS) to investigate if our model (Fig. 1) can fit the observed data from the experiment. The fitting
procedure was performed four different times to ensure that the fitting procedure did not get “stuck” in local minima. This table reports the fitted values produced
by the first fit which provided the best match to the observed values. The values were generated by simulating 15,000,000 trials. DAN, dorsal attention network.
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Cohen and Maunsell, 2009), it needs to be interpreted with
caution. The two categories of motion stimuli used in this study
(contracting and expanding) are both expected to activate
MT!. Thus, the average activity in MT! does not directly
reflect the evidence for one motion direction or the other. Also,
BOLD activity is dominated by scanner and physiological
noise (Fox and Raichle, 2007) that are not necessarily directly
meaningful to the perceptual decision itself.

Another limitation of the study is that, if our model (Fig. 1)
is correct, one may expect the increase in noise associated with
lack of attention to be reflected by higher discrimination
accuracy as well, something that we did not find in our dataset.
We note that the relative sizes of the impact of an increase in
noise on accuracy and confidence may not be the same and
depend on factors such as how the confidence criteria are set.
We also had limited statistical power since due to the sparse
event-related design employed we only had a limited number
of trials (#100) for each subject. Indeed our computational
simulations suggest that, even if our model (Fig. 1) is correct,
we may have nevertheless had limited statistical power to
detect a significant positive association between prestimulus
DAN activity and discrimination accuracy. The simulations
were intended as a proof of concept and were not meant as a
formal model of how attention influences prestimulus BOLD
or the internal perceptual distributions. Nevertheless, our sim-
ulations demonstrate that the negative finding on the relation-
ship between prestimulus BOLD activity on accuracy does not
necessarily contradict our model (Fig. 1).

It is also important to note that our signal detection theoretic
model is not intended as a general mechanism about how
attention, accuracy, and confidence are related since this rela-
tionship is likely complex and could depend on the exact
setting of the experiment (Kiani and Shadlen, 2009; Reynolds
and Heeger, 2009; Wilimzig et al., 2008). Our model is also
largely agnostic about the specific neural mechanisms that
support the generation of confidence ratings. In particular, we
do not believe that prestimulus DAN activity codes confidence
ratings; instead, confidence is likely coded in structures related
to metacognition (Fleming et al., 2010, 2012) or self-referential
evaluative operations (Northoff and Bermpohl, 2004). Rather,
the model depicted in Fig. 1 attempts to give a formal expla-
nation of the surprising negative relationship between attention
and confidence in certain circumstances such as when attended
and unattended stimuli are considered together in the same
context.

We also have to be cautious not to assume that prestimulus
activity in the DAN can be absolutely equated with the sub-
ject’s attentional level. There are many other factors that
contribute to activity in any large brain network (Fox and
Raichle, 2007). Nevertheless, our interpretation of the current
data is compatible with previous studies that have shown that
the brain modulates the attentional level by changing the state
of cortical networks (Harris and Thiele, 2011) and that the
DAN in particular reflects positively on one’s attentional state
(Eichele et al., 2008; Sapir et al., 2005).

Another limitation of the current study is the lack of behav-
ioral effects between conditions, independent of the fMRI
results. This is because, in this study, unlike in many other
behavioral studies of attention, we did not try to experimentally
manipulate the subjects’ attention (Rahnev et al., 2011; Wil-
imzig et al., 2008). Instead, we relied on spontaneous fluctu-

ations of the neural activity in the dorsal-attention network to
indicate different presumed attentional states. Future studies
should explore novel ways to determine the attentional state of
subjects without explicitly manipulating attention, as well as to
directly manipulate attention while measuring neural activity,
to further investigate the neural mechanism involved in the
putative negative relationship between attention and confi-
dence.

Finally, even though one interpretation of our results is that
prestimulus activity in the DAN influences the perception of
the stimulus, our data are also consistent with the interpretation
that what is being influenced is a late, cognitive stage of the
information processing. Nevertheless, we favor the former
interpretation because in our previous study (Rahnev et al.,
2011) we showed that attention not only led to lower visibility
ratings, it also led to more conservative detection biases. In
addition, these effects were resistant to feedback and payoff
manipulations, as if they were automatic and part of the
perceptual processes themselves.

To sum up, our results corroborate our previous psychophys-
ical findings (Rahnev et al., 2011) in that lack of attention may
lead to liberal subjective biases such as higher subjective
ratings, a phenomenon that we call inattentional inflation of
subjective perception. Such liberal subjective biases for unat-
tended objects may partially explain why we find it surprising
that we fail to perceive unattended objects (such as in inatten-
tional and change blindness experiments) and can perhaps shed
some light on why we think we see the whole visual scene in
front of us, despite the fact that we seem to only be able to
process a few objects effectively within our focus of attention
(Kim and Blake, 2005).
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