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Abstract. Human perceptual decisions are often described as optimal. Critics of this view have
argued that claims of optimality are overly flexible and lack explanatory power. Meanwhile,
advocates for optimality have countered that such criticisms single out a few selected papers.
To elucidate the issue of optimality in perceptual decision making, we review the extensive
literature on suboptimal performance in perceptual tasks. We discuss eight different classes
of suboptimal perceptual decisions, including improper placement, maintenance, and adjust-
ment of perceptual criteria; inadequate tradeoff between speed and accuracy; inappropriate
confidence ratings; misweightings in cue combination; and findings related to various percep-
tual illusions and biases. In addition, we discuss conceptual shortcomings of a focus on opti-
mality, such as definitional difficulties and the limited value of optimality claims in and of
themselves. We therefore advocate that the field drop its emphasis on whether observed
behavior is optimal and instead concentrate on building and testing detailed observer models
that explain behavior across a wide range of tasks. To facilitate this transition, we compile the
proposed hypotheses regarding the origins of suboptimal perceptual decisions reviewed here.
We argue that verifying, rejecting, and expanding these explanations for suboptimal behavior –
rather than assessing optimality per se – should be among the major goals of the science of
perceptual decision making.

1. Introduction

How do people make perceptual judgments based on the available sensory information? This
fundamental question has been a focus of psychological research from the nineteenth century
onward (Fechner 1860; Helmholtz 1856). Many perceptual tasks naturally lend themselves to
what has traditionally been called “ideal observer” analysis, whereby the optimal behavior is
mathematically determined given a set of assumptions such as the presence of sensory noise,
and human behavior is compared to this standard (Geisler 2011; Green & Swets 1966; Ulehla
1966). The extensive literature on this topic includes many examples of humans performing
similarly to an ideal observer but also many examples of suboptimal behavior. Perceptual science
has a strong tradition of developing models and theories that attempt to account for the full
range of empirical data on how humans perceive (Macmillan & Creelman 2005).

Recent years have seen an impressive surge of Bayesian theories of human cognition and
perception (Gershman et al. 2015; Griffiths et al. 2015; Tenenbaum et al. 2011). These theories
often depict humans as optimal decision makers, especially in the area of perception. А num-
ber of high-profile papers have shown examples of human perceptual behavior that is close to
optimal (Ernst & Banks 2002; Körding & Wolpert 2004; Landy et al. 1995; Shen & Ma 2016),
whereas other papers have attempted to explain apparently suboptimal behaviors as being in
fact optimal (Weiss et al. 2002). Consequently, many statements by researchers in the field
leave the impression that humans are essentially optimal in perceptual tasks:

Psychophysics is providing a growing body of evidence that human perceptual computations are “Bayes’
optimal.” (Knill & Pouget 2004, p. 712)

Across a wide range of tasks, people seem to act in a manner consistent with optimal Bayesian models.
(Vul et al. 2014, p. 1)

These studies with different approaches have shown that human perception is close to the Bayesian opti-
mal. (Körding & Wolpert 2006, p. 321)

Despite a number of recent criticisms of such assertions regarding human optimality (Bowers
& Davis 2012a; 2012b; Eberhardt & Danks 2011; Jones & Love 2011; Marcus & Davis 2013;
2015), as well as statements from some of the most prominent Bayesian theorists that their
goal is not to demonstrate optimality (Goodman et al. 2015; Griffiths et al. 2012), the previous
quotes indicate that the view that humans are (close to) optimal when making perceptual deci-
sions has taken a strong foothold.

The main purpose of this article is to counteract assertions about human optimality by
bringing together the extensive literature on suboptimal perceptual decision making.
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Although the description of the many findings of suboptimality
will occupy a large part of the article, we do not advocate for a
shift of labeling observers from “optimal” to “suboptimal.”
Instead, we will ultimately argue that we should abandon any
emphasis on optimality or suboptimality and return to building
a science of perception that attempts to account for all types of
behavior.

The article is organized into six sections. After introducing the
topic (sect. 1), we explain the Bayesian approach to perceptual
decision making and explicitly define a set of standard assump-
tions that typically determine what behavior is considered optimal
(sect. 2). In the central section of the article, we review the vast
literature of suboptimal perceptual decision making and show
that suboptimalities have been reported in virtually every class
of perceptual tasks (sect. 3). We then discuss theoretical problems
with the current narrow focus on optimality, such as difficulties in
defining what is truly optimal and the limited value of optimality
claims in and of themselves (sect. 4). Finally, we argue that the
way forward is to build observer models that give equal emphasis
to all components of perceptual decision making, not only the
decision rule (sect. 5). We conclude that the field should abandon
its emphasis on optimality and instead focus on thoroughly test-
ing the hypotheses that have already been generated (sect. 6).

2. Defining optimality

Optimality can be defined within many frameworks. Here we
adopt a Bayesian approach because it is widely used in the field
and it is general: other approaches to optimality can often be
expressed in Bayesian terms.

2.1. The Bayesian approach to perceptual decision making

The Bayesian approach to perceptual decision making starts with
specifying the generative model of the task. The model defines the
sets of world states, or stimuli, S, internal responses X, actions A,
and relevant parameters Θ (such as the sensitivity of the obser-
ver). We will mostly focus on cases in which two possible stimuli
s1 and s2 are presented, and the possible “actions” a1 and a2 are
reporting that the corresponding stimulus was shown. The
Bayesian approach then specifies the following quantities (see
Fig. 1 for a graphical depiction):

Likelihood function. An external stimulus can produce a range of
internal responses. The measurement density, or distribution,
p(x|s, θ) is the probability density of obtaining an internal
response x given a particular stimulus s. The likelihood func-
tion l(s|x, θ) is equal to the measurement density but is defined
for a fixed internal response as opposed to a fixed stimulus.

Prior. The prior π(s) describes one’s assumptions about the prob-
ability of each stimulus s.

Cost function. The cost function L(s, a) (also called loss function)
specifies the cost of taking a specific action for a specific
stimulus.

Decision rule. The decision rule δ(x) indicates under what com-
bination of the other quantities you should perform one action
or another.

We refer to the likelihood function, prior, cost function, and deci-
sion rule as the LPCD components of perceptual decision making.

According to Bayesian decision theory (Körding & Wolpert
2006; Maloney & Mamassian 2009), the optimal decision rule is
to choose the action a that minimizes the expected loss over all pos-
sible stimuli. Using Bayes’ theorem, we can derive the optimal deci-
sion rule as a function of the likelihood, prior, and cost function:

d(x) = argmina[A

∑
s[S

l(s|x, u) p(s) L(s, a).

2.2. Standard assumptions

Determining whether observers’ decisions are optimal requires
the specification of the four LPCD components. How do research-
ers determine the quantitative form of each component? The fol-
lowing is a typical set of standard assumptions related to each
LPCD component:

Likelihood function assumptions. The standard assumptions here
include Gaussian measurement distributions and stimulus
encoding that is independent from other factors such as stimu-
lus presentation history. Note that the experimenter derives
the likelihood function from the assumed measurement
distributions.

Prior and cost function assumptions. The standard assumption
about observers’ internal representations of the prior and cost
function is that they are identical to the quantities defined by
the experimenter. Unless specifically mentioned, the experi-
ments reviewed subsequently here present s1 and s2 equally

often, which is equivalent to a uniform prior (e.g., p(si) = 1
2

when there are two stimuli), and expect observers to maximize
percent correct, which is equivalent to a cost function that pun-
ishes all incorrect responses, and rewards all correct responses,
equally.

Decision rule assumptions. The standard assumption about the
decision rule is that it is identical to the optimal decision rule.

Finally, additional general standard assumptions include
expectations that observers can perform the proper computations
on the LPCD components. Note that as specified, the standard
assumptions consider Gaussian variability at encoding as the
sole corrupting element for perceptual decisions. Section 3 assem-
bles the evidence against this claim.

The attentive reader may object that the standard assumptions
cannot be universally true. For example, assumptions related to
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the likelihood function are likely false for specific paradigms (e.g.,
measurement noise may not be Gaussian), and assumptions
about observers adopting the experimentally defined prior and
cost function are likely false for complex experimental designs
(Beck et al. 2012). Nevertheless, we take the standard assumptions
as a useful starting point for our review because, explicitly or
implicitly, they are assumed in most (although not all) studies.
In section 3, we label all deviations from behavior prescribed by
the standard assumptions as examples of suboptimality. We dis-
cuss alternative ways of defining optimality in section 4 and
ultimately argue that general statements about the optimality or
suboptimality of perceptual decisions are meaningless.

3. Review of suboptimality in perceptual decision making

We review eight categories of tasks for which the optimal decision
rule can be determined. For each task category, we first note any
relevant information about the measurement distribution, prior,
or cost function. We plot the measurement distributions together
with the optimal decision rule (which we depict as a criterion
drawn on the internal responses X). We then review specific sub-
optimalities within each task category. For each explanation of
apparently suboptimal behavior, we indicate the standard LPCD
components proposed to have been violated using the notation
[LPCD component], such as [decision rule]. Note that violations
of the assumed measurement distributions result in violations of
the assumed likelihood functions. In some cases, suboptimalities
have been attributed to issues that apply to multiple components
(indicated as [general]) or issues of methodology (indicated as
[methodological]).

3.1. Criterion in two-choice tasks

In the most common case, observers must distinguish between
two possible stimuli, s1 and s2, presented with equal probability

and associated with equal reward. In Figure 2, we plot the meas-
urement distributions and optimal criteria for the cases of equal
and unequal internal variability. The criterion used to make the
decision corresponds to the decision rule.

3.1.1. Detection criteria
Many tasks involve the simple distinction between noise (s1) and
signal + noise (s2). These are usually referred to as detection tasks.
In most cases, s1 is found to produce smaller internal variability
than s2 (Green & Swets 1966; Macmillan & Creelman 2005;
Swets et al. 1961), from which it follows that an optimal observer
would choose s1 more often than s2 even when the two stimuli are
presented at equal rates (Fig. 2). Indeed, many detection studies
find that observers choose the noise distribution s1 more than
half of the time (Gorea & Sagi 2000; Green & Swets 1966;
Rahnev et al. 2011b; Reckless et al. 2014; Solovey et al. 2015;
Swets et al. 1961). However, most studies do not allow for the esti-
mation of the exact measurement distributions for individual
observers, and hence it is an open question how optimal observers
in those studies actually are. A few studies have reported condi-
tions in which observers choose the noise stimulus s1 less than
half of the time (Morales et al. 2015; Rahnev et al. 2011b;
Solovey et al. 2015). Assuming that the noise distributions in
those studies also had lower variability, such behavior is likely
suboptimal.

3.1.2. Discrimination criteria
Detection tasks require observers to distinguish between the noise
versus signal + noise stimuli, but other tasks require observers to
discriminate between two roughly equivalent stimuli. For
example, observers might discriminate leftward versus rightward
motion or clockwise versus counterclockwise grating orientation.
For these types of stimuli, the measurement distributions for each
stimulus category can be assumed to have approximately equal
variability (Macmillan & Creelman 2005; See et al. 1997). Such

Figure 1. Graphical depiction of Bayesian inference.
An observer is deciding between two possible stimuli
– s1 (e.g., leftward motion) and s2 (e.g., rightward
motion) – which produce Gaussian measurement
distributions of internal responses. The observer’s
internal response varies from trial to trial, depicted
by the three yellow circles for three example trials.
On a given trial, the likelihood function is equal to
the height of each of the two measurement densities
at the value of the observed internal response (lines
drawn from each yellow circle) – that is, the likeli-
hood of each stimulus given an internal response.
For illustrative purposes, a different experimenter-
provided prior and cost function are assumed on
each trial. The action ai corresponds to choosing
stimulus si. We obtain the expected cost of each
action by multiplying the likelihood, prior, and cost
corresponding to each stimulus and then summing
the costs associated with the two possible stimuli.
The optimal decision rule is to choose the action
with the lower cost (the bar with less negative
values). In trial 1, the prior and cost function are
unbiased, so the optimal decision depends only on
the likelihood function. In trial 2, the prior is biased
toward s2, making a2 the optimal choice even though
s1 is slightly more likely. In trial 3, the cost function
favors a1, but the much higher likelihood of s2
makes a2 the optimal choice.
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studies find that the average criterion location across the whole
group of observers is usually close to optimal, but individual
observers can still exhibit substantial biases (e.g., Whiteley &
Sahani, 2008). In other words, what appears as an optimal criter-
ion on average (across observers) may be an average of suboptimal
criteria (Mozer et al. 2008; Vul et al. 2014). This issue can appear
within an individual observer, too, with suboptimal criteria on
different trials averaging out to resemble an optimal criterion
(see sect. 3.2). To check for criterion optimality within individual
observers, we re-analyzed the data from a recent study in which
observers discriminated between a grating tilted 45 degrees clock-
wise or counterclockwise from vertical (Rahnev et al. 2016).
Seventeen observers came for four sessions on different days com-
pleting 480 trials each time. Using a binomial test, we found that
57 of the 68 total sessions exhibited significant deviation from
unbiased responding. Further, observers tended to have relatively
stable biases as demonstrated by a positive criterion correlation
across all pairs of sessions (all p’s < .003). Hence, even if the per-
formance of the group appears to be close to optimal, individual
observers may deviate substantially from optimality.

3.1.3. Two-stimulus tasks
The biases observed in detection and discrimination experiments
led to the development of the two-alternative forced-choice
(2AFC) task, in which both stimulus categories are presented
on each trial (Macmillan & Creelman 2005). The 2AFC tasks sep-
arate the two stimuli either temporally (also referred to as
two-interval forced-choice or 2IFC tasks) or spatially. Note that,
in recent years, researchers have begun to use the term “2AFC”
for two-choice tasks in which only one stimulus is presented.
To avoid confusion, we adopt the term “two-stimulus tasks” to
refer to tasks where two stimuli are presented (the original mean-
ing of 2AFC) and the term “one-stimulus tasks” to refer to tasks
like single-stimulus detection and discrimination (e.g., the tasks
discussed in sects. 3.1.1 and 3.1.2).

Even though two-stimulus tasks were designed to remove
observer bias, significant biases have been observed for them,
too. Although biases in spatial 2AFC tasks have received less
attention, several suboptimalities have been documented for
2IFC tasks. For example, early research suggested that the second
stimulus is more often selected as the one of higher intensity, a
phenomenon called time-order errors (Fechner 1860; Osgood
1953). More recently, Yeshurun et al. (2008) re-analyzed 2IFC
data from 17 previous experiments and found significant interval
biases. The direction of the bias varied across the different experi-
ments, suggesting that the specific experimental design has an
influence on observers’ bias.

3.1.4. Explaining suboptimality in two-choice tasks
Why do people appear to have trouble setting appropriate criteria
in two-choice tasks? One possibility is that they have a tendency
to give the same fixed response when uncertain [decision rule].
For example, a given observer may respond that he saw left
(rather than right) motion every time he got distracted or had
very low evidence for either choice. This could be because of a
preference for one of the two stimuli or one of the two motor
responses. Re-analysis of another previous study (Rahnev et al.
2011a), where we withheld the stimulus-response mapping until
after the stimulus presentation, found that 12 of the 21 observers
still showed a significant response bias for motion direction.
Therefore, a preference in motor behavior cannot fully account
for this type of suboptimality.

Another possibility is that for many observers even ostensibly
“equivalent” stimuli such as left and right motion give rise to
measurement distributions with unequal variance [likelihood
function]. In that case, an optimal decision rule would produce
behavior that appears biased. Similarly, in two-stimulus tasks, it
is possible that the two stimuli are not given the same resources
or that the internal representations for each stimulus are not inde-
pendent of each other [likelihood function]. Finally, in the case of
detection tasks, it is possible that some observers employ an idio-
syncratic cost function by treating misses as less costly than false
alarms because the latter can be interpreted as lying [cost
function].

3.2. Maintaining stable criteria

So far, we have considered the optimality of the decision rule
when all trials are considered together. We now turn our attention
to whether observers’ decision behavior varies across trials or con-
ditions (Fig. 3).

3.2.1. Sequential effects
Optimality in laboratory tasks requires that judgments are made
based on the evidence from the current stimulus independent
of previous stimuli. However, sequential effects are ubiquitous
in perceptual tasks (Fischer & Whitney 2014; Fründ et al. 2014;
Kaneko & Sakai 2015; Liberman et al. 2014; Norton et al. 2017;
Tanner et al. 1967; Treisman & Faulkner 1984; Ward &
Lockhead 1970; Yu & Cohen 2009). The general finding is that
observers’ responses are positively autocorrelated such that the
response on the current trial is likely to be the same as on the pre-
vious trial, though in some cases negative autocorrelations have
also been reported (Tanner et al. 1967; Ward & Lockhead
1970). Further, observers are able to adjust to new trial-to-trial
statistics, but this adjustment is only strong in the direction of
default biases and weak in the opposite direction (Abrahamyan

Figure 2. Depiction of the measurement distributions (colored curves) and optimal
criteria (equivalent to the decision rules) in two-choice tasks. The upper
panel depicts the case when the two stimuli produce the same internal variability
(σ1 = σ2, where σ is the standard deviation of the Gaussian measurement distribu-
tion). The gray vertical line represents the location of the optimal criterion. The
lower panel shows the location of the optimal criterion when the variability of the
two measurement distributions differs (σ1 < σ2, in which case the optimal criterion
results in a higher proportion of s1 responses).
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et al. 2016). Similar effects have been observed in other species
such as mice (Busse et al. 2011).

3.2.2. Criterion attraction
Interleaving trials that require different criteria also hinders opti-
mal criterion placement. Gorea and Sagi (2000) proposed that
when high-contrast stimuli (optimally requiring a relatively con-
servative detection criterion) and low-contrast stimuli (optimally
requiring a relatively liberal detection criterion) were presented
simultaneously, observers used the same compromised detection
criterion that was suboptimal for both the high- and low-contrast
stimuli. This was despite the fact that, on each trial, they told
observers with 100% certainty which contrasts might have been
present in each location. Similar criterion attraction has been pro-
posed in a variety of paradigms that involved using stimuli of dif-
ferent contrasts (Gorea & Sagi 2001; 2002; Gorea et al. 2005; Zak
et al. 2012), attended versus unattended stimuli (Morales et al.
2015; Rahnev et al. 2011b), and central versus peripheral stimuli
(Solovey et al. 2015). Although proposals of criterion attraction
consider the absolute location of the criterion on the internal
decision axis, recent work has noted the methodological difficul-
ties of recovering absolute criteria in signal detection tasks
(Denison et al. 2018).

3.2.3. Irrelevant reward influencing the criterion
The optimal decision rule is insensitive to multiplicative changes
to the cost function. For example, rewarding all correct responses
with $0.01 versus $0.03, while incorrect responses receive $0,
should not alter the decision criterion; in both cases, the optimal
decision rule is the one that maximizes percent correct. However,
greater monetary rewards or punishments lead observers to adopt
a more liberal detection criterion such that more stimuli are iden-
tified as targets (Reckless et al. 2013; 2014). Similar changes to the
response criterion because of monetary motivation are obtained
in a variety of paradigms (Henriques et al. 1994; Taylor et al.
2004). To complicate matters, observers’ personality traits interact
with the type of monetary reward in altering response criteria
(Markman et al. 2005).

3.2.4. Explaining suboptimality in maintaining stable criteria
Why do people appear to shift their response criteria based on
factors that should be irrelevant for criterion placement?
Sequential effects are typically explained in terms of an automatic

tendency to exploit the continuity in our normal environment,
even though such continuity is not present in most experimental
setups (Fischer & Whitney 2014; Fritsche et al. 2017; Liberman
et al. 2014). The visual system could have built-in mechanisms
that bias new representations toward recent ones [likelihood func-
tion], or it may assume that a new stimulus is likely to be similar
to a recent one [ prior]. (Note that the alternative likelihoods or
priors would need to be defined over pairs or sequences of trials.)
Adopting a prior that the environment is autocorrelated may be a
good strategy for maximizing reward: Environments typically are
autocorrelated and, if they are not, such a prior may not hurt per-
formance (Yu & Cohen 2009).

Criterion attraction may stem from difficulty maintaining two
separate criteria simultaneously. This is equivalent to asserting
that in certain situations observers cannot maintain a more com-
plicated decision rule (e.g., different criteria for different condi-
tions) and instead use a simpler one (e.g., single criterion for all
conditions) [decision rule]. It is harder to explain why personality
traits or task features such as increased monetary rewards (that
should be irrelevant to the response criterion) change observers’
criteria.

3.3. Adjusting choice criteria

Two of the most common ways to assess optimality in perceptual
decision making are to manipulate the prior probabilities of the
stimulus classes and to provide unequal payoffs that bias
responses toward one of the stimulus categories (Macmillan &
Creelman 2005). Manipulating prior probabilities affects the
prior π(s), whereas manipulating payoffs affects the cost function
L(s, a). However, the two manipulations have an equivalent effect
on the optimal decision rule: Both require observers to shift their
decision criterion by a factor dictated by the specific prior prob-
ability or reward structure (Fig. 4).

3.3.1. Priors
Two main approaches have been used to determine whether
observers can optimally adjust their criterion when one of two
stimuli has a higher probability of occurrence. In base-rate manip-
ulations, long blocks of the same occurrence frequency are
employed, and observers are typically not informed of the prob-
abilities of occurrence in advance (e.g., Maddox 1995). Most stud-
ies find that observers adjust their criterion to account for the
unequal base rate, but this adjustment is smaller than what is
required for optimal performance, resulting in a conservative cri-
terion placement (Bohil & Maddox 2003b; Green & Swets 1966;
Maddox & Bohil 2001; 2003; 2005; Maddox & Dodd 2001;
Maddox et al. 2003; Tanner 1956; Tanner et al. 1967; Vincent
2011). Some studies have suggested that observers become pro-
gressively more suboptimal as the base rate becomes progressively
more extreme (Bohil & Maddox 2003b; Green & Swets 1966).
However, a few studies have reported that certain conditions
result in extreme criterion placement such that observers rely
more on base rate information than is optimal (Maddox &
Bohil 1998b).

A second way to manipulate the probability of occurrence is to
do it on a trial-by-trial basis and explicitly inform observers about
the stimulus probabilities before each trial. This approach also
leads to conservative criterion placement such that observers do
not shift their criterion enough (Ackermann & Landy 2015; de
Lange et al. 2013; Rahnev et al. 2011a; Summerfield & Koechlin
2010; Ulehla 1966).

Figure 3. Depiction of a failure to maintain a stable criterion. The optimal criterion is
shown in Figure 2, but observers often fail to maintain that criterion over the course
of the experiment, resulting in a criterion that effectively varies across trials. Colored
curves show measurement distributions.
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3.3.2. Payoffs
The decision criterion can also be manipulated by giving different
payoffs for different responses. The general finding with this
manipulation is that observers, again, do not adjust their criterion
enough (Ackermann & Landy 2015; Bohil & Maddox 2001;
2003a; 2003b; Busemeyer & Myung 1992; Maddox & Bohil
1998a; 2000; 2001; 2003; 2005; Maddox & Dodd 2001; Maddox
et al. 2003; Markman et al. 2005; Taylor et al. 2004; Ulehla
1966) and, as with base rates, become more suboptimal for
more extreme payoffs (Bohil & Maddox 2003b). Nevertheless,
one study that involved a very large number of sessions with
two monkeys reported extreme criterion changes (Feng et al.
2009).

Criterion adjustments in response to unequal payoffs are usu-
ally found to be more suboptimal compared with adjustments in
response to unequal base rates (Ackermann & Landy 2015; Bohil
& Maddox 2001; 2003a; Busemeyer & Myung 1992; Healy &
Kubovy 1981; Maddox 2002; Maddox & Bohil 1998a; Maddox
& Dodd 2001), though the opposite pattern was found by
Green and Swets (1966).

Finally, the exact payoff structure may also influence observers’
optimality. For example, introducing a cost for incorrect answers
leads to more suboptimal criterion placement compared with
conditions with the same optimal criterion shift but without a
cost for incorrect answers (Maddox & Bohil 2000; Maddox &
Dodd 2001; Maddox et al. 2003).

3.3.3. Explaining suboptimality in adjusting choice criteria
Why do people appear not to adjust their decision criteria opti-
mally in response to priors and rewards? One possibility is that
they do not have an accurate internal representation of the rele-
vant probability implied by the prior or reward structure [general]

(Acerbi et al. 2014b; Ackermann & Landy 2015; Zhang &
Maloney 2012). For example, Zhang and Maloney (2012) argued
for the presence of “ubiquitous log odds” that systematically dis-
tort people’s probability judgments such that small values are
overestimated and large values are underestimated (Brooke &
MacRae 1977; Juslin et al. 2009; Kahneman & Tversky 1979;
Varey et al. 1990).

A possible explanation for the suboptimality in base-rate
experiments is the “flat-maxima” hypothesis, according to
which the observer adjusts the decision criterion based on the
change in reward and has trouble finding its optimal value if
other criterion positions result in similar reward rates [methodo-
logical] (Bohil & Maddox 2003a; Busemeyer & Myung 1992;
Maddox & Bohil 2001; 2003; 2004; 2005; Maddox & Dodd
2001; Maddox et al. 2003; von Winterfeldt & Edwards 1982).
Another possibility is that the prior observers adopt in base-rate
experiments comes from a separate process of Bayesian inference.
If observers are uncertain about the true base rate, a prior
assumption that it is likely to be unbiased would result in insuf-
ficient base rate adjustment [methodological]. A central tendency
bias can also arise when observers form a prior based on the sam-
ple of stimuli they have encountered so far, which are unlikely to
cover the full range of the experimenter-defined stimulus distribu-
tion (Petzschner & Glasauer 2011). We classify these issues as
methodological because if the observers have not been able to
learn a particular likelihood, prior, and cost function (LPC) com-
ponent, then they cannot adopt the optimal decision rule.

Finally, another possibility is that observers also place a pre-
mium on being correct rather than just maximizing reward
[cost function]. Maddox and Bohil (1998a) posited the competi-
tion between reward and accuracy maximization (COBRA)
hypothesis according to which observers attempt to maximize
reward but also place a premium on accuracy (Maddox & Bohil
2004; 2005). This consideration applies to manipulations of pay-
offs but not of prior probabilities and may explain why payoff
manipulations typically lead to larger deviations from optimality
than priors.

3.4. Tradeoff between speed and accuracy

In the previous examples, the only variable of interest has been
observers’ choice irrespective of their reaction times (RTs).
However, if instructed, observers can provide responses faster at
lower accuracy, a phenomenon known as speed-accuracy tradeoff
(SAT; Fitts 1966; Heitz 2014). An important question here is
whether observers can adjust their RTs optimally to achieve max-
imum reward in a given amount of time (Fig. 5). A practical dif-
ficulty for studies attempting to address this question is that the
accuracy/RT curve is not generally known and is likely to differ
substantially between different tasks (Heitz 2014). Therefore, the
only standard assumption here is that accuracy increases mono-
tonically as a function of RT. Precise accuracy/RT curves can be
constructed by assuming one of the many models from the
sequential sampling modeling framework (Forstmann et al.
2016), and there is a vibrant discussion about the optimal stop-
ping rule depending on whether signal reliability is known or
unknown (Bogacz 2007; Bogacz et al. 2006; Drugowitsch et al.
2012; 2015; Hanks et al. 2011; Hawkins et al. 2015; Thura et al.
2012). However, because different models predict different accur-
acy/RT curves, in what follows we only assume a monotonic rela-
tionship between accuracy and RT.

Figure 4. Depiction of optimal adjustment of choice criteria. In addition to the s1 and
s2 measurement distributions (in thin red and blue lines), the figure shows the corre-
sponding posterior probabilities as a function of x assuming uniform prior (in thick
red and blue lines). The vertical criteria depict optimal criterion locations on x
(thin gray lines) and correspond to the horizontal thresholds (thick yellow lines).
Optimal criterion and threshold for equal prior probabilities and payoffs are shown
in dashed lines. If unequal prior probability or unequal payoff is provided such
that s1 ought to be chosen three times as often as s2, then the threshold would opti-
mally be shifted to 0.75, corresponding to a shift in the criterion such that the hori-
zontal threshold and vertical criterion intersect on the s2 posterior probability
function. The y-axis is probability density for the measurement distributions and
probability for the posterior probability functions; the y-axis ticks refer to the poster-
ior probability.
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3.4.1. Trading off speed and accuracy
Although observers are able to adjust their behavior to account for
both accuracy and RT, they cannot do so optimally (Balcı et al.
2011b; Bogacz et al. 2010; Simen et al. 2009; Starns & Ratcliff
2010; 2012; Tsetsos et al. 2015). In most cases, observers take
too long to decide, leading to slightly higher accuracy but substan-
tially longer RTs than optimal (Bogacz et al. 2010; Simen et al.
2009; Starns & Ratcliff 2010; 2012). This effect occurs when obser-
vers have a fixed period of time to complete as many trials as pos-
sible (Bogacz et al. 2010; Simen et al. 2009; Starns & Ratcliff 2010;
2012) and in the more familiar design with a fixed number of trials
per block (Starns & Ratcliff 2010; 2012). Further, observers take
longer to decide for more difficult compared with easier conditions,
even though optimizing the total reward demands that they do the
opposite (Oud et al. 2016; Starns & Ratcliff 2012). Older adults are
even more suboptimal than college-age participants by this meas-
ure (Starns & Ratcliff 2010; 2012).

3.4.2. Keeping a low error rate under implicit time pressure
Even though observers tend to overemphasize accuracy, they are
also suboptimal in tasks that require an extreme emphasis on
accuracy. This conclusion comes from a line of research on visual
search in which observers are typically given an unlimited amount
of time to decide whether a target is present or not (Eckstein
2011). In certain situations, such as airport checkpoints or detect-
ing tumors in mammograms, the goal is to keep a very low miss
rate irrespective of RT, because misses can have dire consequences
(Evans et al. 2013; Wolfe et al. 2013). The optimal RT can be
derived from Figure 5A as the minimal RT that results in the
desired accuracy rate. A series of studies by Wolfe and colleagues
found that observers, even trained doctors and airport checkpoint

screeners, are suboptimal in such tasks in that they allow overly
high rates of misses (Evans et al. 2011; 2013; Wolfe & Van
Wert 2010; Wolfe et al. 2005; 2013). Further, this effect was robust
and resistant to a variety of methods designed to help observers
take longer in order to achieve higher accuracy (Wolfe et al.
2007) or reduce motor errors (Van Wert et al. 2009). An explan-
ation of this suboptimality based on capacity limits is rejected by
two studies that found that observers can be induced to take
longer time, and thus achieve higher accuracy, by first providing
them with a block of high prevalence targets accompanied by
feedback (Wolfe et al. 2007; 2013).

3.4.3. Explaining suboptimality in the speed-accuracy tradeoff
Why do people appear to be unable to trade off speed and accur-
acy optimally? Similar to explanations from the previous sections,
it is possible to account for overly long RTs by postulating that, in
addition to maximizing their total reward, observers place a pre-
mium on being accurate [cost function] (Balcı et al. 2011b; Bogacz
et al. 2010; Holmes & Cohen 2014). Another possibility is that
observers’ judgments of elapsed time are noisy [general], and
longer-than-optimal RTs lead to a higher reward rate than RTs
that are shorter than optimal by the same amount (Simen et al.
2009; Zacksenhouse et al. 2010). Finally, in some situations,
observers may also place a premium on speed [cost function], pre-
venting a very low error rate (Wolfe et al. 2013).

3.5. Confidence in one’s decision

The Bayesian approach prescribes how the posterior probability
should be computed. Although researchers typically examine
the question of whether the stimulus with highest posterior prob-
ability is selected, it is also possible to examine whether observers
can report the actual value of the posterior distribution or per-
form simple computations with it (Fig. 6). In such cases, obser-
vers are asked to provide “metacognitive” confidence ratings
about the accuracy of their decisions (Metcalfe & Shimamura
1994; Yeung & Summerfield 2012). Such studies rarely provide
subjects with an explicit cost function (but see Kiani & Shadlen
2009; Rahnev et al. 2013) but, in many cases, reasonable assump-
tions can be made in order to derive optimal performance (see
sects. 3.5.1–3.5.4).

3.5.1. Overconfidence and underconfidence (confidence
calibration)
It is straightforward to construct a payoff structure for confidence
ratings such that observers gain the most reward when their con-
fidence reflects the posterior probability of being correct (e.g.,
Fleming et al. 2016; Massoni et al. 2014). Most studies, however,
do not provide observers with such a payoff structure, so assessing
the optimality of the confidence ratings necessitates the further
assumption that observers create a similar function internally.
To test for optimality, we can then consider, for example, all trials
in which an observer has 70% confidence of being correct and test
whether the average accuracy on those trials is indeed 70%. This
type of relationship between confidence and accuracy is often
referred to as confidence calibration (Baranski & Petrusic 1994).
Studies of confidence have found that for certain tasks observers
are overconfident (i.e., they overestimate their accuracy) (Adams
1957; Baranski & Petrusic 1994; Dawes 1980; Harvey 1997;
Keren 1988; Koriat 2011), whereas for other tasks observers are
underconfident (i.e., they underestimate their accuracy)
(Baranski & Petrusic 1994; Björkman et al. 1993; Dawes 1980;

Figure 5. (A) Depiction of one possible accuracy/reaction time (RT) curve. Percent
correct responses increases monotonically as a function of RT and asymptotes at
90%. (B) The total reward/RT curve for the accuracy/RT curve from panel A with
the following additional assumptions: (1) observers complete as many trials as pos-
sible within a 30-minute window, (2) completing a trial takes 1.5 seconds on top of
the RT (because of stimulus presentation and between-trial breaks), and (3) each cor-
rect answer results in 1 point, whereas incorrect answers result in 0 points. The opti-
mal RT – the one that maximizes the total reward – is depicted with dashed lines.
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Harvey 1997; Winman & Juslin 1993). One pattern that emerges
consistently is that overconfidence occurs in difficult tasks,
whereas underconfidence occurs in easy tasks (Baranski &
Petrusic 1994, 1995, 1999), a phenomenon known as the hard-
easy effect (Gigerenzer et al. 1991). Similar results are seen for
tasks outside of the perceptual domain such as answering general
knowledge questions (Griffin & Tversky 1992). Overconfidence
and underconfidence are stable over different tasks (Ais et al.
2015; Song et al. 2011) and depend on non-perceptual factors
such as one’s optimism bias (Ais et al. 2015).

3.5.2. Dissociations of confidence and accuracy across different
experimental conditions
Although precise confidence calibration is computationally diffi-
cult, a weaker test of optimality examines whether experimental
conditions that lead to the same performance are judged with
the same level of confidence (even if this level is too high or
too low). This test only requires that observers’ confidence ratings
follow a consistent internal cost function across the two tasks.
Many studies demonstrate dissociations between confidence and
accuracy across tasks, thus showing that observers fail this weaker
optimality test. For example, speeded responses can decrease
accuracy but leave confidence unchanged (Baranski & Petrusic
1994; Vickers & Packer 1982), whereas slowed responses can
lead to the same accuracy but lower confidence (Kiani et al.
2014). Dissociations between confidence and accuracy have also
been found in conditions that differ in attention (Rahnev et al.
2012a; Rahnev et al. 2011b; Wilimzig et al. 2008), the variability
of the perceptual signal (de Gardelle & Mamassian 2015;
Koizumi et al. 2015; Samaha et al. 2016; Song et al. 2015;
Spence et al. 2016; Zylberberg et al. 2014), the stimulus-onset
asynchrony in metacontrast masking (Lau & Passingham 2006),
the presence of unconscious information (Vlassova et al. 2014),
and the relative timing of a concurrent saccade (Navajas et al.
2014). Further, some of these biases seem to arise from individual
differences that are stable across multiple sessions (de Gardelle &
Mamassian 2015). Finally, dissociations between confidence and
accuracy have been found in studies that applied transcranial

magnetic stimulation (TMS) to the visual (Rahnev et al. 2012b),
premotor (Fleming et al. 2015), or frontal cortex (Chiang et al.
2014).

3.5.3. Metacognitive sensitivity (confidence resolution)
The previous sections were concerned with the average magnitude
of confidence ratings over many trials. Another measure of inter-
est is the degree of correspondence between confidence and
accuracy on individual trials (Metcalfe & Shimamura 1994), called
metacognitive sensitivity (Fleming & Lau 2014) or confidence reso-
lution (Baranski & Petrusic 1994). Recently, Maniscalco and Lau
(2012) developed a method to quantify how optimal an observer’s
metacognitive sensitivity is. Their method computes meta-d′, a
measure of how much information is available for metacognition,
which can then be compared with the actual d′ value. An optimal
observer would have a meta-d′/d′ ratio of 1. Maniscalco and Lau
(2012) obtained a ratio of 0.77, suggesting a 23% loss of informa-
tion for confidence judgments. Even though some studies that
used the same measure but different perceptual paradigms
found values close to 1 (Fleming et al. 2014), many others arrived
at values substantially lower than 1 (Bang et al. in press;
Maniscalco & Lau 2015; Maniscalco et al. 2016; Massoni 2014;
McCurdy et al. 2013; Schurger et al. 2015; Sherman et al. 2015;
Vlassova et al. 2014). Interestingly, at least one study has reported
values significantly greater than 1, suggesting that in certain cases
the metacognitive system has more information than was used for
the primary decision (Charles et al. 2013), thus implying the pres-
ence of suboptimality in the perceptual decision.

3.5.4. Confidence does not simply reflect the posterior
probability of being correct
Another way of assessing the optimality of confidence ratings is to
determine whether observers compute confidence in a manner
consistent with the posterior probability of being correct. This
is also a weaker condition than reporting the actual posterior
probability of being correct, because it does not specify how
observers should place decision boundaries between different
confidence ratings, only that these boundaries should depend

Figure 6. Depiction of how an observer should
give confidence ratings. Similar to Figure 4, both
the measurement distributions and posterior
probabilities as a function of x assuming uniform
prior are depicted. The confidence thresholds
(depicted as yellow lines) correspond to criteria
defined on x (depicted as gray lines). The horizon-
tal thresholds and vertical criteria intersect on the
posterior probability functions. The y-axis is prob-
ability density for the measurement distributions
and probability for the posterior probability func-
tions; the y-axis ticks refer to the posterior
probability.
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on the posterior probability of being correct. Although one study
found that confidence ratings are consistent with computations
based on the posterior probability (Sanders et al. 2016; but see
Adler & Ma 2018b), others showed that either some (Aitchison
et al. 2015; Navajas et al. 2017) or most (Adler & Ma 2018a;
Denison et al. 2018) observers are described better by heuristic
models in which confidence depends on uncertainty but not on
the actual posterior probability of being correct.

Further, confidence judgments are influenced by a host of fac-
tors unrelated to the perceptual signal at hand and thus in viola-
tion of the principle that they should reflect the posterior
probability of being correct. For example, emotional states, such
as worry (Massoni 2014) and arousal (Allen et al. 2016), affect
how sensory information relates to confidence ratings. Other fac-
tors, such as eye gaze stability (Schurger et al. 2015), working
memory load (Maniscalco & Lau 2015), and age (Weil et al.
2013), affect the relationship between confidence and accuracy.
Sequential effects have also been reported for confidence judg-
ments such that a high confidence rating is more likely to follow
a high, rather than low, confidence rating (Mueller & Weidemann
2008). Confidence dependencies exist even between different
tasks, such as letter and color discrimination, that depend on dif-
ferent neural populations in the visual cortex (Rahnev et al. 2015).
Inter-task confidence influences have been dubbed “confidence
leak” and have been shown to be negatively correlated with obser-
vers’ metacognitive sensitivity (Rahnev et al. 2015).

Confidence has also been shown to exhibit a “positive evi-
dence” bias (Maniscalco et al. 2016; Zylberberg et al. 2012). In
two-choice tasks, one can distinguish between sensory evidence
in a trial that is congruent with the observer’s response on that
trial (positive evidence) and sensory evidence that is incongruent
with the response (negative evidence). Even though the perceptual
decisions usually follow the optimal strategy of weighting equally
both of these sources of evidence, confidence ratings are subopti-
mal in depending more on the positive evidence (Koizumi et al.
2015; Maniscalco et al. 2016; Samaha et al. 2016; Song et al.
2015; Zylberberg et al. 2012).

3.5.5. Explaining suboptimality in confidence ratings
Why do people appear to give inappropriate confidence ratings?
Some components of overconfidence and underconfidence can
be explained by inappropriate transformation of internal evidence
into probabilities [general] (Zhang & Maloney 2012), methodo-
logical considerations such as interleaving conditions with differ-
ent difficulty levels, which can have inadvertent effects on the
prior [methodological] (Drugowitsch et al. 2014b), or even indi-
vidual differences such as shyness about giving high confidence,
which can be conceptualized as extra cost for high-confidence
responses [cost function]. Confidence-accuracy dissociations are
often attributed to observers’ inability to maintain different cri-
teria for different conditions, even if they are clearly distinguish-
able [decision rule] (Koizumi et al. 2015; Rahnev et al. 2011b).
The “positive evidence” bias [decision rule] introduced in the
end of section 3.5.4 can also account for certain suboptimalities
in confidence ratings.

More generally, it is possible that confidence ratings are not
only based on the available perceptual evidence as assumed by
most modeling approaches (Drugowitsch & Pouget 2012; Green
& Swets 1966; Macmillan & Creelman 2005; Ratcliff & Starns
2009; Vickers 1979). Other theories postulate the existence of either
different processing streams that contribute differentially to the
perceptual decision and the subjective confidence judgment (Del

Cul et al. 2009; Jolij & Lamme 2005; Weiskrantz 1996) or a second
processing stage that determines the confidence judgment and that
builds on the information in an earlier processing stage responsible
for the perceptual decision (Bang et al. in press; Fleming & Daw
2017; Lau & Rosenthal 2011; Maniscalco & Lau 2010, 2016;
Pleskac & Busemeyer 2010; van den Berg et al. 2017). Both types
of models could be used to explain the various findings of subopti-
mal behavior and imply the existence of different measurement dis-
tributions for decision and confidence [likelihood function].

3.6. Comparing sensitivity in different tasks

The previous sections discussed observers’ performance on a sin-
gle task. Another way of examining optimality is to compare the
performance on two related tasks. If the two tasks have a formal
relationship, then an optimal observer’s sensitivity on the two
tasks should follow that relationship.

3.6.1. Comparing performance in one-stimulus and two-stimulus
tasks
Visual sensitivity has traditionally been measured by employing
either (1) a one-stimulus (detection or discrimination) task in
which a single stimulus from one of two stimulus classes is pre-
sented on each trial or (2) a two-stimulus task in which both
stimulus classes are presented on each trial (see sect. 3.1.3).
Intuitively, two-stimulus tasks are easier because the final decision
is based on more perceptual information. Assuming independent
processing of each stimulus, the relationship between the sensitiv-
ity on these two types of tasks can be mathematically defined: The
sensitivity on the two-stimulus task should be

��
2

√
times higher

than on the one-stimulus task (Macmillan & Creelman, 2005;
Fig. 7). Nevertheless, empirical studies have often contradicted
this predicted relationship: Many studies have found sensitivity
ratios smaller than

��
2

√
(Creelman & Macmillan 1979; Jesteadt

1974; Leshowitz 1969; Markowitz & Swets 1967; Pynn 1972;
Schulman & Mitchell 1966; Swets & Green 1961; Viemeister
1970; Watson et al. 1973; Yeshurun et al. 2008), though a few
have found ratios larger than

��
2

√
(Leshowitz 1969; Markowitz

& Swets 1967; Swets & Green 1961).

3.6.2. Comparing performance in other tasks
Many other comparisons between tasks have been performed. In
temporal 2IFC tasks, observers often have different sensitivities to
the two stimulus intervals (García-Pérez & Alcalá-Quintana 2010;
2011; Yeshurun et al. 2008), suggesting an inability to distribute
resources equally. Other studies find that longer inter-stimulus
intervals in 2IFC tasks lead to decreases in sensitivity (Berliner
& Durlach 1973; Kinchla & Smyzer 1967; Tanner 1961), presum-
ably because of memory limitations. Further, choice variability on
three-choice tasks is greater than what would be predicted by a
related two-choice task (Drugowitsch et al. 2016). Creelman
and Macmillan (1979) compared the sensitivity on nine different
psychophysical tasks and found a complex pattern of dependen-
cies, many of which were at odds with optimal performance.
Finally, Olzak (1985) demonstrated deviations from the expected
relationship between detection and discrimination tasks.

An alternative approach to comparing an observer’s perform-
ance on different tasks is allowing observers to choose which tasks
they prefer to complete and analyzing the optimality of these
decisions. In particular, one can test for the presence of transitiv-
ity: If an observer prefers task A to task B and task B to task C,
then the observer should prefer task A to task C. Several studies
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suggest that human observers violate the transitivity principle
both in choosing tasks (Zhang et al. 2010) and choosing stimuli
(Tsetsos et al. 2016a), though there is considerable controversy
surrounding such findings (Davis-Stober et al. 2016; Kalenscher
et al. 2010; Regenwetter et al. 2010; 2011, 2017).

3.6.3. Explaining suboptimality in between-task comparisons
Why does human performance on different tasks violate the
expected relationship between these tasks? One possibility is
that observers face certain capacity limits in one task, but not
the other, that alter how the stimuli are encoded [likelihood func-
tion]. For example, compared to a one-stimulus task, the more
complex two-stimulus task requires the simultaneous processing
of two stimuli. If limited resources hamper the processing of
the second stimulus, then sensitivity in that task will fall short
of what is predicted based on the one-stimulus task.

In some experiments, observers performed worse than
expected on the one-stimulus task, rather than on the two-stimu-
lus task. A possible explanation of this effect is the presence of a
larger “criterion jitter” in the one-stimulus task (i.e., a larger vari-
ability in the decision criterion from trial to trial). Because
two-stimulus tasks involve the comparison of two stimuli on
each trial, these tasks are less susceptible to criterion jitter. Such
criterion variability, which could stem from sequential dependen-
cies or even random criterion fluctuations (see sect. 3.2), decreases
the estimated stimulus sensitivity (Mueller & Weidemann 2008).
The criterion jitter could also be the result of computational
imprecision [general] (Bays & Dowding 2017; Beck et al. 2012;
Dayan 2014; Drugowitsch et al. 2016; Renart & Machens 2014;
Whiteley & Sahani 2012; Wyart & Koechlin 2016). Such im-
precision could arise from constraints at the neural level and
may account for a large amount of choice suboptimality
(Drugowitsch et al. 2016).

3.7. Cue combination

Studies of cue combination have been fundamental to the view
that sensory perception is optimal (Trommershäuser et al.
2011). Cue combination (also called “cue integration”) is needed
whenever different sensory features provide separate pieces of
information about a single physical quantity. For example, audi-
tory and visual signals can separately inform about the location
of an object. Each cue provides imperfect information about the
physical world, but different cues have different sources of vari-
ability. As a result, integrating the different cues can provide a
more accurate and reliable estimate of the physical quantity of
interest.

One can test for optimality in cue combination by comparing
the perceptual estimate formed from two cues with the estimates
formed from each cue individually. The optimal estimate is typic-
ally taken to be the one that maximizes precision (minimizes vari-
ability) across trials (Fig. 8). When the variability for each cue is
Gaussian and independent of the other cues, the maximum like-
lihood estimate (MLE) is a linear combination of the estimates
from each cue, weighted by their individual reliabilities (Landy
et al. 2011). Whether observers conform to this weighted sum for-
mula can be readily tested psychophysically, and a large number
of studies have done exactly this for different types of cues and
tasks (for reviews, see Ma 2010; Trommershäuser et al. 2011).

In particular, the optimal mean perceptual estimate (x) after
observing cue 1 (with feature estimate x1 and variance s2

1) and
cue 2 (with feature estimate x2 and variance s2

2) is

x =
x1
s2
1
+ x2

s2
2

1
s2
1
+ 1

s2
2

,

Figure 7. Depiction of the relationship between one-stimulus and two-stimulus tasks.
Each axis corresponds to a one-stimulus task (e.g., Fig. 2). The three sets of concen-
tric circles represent two-dimensional circular Gaussian distributions corresponding
to presenting two stimuli in a row (e.g., s2,s1 means that s2 was the first stimulus
and s1 was the second stimulus). If the discriminability between s1 and s2 is d′

(one-stimulus task; gray lines in triangle), then the Pythagorean theorem gives us
the expected discriminability between s1,s2 and s2,s1 (two-stimulus task; blue line
in triangle).

Figure 8. Optimal cue combination. Two cues that give independent information
about the value of a sensory feature (red and blue curves) are combined to form a
single estimate of the feature value (yellow curve). For Gaussian cue distributions, the
combined cue distribution is narrower than both individual cue distributions, and its
mean is closer to the mean of the distribution of the more reliable cue.
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such that the feature estimate xi is weighted by its reliability
1
s2
i
and

the whole expression is normalized by the sum of the reliabilities.
The optimal variance of the perceptual estimate (σ2) is

s2 = s2
1s

2
2

s2
1 + s2

2
.

3.7.1. Examples of optimality in cue combination
A classic example of cue combination is a study of visual-haptic
cue combination by Ernst and Banks (2002). In this study, obser-
vers estimated the height of a rectangle using (1) only sight, (2)
only touch, or (3) both sight and touch. Performance in the
visual-haptic condition was well described by the MLE formula:
The single cue measurements predicted both the reliability of
the combined estimates and the weights given to each cue.
Many studies have observed similar optimal cue combination
behavior in a range of tasks estimating different physical quan-
tities (Trommershäuser et al. 2011). These studies have investi-
gated integration across two modalities (including vision, touch,
audition, the vestibular sense, and proprioception; e.g., Alais &
Burr, 2004; Ernst & Banks, 2002; Gu et al. 2008; van Beers
et al. 1996) and across two features in the same modality, such
as various visual cues to depth (e.g., Jacobs 1999; Landy et al.
1995). Common among these experiments is that trained obser-
vers complete many trials of a psychophysical task, and the two
cues provide similar estimates of the quantity of interest.
Optimal cue combination has also been observed during sensory-
motor integration (Maloney & Zhang 2010; Trommershäuser
2009; Wei & Körding 2011; Yeshurun et al. 2008).

3.7.2. Examples of suboptimality in cue combination
Because optimality is often the hypothesized outcome in cue
combination studies, findings of suboptimality may be underre-
ported or underemphasized in the literature (Rosas &
Wichmann 2011). Still, a number of studies have demonstrated
suboptimal cue combination that violates some part of the MLE
formula. These violations fall into two categories: (1) those in
which the cues are integrated but are not weighted according to
their independently measured reliabilities, and (2) those in
which estimates from two cues are no better than estimates
from a single cue.

In the first category are findings from a wide range of com-
bined modalities: visual-auditory (Battaglia et al. 2003; Burr
et al. 2009; Maiworm & Röder 2011), visual-vestibular (Fetsch
et al. 2012; Prsa et al. 2012), visual-haptic (Battaglia et al. 2011;
Rosas et al. 2005), and visual-visual (Knill & Saunders 2003;
Rosas et al. 2007). For example, auditory and visual cues were
not integrated according to the MLE rule in a localization task;
instead, observers treated the visual cue as though it were more
reliable than it really was (Battaglia et al. 2003). Similarly, visual
and haptic texture cues were integrated according to their reliabil-
ities, but observers underweighted the visual cue (Rosas et al.
2005). Suboptimal integration of visual and auditory cues was
also found for patients with central vision loss, but not for
patients with peripheral vision loss (Garcia et al. 2017).

In some of these studies, cue misweighting was restricted to
low-reliability cues: In a visual-vestibular heading task, observers
overweighted vestibular cues when visual reliability was low
(Fetsch et al. 2012), and in a visual-auditory temporal order judg-
ment task, observers overweighted auditory cues when auditory

reliability was low (Maiworm & Röder 2011). However, over-
weighting does not only occur within a limited range of reliabil-
ities (e.g., Battaglia et al. 2003; Prsa et al. 2012).

Several studies have failed to find optimal cue combination in
the temporal domain. In an audiovisual rate combination task,
observers only partially integrated the auditory and visual cues,
and they did not integrate them at all when the rates were very
different (Roach et al. 2006). Observers also overweighted audi-
tory cues in temporal order judgment tasks (Maiworm & Röder
2011) and temporal bisection tasks (Burr et al. 2009). It is well
established that when two cues give very different estimates,
observers tend to discount one of them (Gepshtein et al. 2005;
Jack & Thurlow 1973; Körding et al. 2007; Roach et al. 2006;
Warren & Cleaves 1971), an effect which has been called “robust
fusion” (Maloney & Landy 1989), which may arise from inferring
that the two cues come from separate sources (Körding et al.
2007). However, in most of the studies just described, suboptimal
cue combination was observed even when the cues gave similar
estimates.

In the second category of suboptimal cue combination find-
ings, two cues are no better than one (Chen & Tyler 2015;
Drugowitsch et al. 2014a; Landy & Kojima 2001; Oruç et al.
2003; Rosas et al. 2005; 2007). (Note that some of these
studies found a mix of optimal and suboptimal observers.)
Picking the best cue is known as a “veto” type of cue combination
(Bülthoff & Mallot 1988) and is considered a case of “strong
fusion” (Clark & Yullie 1990; Landy et al. 1995). This is an
even more serious violation of optimal cue combination, because
it is as though no integration has taken place at all – the system
either picks the best cue or, in some cases, does worse with two
cues than with one.

Cues may also be mandatorily combined even when doing so
is not suitable for the observer’s task. For example, texture and
disparity information about slant was subsumed in a combined
estimate, rendering the single cue estimates unrecoverable
(Hillis et al. 2002). Interestingly, the single cue estimates were
not lost for children, allowing them to outperform adults when
the cues disagreed (Nardini et al. 2010). In a related finding,
observers used multiple visual features to identify a letter even
when the optimal strategy was to use only a single, relevant feature
(Saarela & Landy 2015).

3.7.3. Combining stimuli of the same type
So far, we have only considered cue combination studies in which
the two cues come from different sensory modalities or
dimensions. Suboptimal behavior has also been observed when
combining cues from the same dimension. For example,
Summerfield and colleagues have shown that observers do not
weight every sample stimulus equally in a decision (Summerfield
& Tsetsos 2015). For simultaneous samples, observers under-
weighted “outlier” stimuli lying far from the mean of the sample
(de Gardelle & Summerfield 2011; Michael et al. 2014; 2015;
Vandormael et al. 2017). For sequential samples, observers over-
weighted stimuli toward the end of the sequence (a recency effect)
as well as stimuli that are similar to recently presented items (Bang
& Rahnev 2017; Cheadle et al. 2014; Wyart et al. 2015). Observers
also used only a subset of a sample of orientations to estimate the
mean orientation of the sample (Dakin 2001). More generally,
accuracy on tasks with sequential samples is substantially lower
than what would be predicted by sensory noise alone
(Drugowitsch et al. 2016).
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3.7.4. Combining sensory and motor cues
Suboptimal cue integration has also been found in sensory-motor
tasks. For example, when integrating the path of a pointing move-
ment with online visual feedback, observers underestimated the
uncertainty indicated by the feedback (Körding & Wolpert
2004). In a pointing task in which observers were rewarded for
physically touching the correct visual target, observers under-
weighted the difficulty of the motor task by aiming for a small tar-
get, even though the perceptual information indicating the target
was also uncertain (Fleming et al. 2013). Similar biases were
reported in a related task (Landy et al. 2007). Within the action
domain (and so beyond our focus on perception), Maloney and
Zhang (2010) have reviewed studies showing both optimal and
suboptimal behavior.

3.7.5. Cue combination in children
Optimal cue integration takes time to develop. Children are sub-
optimal until around 10 years of age when combining multisen-
sory (Gori et al. 2008; Nardini et al. 2008; Petrini et al. 2014)
or visual (Dekker et al. 2015; Nardini et al. 2010) cues.

3.7.6. Explaining suboptimal cue combination
Why do people sometimes appear to combine cues suboptimally?
One possible explanation is that observers do not have accurate
representations of the reliability of the cues (Knill & Saunders
2003; Rosas et al. 2005) because learning the reliability is difficult
[methodological]. This methodological issue is particularly acute
when the cues are new to the observer. For example, in one
task for which cue combination was suboptimal, observers hapti-
cally explored a surface with a single finger to estimate its slant.
However, observers may have little experience with single-finger
slant estimation, because multiple fingers or the whole hand
might ordinarily be used for such a task (Rosas et al. 2005).
Alternatively, cue combination may be suboptimal when one
cue provides all information in parallel but the other cue provides
information serially (Plaisier et al. 2014). Reliability estimation
might also be difficult when the reliability is very low. This pos-
sibility may apply to studies in which observers were optimal
within a range of sensory reliabilities, but not outside it (Fetsch
et al. 2012; Maiworm & Röder 2011).

Some authors suggest that another reason for overweighting or
underweighting a certain cue could be prior knowledge about how
cues ought to be combined [ prior]. This could include a prior
assumption about how likely a cue is to be related to the desired
physical property (Battaglia et al. 2011; Ganmor et al. 2015), how
likely two cue types are to correspond to one another (and thus be
beneficial to integrate) (Roach et al. 2006), or a general preference
to rely on a particular modality, such as audition in a timing task
(Maiworm & Röder 2011).

For certain tasks, some researchers question the assumptions
of the MLE model, such as Gaussian noise [likelihood function]
(Burr et al. 2009) or the independence of the neural representa-
tions of the two cues [likelihood function] (Rosas et al. 2007).
In other cases, it appears that observers use alternative cost func-
tions by, for example, taking RT into account [cost function]
(Drugowitsch et al. 2014a).

“Robust averaging,” or down-weighting of outliers, has been
observed when observers must combine multiple pieces of
information that give very different perceptual estimates. Such
down-weighting can stem from adaptive gain changes [likelihood
function] that result in highest sensitivity to stimuli close to the
mean of the sample (or in the sequential case, the subset of the

sample that has been presented so far; Summerfield & Tsetsos,
2015). This adaptive gain mechanism is similar to models of sen-
sory adaptation (Barlow 1990; Carandini & Heeger 2012; Wark
et al. 2007). By following principles of efficient coding that
place the largest dynamic range at the center of the sample
(Barlow 1961; Brenner et al. 2000; Wainwright 1999), different
stimuli receive unequal weightings. Psychophysical studies in
which stimulus variability is low would not be expected to show
this kind of suboptimality (Cheadle et al. 2014).

It is debated whether suboptimal cue combination in children
reflects a switching strategy (Adams 2016) or immature neural
mechanisms for integrating cues, or whether the developing
brain is optimized for a different task, such as multisensory cali-
bration or conflict detection (Gori et al. 2008; Nardini et al. 2010).

3.8. Other examples of suboptimality

Thus far we have specifically focused on tasks where the optimal
behavior can be specified mathematically in a relatively uncontro-
versial manner (though see sect. 4.2). However, the issue of opti-
mality has been discussed in a variety of other contexts.

3.8.1. Perceptual biases, illusions, and improbabilities
A number of basic visual biases have been documented. Some
examples include repulsion of orientation or motion direction
estimates away from cardinal directions (Fig. 9A; Jastrow 1892;
Rauber & Treue 1998), a bias to perceive speeds as slower than
they are when stimuli are low contrast (Stone & Thompson
1992; Thompson 1982; but see Thompson et al. 2006), a bias to
perceive surfaces as convex (Langer & Bülthoff 2001; Sun &
Perona 1997), and a bias to perceive visual stimuli closer to fix-
ation than they are (whereas the opposite is true for auditory stim-
uli; Odegaard et al. 2015).

When biases, context, or other factors lead to something look-
ing dramatically different from its physical reality, we might call it
a visual illusion. A classic example is the brightness illusion
(Fig. 9B) in which two squares on a checkerboard appear to be
different shades of gray even though they actually have the
same luminance (Adelson 1993). Perceptual illusions persist
even when the observer knows about the illusion and even after
thousands of trials of exposure (Gold et al. 2000).

Some illusions are difficult to reconcile with existing theories
of optimal perception. Anderson et al. (2011), for example,
reported strong percepts of illusory surfaces that were improbable
according to optimal frameworks for contour synthesis. In the
size-weight illusion, smaller objects are perceived as heavier
than larger objects of the same weight, even though the prior
expectation is that smaller objects are lighter (Brayanov &
Smith 2010; Peters et al. 2016).

3.8.2. Adaptation
Adaptation is a widespread phenomenon in sensory systems in
which responsiveness to prolonged or repeated stimuli is reduced
(Webster 2015). As some researchers have discussed (Wei &
Stocker 2015), adaptation could be seen as suboptimal from a
Bayesian perspective because subsequent perceptual estimates
tend to diverge from rather than conform to the prior stimulus.
For example, after prolonged viewing of a line tilted slightly
away from vertical, a vertical line looks tilted in the opposite dir-
ection (the “tilt aftereffect,” Fig. 9C; Gibson & Radner 1937). Or,
after viewing motion in a certain direction, a stationary stimulus
appears to drift in the opposite direction (Wohlgemuth 1911).
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After adapting to a certain color, perception is biased toward the
complementary color (Sabra 1989; Turnbull 1961), and after
adapting to a specific face, another face appears more different
from that face than it would have otherwise (Webster &
MacLeod 2011; Webster et al. 2004). In all of these examples, per-
ception is repelled away from the prior stimulus, which, at least on
the surface, appears suboptimal (but see sect. 3.8.5).

3.8.3. Appearance changes with visual attention
The same physical stimulus can also be perceived in different ways
depending on the state of visual attention. Directing spatial atten-
tion to a stimulus can make it appear larger (Anton-Erxleben
et al. 2007), faster (Anton-Erxleben et al. 2013; Fuller et al.
2009; Turatto et al. 2007), and brighter (Tse 2005), and to have
higher spatial frequency (Abrams et al. 2010; Gobell & Carrasco
2005) and higher contrast (Fig. 9D; Carrasco et al. 2004; Liu
et al. 2009; Störmer et al. 2009) than it would otherwise. Often
attention improves performance on a visual task, but sometimes
it makes performance worse (Ling & Carrasco 2006; Yeshurun
& Carrasco 1998), demonstrating inflexibility in the system.

3.8.4. Cognition-based biases
Other studies have documented visual biases associated with more
cognitive factors, including action affordances (Witt 2011), motiv-
ation (Balcetis 2016), and language (Lupyan 2012). For example,
when people reach for an object with a tool that allows them to
reach farther, they report the object as looking closer than
when they reach without the tool (Fig. 9E; Witt et al. 2005). In
the linguistic domain, calling an object a “triangle” leads observers
to report the object as having more equal sides than when the
object is called “three sided” (Lupyan 2017). How much these
more cognitive factors affect perception per se, as opposed to
post-perceptual judgments, and to what extent the observed visual
biases are mediated by attention remain controversial questions
(Firestone & Scholl 2016).

3.8.5. Explaining these other examples of apparent
suboptimality
Why are people prone to certain biases and illusions? Some biases
and illusions have been explained as arising from priors in the vis-
ual system [prior]. Misperceptions of motion direction (Weiss
et al. 2002) and biases in reporting the speed of low-contrast stim-
uli (Stocker & Simoncelli 2006a; Thompson 1982; Vintch &
Gardner 2014) have been explained as optimal percepts for a vis-
ual system with a prior for slow motion (Stocker & Simoncelli
2006a; Weiss et al. 2002). Such a prior is motivated by the fact
that natural objects tend to be still or move slowly but has been
empirically challenged by subsequent research (Hammett et al.
2007; Hassan & Hammett 2015; Thompson et al. 2006;
Vaziri-Pashkam & Cavanagh 2008). Priors have been invoked to
explain many other biases and illusions (Brainard et al. 2006;
Girshick et al. 2011; Glennerster et al. 2006; Raviv et al. 2012).
The suggestion is that these priors have been made stable over a
lifetime and influence perception even when they do not apply
(e.g., in a laboratory task).

Optimal decoding of sensory representations in one task can
be accompanied by suboptimal biases in another task using the
same stimuli. For example, in a fine-motion discrimination task,
observers seem to weight the neurons tuned away from the dis-
crimination boundary more strongly, because these neurons dis-
tinguish best between the two possible stimuli. This weighting
could explain why motion direction judgments in an interleaved
estimation task are biased away from the boundary (Jazayeri &
Movshon 2007). Another interpretation of these results is in
terms of an improper decision rule (Zamboni et al. 2016).
Specifically, observers may discard sensory information related
to the rejected decision outcome [decision rule] (Bronfman
et al. 2015; Fleming et al. 2013; Luu & Stocker 2016), an effect
known as self-consistency bias (Stocker & Simoncelli 2008).

Various efforts have been made to explain adaptation in the
framework of Bayesian optimality (Grzywacz & Balboa 2002;
Hohwy et al. 2008; Schwiedrzik et al. 2014; Snyder et al. 2015).
One of the most well-developed lines of work explains the

Figure 9. Examples of illusions and biases.
(A) Cardinal repulsion. A nearly vertical (or hori-
zontal) line looks more tilted away from the car-
dinal axis than it is. (B) Adelson’s checkerboard
brightness illusion. Square B appears brighter
than square A, even though the two squares
have the same luminance. (Image ©1995,
Edward H. Adelson) (C) Tilt aftereffect. After view-
ing a tilted adapting grating (left), observers per-
ceive a vertical test grating (right) to be tilted
away from the adaptor. (D) Effects of spatial
attention on contrast appearance (Carrasco
et al. 2004). An attended grating appears to
have higher contrast than the same grating
when it is unattended. (E) Effects of action affor-
dances on perceptual judgments (Witt 2011).
Observers judge an object to be closer (far
white circle compared to near white circle) rela-
tive to the distance between two landmark
objects (red circles) when they are holding a
tool that allows them to reach that object than
when they have no tool.
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repulsive effects of adaptation as a consequence of efficient coding
[likelihood function] (Stocker & Simoncelli 2006b). In this frame-
work, a sensory system adapts to maximize its dynamic range
around the value of previous input. This change in coding does
not affect the prior (as might be expected in a Bayesian treatment
of adaptation) but rather affects the likelihood function.
Specifically, it skews new observations away from the adapted
stimulus, giving rise to repulsive aftereffects. A similar principle
has been suggested to explain why perceptual estimates are
repelled from long-term priors, such as those determined by the
statistics of natural images (Wei & Stocker 2013; 2015).

4. Assessing optimality: Not a useful goal in itself

The extensive review in the previous section demonstrates that
general claims about the optimality of human perceptual decision
making are empirically false. However, there are also theoretical
reasons to turn away from assessing optimality as a primary
research goal.

4.1. Challenges in defining optimality

Section 2 introduced a formal definition of optimality based
on Bayesian decision theory. However, the question of what
phenomena should be considered optimal versus suboptimal
quickly becomes complicated in many actual applications. There
are at least two issues that are not straightforward to address.

The first issue concerns the exact form of the cost function.
Bayesian decision theory postulates that observers should minim-
ize the expected loss. However, observers may reasonably prefer to
minimize the maximum loss, minimize the variability of the
losses, or optimize some other quantity. Therefore, behavior
that is suboptimal according to standard Bayesian decision theory
may be optimal according to other definitions. A related, and dee-
per, problem is that some observers may also try to minimize
other quantities such as time spent, level of boredom, or meta-
bolic energy expended (Lennie 2003). What appears to be a sub-
optimal decision on a specific task may be optimal when all of
these other variables are taken into account (Beck et al. 2012;
Bowers & Davis 2012a). Even the clearest cases of suboptimal
decision rules (e.g., the self-consistency bias) could be construed
as part of a broader optimality (e.g., being self-consistent may
be important for other goals). In a Bayesian framework, taking
into account extra variables requires that each of the LPCD com-
ponents is defined over all of these variables. If one pursues this
logic, it leads to a cost function that operates over our entire evo-
lutionary history. We do not think efforts to explore such cost
functions should be abandoned, but specifying them quantita-
tively is impossible given our current knowledge.

The second issue concerns whether optimality should depend
on the likelihood, prior, and cost function adopted by the obser-
ver. In order to be able to review a large literature using consistent
assumptions, we defined a set of standard assumptions and
labeled any deviation from these assumptions as suboptimal.
This approach is by no means uncontroversial. For example,
priors based on a lifetime of experience may be inflexible, so
one could consider the standard assumption about following
the experimenter-defined prior overly restrictive. An alternative
view could be that suboptimal behavior concerns only deviations
from the experimenter-defined quantities that are under
observers’ control (Tenenbaum & Griffiths 2006; Yu & Cohen
2009). The problem with this definition is that it introduces a

new variable to consider – what exactly is truly under observers’
control – which is often hard to determine. A third approach is
to define optimality exclusively in terms of the decision rule
regardless of what likelihood, prior, and cost function the observer
adopts. In this view, observers are under no obligation to follow
the experimenter’s instructions (e.g., they are free to bring in
their own priors and cost function). The problem with this
approach is that failing to adopt the proper prior or cost function
can result in just as much missed objective reward as adopting an
improper decision rule. Similar problems apply to “improper”
likelihood functions: As an extreme example, a strategy in
which the observer closes her eyes (resulting in a non-informative
likelihood function) and chooses actions randomly has to be
labeled “optimal” because the decision rule is optimal. The ambi-
guity regarding the role of the likelihood, prior, or cost function
points to the difficulties in constructing a general-purpose defin-
ition of optimality.

In short, optimality is impossible to define in the abstract. It is
only well defined in the context of a set of specific assumptions,
rendering general statements about the optimality (or suboptim-
ality) of human perceptual decisions meaningless.

4.2. Optimality claims in and of themselves have limited value

The current emphasis on optimality is fueled by the belief that
demonstrating optimality in perception provides us with import-
ant insight. On the contrary, simply stating that observers are
optimal is of limited value for two main reasons.

First, it is unclear when a general statement about the optimality
of perceptual decisions is supposed to apply. Althoughmost experi-
mental work focuses on very simple tasks, it is widely recognized
that the computational complexity of many real-world tasks
makes optimality unachievable by the brain (Bossaerts &
Murawski 2017; Cooper 1990; Gershman et al. 2015; Tsotsos
1993; van Rooij 2008). Further, inmany situations, the brain cannot
be expected to have complete knowledge of the likelihood function,
which all but guarantees that the decision rule will be suboptimal
(Beck et al. 2012). (Attempting to incorporate observers’ computa-
tional capacities or knowledge brings back the problems related to
how one defines optimality discussed in sect. 4.1.) Therefore, gen-
eral statements about optimality must be intended only for the sim-
plest cases of perceptual decisions (although, as sect. 3
demonstrated, even for these cases, suboptimality is ubiquitous).

Second, even for a specific task, statements about optimality
alone are insufficient to predict behavior. Instead, to predict
future perceptual decisions, one needs to specify each part of
the process underlying the decision. Within the Bayesian frame-
work, for example, one needs to specify each LPCD component,
which goes well beyond a statement that “observers are optimal.”

Is it useless to compare human performance to optimal per-
formance? Absolutely not. Within the context of a specific model,
demonstrating optimal or suboptimal performance is immensely
helpful (Goodman et al. 2015; Tauber et al. 2017). Such demonstra-
tions can support or challenge components of the model and sug-
gest ways to alter the model to accommodate actual behavior.
However, the critical part here is the model, not the optimality.

5. Toward a standard observer model

If there are so many empirical examples of suboptimality (sect. 3)
and optimality can be challenging even to define (sect. 4), then
what is the way forward?
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5.1. Creating and testing observer models

Psychophysics has a long history of creating ideal observer models
(Geisler 2011; Green & Swets 1966; Ulehla 1966). These models
specify a set of assumptions about how sensory information is
represented internally and add an optimal decision rule in
order to generate predictions about behavior. The motivation
behind these models has been to test the collective set of assump-
tions incorporated into the model. However, over time, the “ideal”
part of ideal observer models has become dominant, culminating
in the current outsized emphasis on demonstrating the optimality
of the decision rule – what we call the optimality approach. Even
frameworks such as “bounded rationality” (Gigerenzer & Selten
2002; Simon 1957) or “computational rationality” (Gershman
et al. 2015), which explicitly concern themselves with the limita-
tions of the decision-making process, still place the greatest
emphasis on the optimality of the decision rule.

The emphasis on the decision rule in the optimality approach
has led to an overly flexible treatment of the other LPCD compo-
nents (Bowers & Davis 2012a). This issue is especially problematic
because of the inherent degeneracy of Bayesian decision theory
(Acerbi 2014): Different combinations of the likelihood, prior,
cost function, and decision rule can lead to the same expected
loss. Further, for any likelihood, cost function, and decision
rule, a prior can be found for which that decision rule is optimal
(complete class theorem) (Berger 1985; Jaynes 1957/2003).

To eliminate the flexibility of the optimality approach, the field
should return to the original intention of building ideal observer
models – namely, to test the collective set of assumptions incor-
porated into such models. To this end, we propose that research-
ers drop the “ideal” and shift emphasis to building, simply,
“observer models.” Creating observer models should differ from
the current optimality approach in two critical ways. First,
whether or not the decision rule is optimal should be considered
irrelevant. Second, the nature of the decision rule should not be
considered more important than the nature of the other
components.

These two simple changes address the pitfalls of the optimality
approach. Within the optimality approach, a new finding is often
modeled using flexibly chosen LPCD components (Bowers &
Davis 2012a). Then, depending on the inferred decision rule, a
conclusion is reached that observers are optimal (or suboptimal).
At this point, the project is considered complete and a general
claim is made about optimality (or suboptimality). As others
have pointed out, this approach has led to many “just-so stories”
(Bowers & Davis 2012a), because the assumptions of the model
are not rigorously tested. On the contrary, when building observer
models (e.g., in the Bayesian framework), a new finding is used to
generate hypotheses about a particular LPCD component
(Maloney & Mamassian 2009). Hypotheses about the likelihood,
prior, or cost function are considered as important as hypotheses
about the decision rule. Critically, unlike in the optimality
approach, this step is considered just the beginning of the process!
The hypotheses are then examined in detail while evidence is
gathered for or against them. Researchers can formulate alterna-
tive hypotheses to explain a given data set and evaluate them
using model comparison techniques. In addition, researchers
can conduct follow-up experiments in which they test their
hypotheses using different tasks, stimuli, and observers. There
are researchers who already follow this approach, and we believe
the field would benefit from adopting it as the standard practice.
In Box 1, we list specific steps for implementing observer models

within a Bayesian framework (the steps will be similar regardless
of the framework).

Two examples demonstrate the process of implementing
observer models. A classic example concerns the existence of
Gaussian variability in the measurement distribution. This
assumption has been extensively tested for decades (Green &
Swets 1966; Macmillan & Creelman 2005), thus eventually earn-
ing its place among the standard assumptions in the field. A
second example comes from the literature on speed perception
(sect. 3.8.5). A classic finding is that reducing the contrast of a
slow-moving stimulus reduces its apparent speed (Stone and
Thompson 1992; Thompson 1982). A popular Bayesian explan-
ation for this effect is that most objects in natural environments
are stationary, so the visual system has a prior for slow speeds.
Consequently, when sensory information is uncertain, as occurs
at low contrasts, slow-biased speed perception could be consid-
ered “optimal” (Weiss et al. 2002). Importantly, rather than stop-
ping at this claim, researchers have investigated the hypothetical
slow motion prior in follow-up studies. One study quantitatively
inferred observers’ prior speed distributions under the assump-
tion of a Bayesian decision rule (Stocker & Simoncelli 2006a).
Other researchers tested the slow motion prior and found that,
contrary to its predictions, high-speed motion at low contrast
can appear to move faster than its physical speed (Hammett
et al. 2007; Hassan & Hammett 2015; Thompson et al. 2006).
These latter studies challenged the generality of the slow motion
prior hypothesis.

5.2. Creating a standard observer model

We believe that an overarching goal of the practice of creating and
testing observer models is the development of a standard observer
model that predicts observers’ behavior on a wide variety of per-
ceptual tasks. Such a model would be a significant achievement
for the science of perceptual decision making. It is difficult – per-
haps impossible – to anticipate what form the standard observer

Box 1. Implementing observer models within a Bayesian
framework

1. Describe the complete generative model, including assumptions
about what information the observer is using to perform the
task (e.g., stimulus properties, training, experimenter’s
instructions, feedback, explicit vs. implicit rewards, response
time pressure, etc.).

2. Specify the assumed likelihood function, prior, and cost
function. If multiple options are plausible, test them in different
models.

3. Derive both the optimal decision rule and plausible alternative
decision rules. Compare their abilities to fit the data.

4. Interpret the results with respect to what has been learned
about each LPCD component, not optimality per se. Specify
how the conclusions depend on the assumptions about the
other LPCD components.

5. Most importantly, follow up on any new hypotheses about LPCD
components with additional studies in order to avoid “just-so
stories.”

6. New hypotheses that prove to be general eventually become
part of the standard observer model (see sect. 5.2).
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model will take. It may be a Bayesian model (Maloney &
Mamassian 2009), a “bag of tricks” (Ramachandran 1990), a
neural network (Yamins et al. 2014), and so forth. However,
regardless of the framework in which they were originally formu-
lated, hypotheses with overwhelming empirical support will
become part of the standard observer model. In this context, per-
haps the most damaging aspect of the current outsized emphasis
on optimality is that although it has generated many hypotheses,
few of them have received sufficient subsequent attention to jus-
tify inclusion in (or exclusion from) the eventual standard obser-
ver model.

We suggest that immediate progress can be made by a con-
certed effort to test the hypotheses that have already been pro-
posed to explain suboptimal decisions. To facilitate this effort,
here we compile the hypotheses generated in the course of
explaining the findings from section 3. Within a Bayesian frame-
work, these hypotheses relate to the likelihood function, prior,
cost function, or decision rule (the LPCD components).
Further, a few of them are general and apply to several LPCD
components, and a few are methodological considerations. In
some cases, essentially the same hypothesis was offered in the
context of several different empirical effects. We summarize
these hypotheses in Table 1. Note that the table by no means
exhaustively covers all existing hypotheses that deserve to be thor-
oughly tested.

Table 1 classifies instances of deficient learning as methodo-
logical issues. This choice is not to downplay the problem of
learning. Questions of how observers acquire their priors and
cost functions are of utmost importance, and meaningful progress

has already been made on this front (Acerbi et al. 2012; 2014b;
Beck et al. 2012; Geisler & Najemnik 2013; Gekas et al. 2013;
Seriès & Seitz 2013). Here we categorize deficient learning as a
methodological issue when, because of the experimental setup,
an observer cannot acquire the relevant knowledge even though
she has the capacity to do so.

Future research should avoid the methodological issues from
Table 1. In particular, great care must be taken to ensure that
observers’ assumptions in performing a task match exactly the
assumptions implicit in the analysis.

We have stated the hypotheses in Table 1 at a fairly high
level to succinctly capture the broad categories from our review.
Much of the work ahead will be to break each high-level
hypothesis down into multiple, specific hypotheses and incorpor-
ate these hypotheses into observer models. For example, state-
ments about “inappropriate priors” or “capacity limitations”
prompt more fine-grained hypotheses about specific priors or
limitations whose ability to predict behavior can be tested.
Some hypotheses, like capacity limitations, have already been
investigated extensively – for example, in studies of attention
and working memory (e.g., Carrasco 2011; Cowan 2005).
Turning our existing knowledge of these phenomena into con-
crete observer models that predict perceptual decisions is an excit-
ing direction for the field. Other hypotheses, like placing a
premium on accuracy, have not been tested extensively and there-
fore should still be considered “just-so stories” (Bowers & Davis
2012a). Hence, the real work ahead lies in verifying, rejecting,
and expanding the hypotheses generated from findings of
suboptimal perceptual decisions.

Table 1. Summary of hypotheses proposed to account for suboptimal decisions.

LPCD component Hypothesis Description of the hypothesis
Relevant
sections

Likelihood
function

Capacity limitations All stimuli may not be processed fully because of limited resources. 3.1, 3.2, 3.6, 3.7,
3.8

Incorrect likelihood function The experimenter may make wrong assumptions about the likelihood
function.

3.1, 3.5, 3.7

Prior Inappropriate priors Priors may not be appropriate to the experimental setting (may instead
reflect habitual assumptions).

3.2, 3.7, 3.8

Cost function Placing a premium on accuracy Observers may sacrifice total reward in order to have higher accuracy. 3.3, 3.4

Idiosyncratic cost functions Observers may place a premium on speed, avoid false alarms, or avoid
or high/low confidence ratings.

3.1, 3.4, 3.5, 3.7

Decision rule Non-random guesses Observers may have a tendency to give the same response when
uncertain.

3.1

Inability to employ a complex
decision rule

Observers may adopt a simpler, suboptimal decision rule when the
optimal one is relatively complex.

3.2, 3.5

Ignoring information Observers may not consider all information relevant to the decision. 3.5, 3.8

General Computational imprecision Internal computations may carry inherent imprecision leading to
behavioral variability.

3.4, 3.6

Incorrect probabilities Observers may represent or transform probabilities incorrectly. 3.3

Methodological Incomplete learning If observers could not learn a specific LPCD component, then they
cannot perform optimally.

3.3, 3.7

Task specification “Irrelevant” experimental details may lead observers to alter their
assumptions or strategy.

3.5

Optimal and suboptimal behavior
too similar

Optimal and suboptimal decision rules cannot be distinguished if they
result in similar behavior.

3.3
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5.3. Implications of abandoning the optimality approach

Abandoning the optimality approach has at least two immediate
implications for research practices.

First, researchers should stop focusing on optimality. What
should be advertised in the title and abstract of a paper is not
the optimality but what is learned about the components of the
perceptual process. One of the central questions in perceptual
decision making is how best to characterize the sources that cor-
rupt decisions (Beck et al. 2012; Drugowitsch et al. 2016; Hanks &
Summerfield 2017; Wyart & Koechlin 2016). By shifting attention
away from optimality, the effort to build complete observer mod-
els sharpens the focus on this question.

Second, new model development should not unduly empha-
size optimal models. According to some Bayesian theorists, mod-
els that assume optimal behavior are intrinsically preferable to
models that do not. This preference stems from the argument
that because people can approximate optimal behavior on some
tasks, they must possess the machinery for fully optimal decisions
(Drugowitsch & Pouget 2012). Many models have been judged
positively for supporting optimal decision rules: probabilistic
population codes for allowing optimal cue combination (Ma
et al. 2006), neural sampling models for allowing marginalization
(which is needed in many optimal decision rules) (Fiser et al.
2010), and drift diffusion models for allowing optimal integration
of information across time (Bogacz 2007). The large body of find-
ings of suboptimality reviewed here, however, should make this
reasoning suspect: If the brain is built to make optimal decisions,
then why does it produce so many suboptimal ones? It is also
important to remember that close-to-optimal behavior can also
be produced by suboptimal decision rules (Bowers & Davis
2012a; Maloney & Mamassian 2009; Shen & Ma 2016).
Influential theories postulate that evolutionary pressures pro-
duced heuristic but useful, rather than normative, behavior
(Gigerenzer and Brighton 2009; Juslin et al. 2009; Simon 1956).
Therefore, a model should be judged only on its ability to describe
actual behavior, not on its ability to support optimal decision
rules.

6. Conclusion

Are perceptual decisions optimal? A substantial body of research
appears to answer this question in the affirmative. Here we
showed instead that every category of perceptual tasks that
lends itself to optimality analysis features numerous findings of
suboptimality. Perceptual decisions cannot therefore be claimed
to be optimal in general. In addition, independent of the empir-
ical case against optimality, we questioned whether a focus on
optimality per se can lead to any real progress. Instead, we advo-
cated for a return to building complete observer models with an
equal focus on all model components. Researchers should aim
for their models to capture all of the systematic weirdness of
human behavior rather than preserve an aesthetic ideal. To facili-
tate this effort, we compiled the hypotheses generated in the effort
to explain the findings of suboptimality reviewed here. The real
work ahead lies in testing these hypotheses, with the ultimate
goal of developing a standard observer model of perceptual deci-
sion making.
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Abstract

Perceptual judgments are influenced by a multitude of factors in
addition to the perceptual input. Particularly, the widely varying
individual neurobiological endophenotypes and individual dif-
ferences in the propensity for expectation-based illusory percepts
make it unlikely that optimality is possible to define and defend
by the type of abstract modeling approach criticized by Rahnev
& Denison (R&D).

There are two main interrelated perspectives in the measurement
of perception – “outer psychophysics” with its behavioral
responses and “inner psychophysics” with its neurobiological
responses to stimulation (Fechner 1882). The measurements in
outer psychophysics depend on the objective stimuli and the
neural processes dealing with the signals from the stimuli.
These neural processes as the basis for perceptual judgments
not only depend on the input signals but, as Rahnev & Denison
(R&D) rightfully seem to accept, they are also heavily influenced
by a host of factors unrelated to sensory signal-to-noise ratio.
There are difficult problems with valid setting of the posterior
probability and knowing sufficiently the priors related actual fac-
tors. Determining whether observers’ decisions are optimal neces-
sitates sufficiently detailed specification of all likelihood function,
prior, cost function, and decision rule (LPCD) components. It
must be stressed that substantial individual differences in the
behavioral phenotypes and endophenotypes impacting perceptual
judgments make a major source of obstacles for developing a
powerful general model founded on the optimal decision rule.

Inner psychophysics variability as dependent on common gen-
etic variability cannot be accounted for by any strict generalized
formal models expected to be valid for the majority of experimen-
tal subjects. Given the huge number of genes implicated in neuro-
biological mechanism–based perceptual responses, any general
models of perceptual decisions that would support the optimality
theory are impossible. Indeed, even when only a few genes with
variants associated with different serotonergic or dopaminergic
endophenotypes are used as experimental independent variables,
metacontrast masking in two-alternative discrimination shows
considerable individual differences (Maksimov et al. 2013;
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2015a; 2015b). Considering that there are a multitude of genes
with effects expressed also in cholinergic, noradrenergic, glutama-
tergic, and other functions (obviously impacting perceptual
behavior) and that already any optional relatively small observers’
sample can invoke covert neurobiological variability with even
more varying perceptual effects, any model aspiring to be general
cannot be meaningfully established. Therefore, the recommenda-
tion by R&D to test more specific models with specific priors and
individual limitations (as the sources that corrupt decisions)
seems right. As the number of free parameters in genetic variabil-
ity is very large, the task of distilling and grouping individualized
endophenotypal priors as independent experimental variables is
not quick and easy. But it may have importance considering
that many genes implicated in perceptual behavior are also the
so-called risk genes in terms of their relation to health-related
vulnerability.

R&D argue that dissociations and low degree of correspond-
ence between confidence and accuracy make general statements
about the optimality or suboptimality of perceptual decisions
meaningless; similar problems are related to perceptual biases,
illusions, and improbabilities (sect. 3.5.2 and 3.8.1). However,
the concepts of noise and bias are ambiguous when we move
from general information-theoretic perceptual decision models
to real psychophysiological processes and mechanisms and want
to use these models in consciousness research. For example, asso-
ciative learning–based expectations tend to produce
hallucination-like illusions such that observers experience audi-
tory or visual stimuli that are objectively absent (Aru &
Bachmann 2017; Mack et al. 2016; Powers et al. 2017).
Importantly, the proneness to such illusions is individually vari-
able. Bayesian prior related top-down effects can produce percep-
tual illusions or hallucinations that are technically noise (and
must be included in noise distribution), but they are at the
same time phenomenal perceptual experiences taken as veridical
by the observers. Hence, this “technical noise” becomes an
important factor of real awareness based behavior. On the other
hand, noise can be interpreted traditionally as the factor counter-
ing sensitivity simply by decreasing the signal-to-noise ratio with-
out any illusory non-veridical experiences. Similarly,
hallucinatory experiences are technically indications of bias
(type 1 bias) but are at the same time factors determining behav-
ioral choices. The other version of the bias effect relates to its
impact on decision without illusory experiences of the imperative
stimuli being involved (type 2 bias). In the case of illusory non-
veridical percepts, high confidence ratings are expected, but in
the case of no illusory experience (but low signal-to-noise
ratio), low confidence ratings are expected. Both the concept of
noise and the concept of bias in the traditional perceptual deci-
sion models used for advocating optimality are underspecified
or even misleading in the light of experimental data on conscious-
ness contents and qualia of perception, including illusions and
hallucinations. Behaviorally incorrect perceptual responses can
be subjectively right, leading to high confidence.

With regard to the domain of decision rules, R&D note that
observers may not consider all information relevant to the deci-
sion. Moreover, in most of the stimulation that is present for
evaluation by the observer, there are several cues on which the
decision can be based. When perceptual decision models (and
also methods of scaling subjective experiences such as the
Perceptual Awareness Scale [PAS]; Sandberg et al. 2010) use too
general, underspecified evaluation criteria such as level of confi-
dence or subjective clarity, difficulties arise in interpreting the

results and explaining the underlying mechanisms and processes.
The same behavioral outcome (e.g., successful discrimination or
recognition) can be founded on different aspects of subjective
contents of perception as different criterion contents (Jannati &
Di Lollo 2012; Kahneman 1968). For behaviorist models of per-
ceptual decisions, this may not be a problem, but for models to
be used for consciousness studies, the excess generality of scales
and criteria is a shortcoming. The cure would be development
and use of specific rating scales for different subjective aspects
of the same stimulation. This would be useful also for accounting
for the effects of cue dissociation, which is an alternative source of
ambiguities in addition to redundancy effects from cue
combination.

To conclude, I tend to agree with R&D in that general state-
ments about the optimality or suboptimality of perceptual deci-
sions are meaningless unless detailed enough observer models
will be put together.
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Abstract

Weconcurwith theauthors’overall approach and suggest that their
analysis should be taken even further. First, the same points apply
to areas beyond perceptual decision making. Second, the same
points apply beyond issues of optimality versus suboptimality.

Rahnev & Denison (R&D) make the convincing case, with a
lengthy review of examples of suboptimal perceptual perform-
ance, that broad claims of optimality in perceptual decision mak-
ing are false. We applaud the overall spirit of R&D’s analysis.
They make the point that the pursuit of demonstrations of opti-
mality is unproductive because “optimality is… only well-defined
in the context of a set of specific assumptions, rendering general
statements about the optimality (or suboptimality) of human per-
ceptual decisions meaningless” (sect. 4.1, para. 4). We concur also
with the authors’ call to test models, something that many of the
cited researchers are already doing, rather than telling optimality-
based “just-so stories.” R&D’s proposed approach is likely to do
part of the work in avoiding some of the pitfalls laid out by
Bowers and Davis (2012a).

In our view, R&D’s main points should be taken even further,
in at least two respects. First, R&D’s arguments apply well beyond
the realm of perceptual decision making, with relevance for other
areas of mind and brain science. The article mentions that cue
combination studies have been fundamental to the view that

18 Commentary/Rahnev and Denison: Suboptimality in perceptual decision making

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X18000936
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 10 Jan 2019 at 15:53:30, subject to the Cambridge Core terms of use, available at

mailto:hbarth@wesleyan.edu
http://hbarth.faculty.wesleyan.edu
http://hbarth.faculty.wesleyan.edu
mailto:cordess@bc.edu
https://www2.bc.edu/sara-cordes/lab/
https://www2.bc.edu/sara-cordes/lab/
mailto:apatalano@wesleyan.edu
http://apatalano.faculty.wesleyan.edu
http://apatalano.faculty.wesleyan.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X18000936
https://www.cambridge.org/core


perception is optimal. In addition to the given examples of cue
combination across multiple senses, or sensorimotor integration,
similar claims of optimality have been made, across development,
for a wide range of tasks involving judgments of stimuli from
memory (Cicchini et al. 2012; Duffy et al. 2006; Huttenlocher
et al. 2000; Sciutti et al. 2015; see also Petzschner et al. 2015).
Claims of optimality are widespread in this literature, and just
as in perceptual decision making, because “optimality is often
the hypothesized outcome … findings of suboptimality may be
underreported or underemphasized” (R&D, sect. 3.7.2, para. 1).
For example, this literature emphasizes models developed to
explain central tendency biases in the reproduction of temporal
and spatial magnitudes and characterizes those biases as optimal,
yet there are multiple instances of data that violate the assump-
tions of these models (e.g., Barth et al. 2015; see also Crawford
& Duffy 2010; Duffy & Smith 2017).

Second, seeking to explain suboptimal, as well as optimal,
behavior may not be sufficient to avoid the just-so story dilemma.
R&D focus on the idea that broad claims about perceptual opti-
mality are meaningless and untestable, but this objection does
not apply only to optimality per se: It applies to broad claims
about perception as Bayesian inference more generally. As many
critics have pointed out, both within and beyond the context of
perceptual decision making, “in almost all published cases,
some Bayesian model can be found that approximates or parallels
human performance” (Anderson 2015, p. 280). To use an
example mentioned briefly by R&D, some visual illusions are par-
ticularly difficult to explain in the context of theories of optimal
perception. Usually, illusory surfaces or contours are perceived
when the visual system needs to “explain” the disappearance or
occlusion of an image element. The percept of an illusory occlud-
ing surface (a surface that is not defined by contrast edges) is
often thought to occur because it is the most probable explanation
of that disappearance. But in one class of dynamic displays, an
illusory occluding surface is perceived even though a clearly vis-
ible occluding surface is already present. The disappearance of
image elements is already fully explained by the presence of the
visible occluder, yet our perceptual systems construct a second
highly improbable occluding surface – the illusory one – generat-
ing a redundant “explanation.” The phenomenon has therefore
been taken as evidence against claims of visual contour synthesis
as a case of rational or Bayesian inference (Anderson et al. 2011).
However, as other researchers have pointed out, despite the fact
that “the presence of the spurious contours results from higher-
level constraints than those captured by a single Bayesian model
concerned only with contour completion,” the phenomenon
could still be explained within a broader Bayesian view of the
brain (Fleming 2011, p. R261). This is one of many examples of
the ultimately untestable nature of claims about perception as
Bayesian inference (for a deeper analysis of theoretical challenges
to the Bayesian program in visual perception, see Anderson
[2015]).

Are we trying to make a general argument against the adoption
of Bayesian perspectives? No. We argue for conceptual clarity
regarding the status of overarching theoretical perspectives, and
against the common practice of having it both ways. Circularity
is unavoidable if researchers work entirely within Bayesian frame-
works while, at the same time, specific findings are taken as evi-
dence that Bayesian perception or cognition are in play. That is,
researchers who choose to take a broadly Bayesian perspective
as a matter of a priori theoretical preference, such that only
Bayesian explanations of observed phenomena are entertained,

must resist the temptation to claim that correspondences between
their data and their models provide evidence for their broad per-
spective. Some researchers are careful to limit their claims, pre-
senting supporting evidence only for particular models. Others
are not, creating highly flexible Bayesian models to fit patterns
of behavior and finding – unsurprisingly – that their data
match the predictions of these models and then using that
match to make strong general claims about Bayesian brains. But
the perspective itself – although it may be a productive environ-
ment for thinking about how the mind might work – is not falsi-
fiable, and so evidentiary claims at the level of that perspective are
unsupportable.

There is something to be lost when any one perspective
dominates the literature. The problem is not just limiting inquiry
to the chase for the aesthetic ideal of optimality; it is also concern-
ing if we limit inquiry to the use of models that fall within par-
ticular theoretical frameworks. Testing very different kinds of
models, rather than working within a single theoretical perspec-
tive, is important too. The authors conclude that researchers
“should aim for their models to capture all of the systematic
weirdness of human behavior rather than preserve an aesthetic
ideal” (R&D, sect. 6, para. 1). The quest to capture that systematic
weirdness will undoubtedly benefit from theoretical heterodoxy in
the field.
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Abstract

Suboptimality of decision making needs no explanation.
High-level accounts of suboptimality in diverse tasks cannot
add up to a mechanistic theory of perceptual decision making.
Mental processes operate on the contents of information
brought by the experimenter and the participant to the task,
not on the amount of information in the stimuli without regard
to physical and social context.

Belief in Bayesian optimality is an example of recurring efforts to
escape from the study of basic mechanisms into a world of ideals.
Reality takes its revenge as more and more departures from ideal
are found and attempts to explain them are refuted or forced into
extra detail, as Rahnev and Denison (R&D) show.

Departures from optimality do not need explaining nor can
they illuminate mechanisms of perceptual performance. The
Bayesian programme fails to reckon with Claude Shannon’s insist-
ence that the quantity of information tells us nothing about what
the information contains (Shannon & Weaver 1949). Success or
failure at meeting a criterion of optimal use of the amount of
information in experimenter’s stimuli is irrelevant to what is actu-
ally going on in making a perceptual decision. First, any
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experiment is rich in information of which optimality calculations
take no account. Crucial contextual information is explicit as
physical arrangements and social signals such as verbal instruc-
tions, and implicit in the cultural and material memory that the
individual participant brings to each response. Second, the con-
textual information contents can make some of the content of
the experimenter’s stimuli dispensable for the perceptual decision.
Hence, calculations that do not take context into account can
yield an illusory suboptimality. In fact, a substantial number of
participants use the whole of the information that each processes
from the present and past (e.g., Booth et al. 2011a; 2011b).

R&D identify individuality as one source of suboptimality. Far
more than that, disregard of individuality prevents mechanistic
understanding. Every perceptual decision is determined by an
individual’s use of information contained in the cultural and
material environment of the test. This causal mediation is the
transient structure in discrimination-scaled distances between
the individual’s present and past output/input values (Booth &
Freeman 1993; Booth et al. 2011b). The processed information
content varies across individuals and circumstances, and even
between particular occasions of the same situation in the same
person. Therefore, raw data from individuals should never be
averaged before testing a mechanistic hypothesis (Booth 2017;
Booth & Freeman 1993; Conner et al. 1988), as is now becoming
more widely acknowledged (e.g., Luce 2013). The standard obser-
ver models sought by R&D also neglect the idiosyncrasies of
information content in the actual mechanisms of perceptual deci-
sion making.

Many of results cited by R&D indicate that physical stimuli
and context provided by the investigators interact with social con-
text brought by the participant. One of the paradigms reviewed by
R&D is psychophysical judgement. In the usual design, the
experimenter uses one of a pair of stimuli as a standard of com-
parison with the other stimulus, which is varied. In fact, each
stimulus presentation, whether test or standard, is compared
with memory of previous stimuli. The comparative decision is
determined by the difference in distances of test and standard
from memory of previous exposures in a similar context (e.g.,
Booth & Freeman 1993; Stewart et al. 2005). The standard stimu-
lus is at best redundant and may even be a source of range-
frequency bias (Poulton 1989; cp. Conner et al. 1987 and Booth
2015).

In other words, the experimenter’s standard is part of the
physical context for the test stimulus on which the perceptual
decision is supposedly made. Far from the memory of the first
stimulus decaying, as R&D cite, long-term memory is updated
at each presentation. That is how pretreatment with a high inci-
dence of positive stimuli reduces a bias to making negative
responses, also cited by R&D. Accurate diagnosis of the causal
structure of a session of perceptual decisions depends on personal
tailoring of stimulus levels to be balanced around the familiar
level within the range of Weber fraction constancy (Booth et al.
2010; 2011a; Conner et al. 1988).

R&D review a number of the paradigms showing effects of
social context, disguised as personality score. Personality inven-
tories are designed to obscure differences in behaviour between
situations to create a stable trait, but they vary with state to
unknown extents. To permit mechanistic analysis, each relevant
social signal has to be presented at two or more levels, uncon-
founded with other signals within a session. For example, anxiety

about being a lying witness in a detection task might be manipu-
lated by the experimenter indicating that some stimuli test for
absence of the signal.

Confidence ratings merely express optimistic behaviour or
other habits, rather than giving introspective access to mechan-
isms of perception. Whether the causation is conscious or uncon-
scious, the only access is through output-input relationships
placed on a universal scale of discrimination between present
and past.

R&D discuss the variations in the tradeoff between speed and
accuracy in reaction times induced by direct instructions or time
limits on massed tests, without considering these designs as social
pressures. If stimuli provided more scope for using past experi-
ence, then the mechanisms of interaction with social context
could be investigated. For example, conventional demands for a
fast decision or a right answer could be presented at different
levels.

Similarly, deficiencies in signal detection cited by R&D could
be reduced by more ecological validity of the random background
provided for the test signal. If a familiar enough context were pro-
vided throughout, the variance of the response distribution would
less likely be higher in the presence of the signal. Furthermore, the
line of investigation could be relevant to theoretical and practical
issues in such contexts (Booth 2015).

R&D review evidence that improper perceptual criteria and
supposed misweightings in cue combinations account for subop-
timality. If the experiments were designed to be analogs of famil-
iar real life scenarios, personally relevant content of the cues could
be tested as mechanisms to explain performance.

Finally, it should be noted that effect of unidentified contextual
factors can be measured from the individual’s causal structure of
discrimination-scaled content in a session of tests. First, the most
successful combination of known output/input relationships may
account for substantially less than the total variance in the percep-
tual response. Second, the discrimination distances between pre-
sent and past of observed features of the situation may not
interpolate through the zero from the past. The eccentricity mea-
sures the contextual defect in discrimination units or response
quantity (Booth et al. 2011b).

The world is complex, not just noisy

Romain Brette
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75012 Paris, France.
romain.brette@inserm.fr http://romainbrette.fr
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Abstract

To deny that human perception is optimal is not to claim that it
is suboptimal. Rahnev & Denison (R&D) point out that optimal-
ity is often ill defined. The fundamental issue is framing percep-
tion as a statistical inference problem. Outside of the lab, the real
perceptual challenge is to determine the lawful structure of the
world, not variables of a predetermined statistical model.
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Is human perception optimal? If we disagree, it would seem (as
the title of the target article suggests) that we hold that human
perception is suboptimal, perhaps because of our imperfect bio-
logical nature – we are only human. The authors, however,
point out that optimality is “only well defined in the context of
a set of specific assumptions, rendering general statements
about the optimality (or suboptimality) of human perceptual
decisions meaningless” (Rahnev & Denison [R&D], sect. 4.1,
para. 4). If this is true, then the main issue is not so much whether
humans are optimal or suboptimal, as the scope of such claims.

Claims of optimality frame perception as a problem of statis-
tical inference: Sensory data are assumed to be produced by a stat-
istical model that depends on hidden variables, and the perceptual
problem is to estimate the value of those variables. There is gen-
erally a simple optimal solution given by Bayes’ formula.

The obvious conceptual issue is that variables are defined
within a particular model, which captures the structure of the
scene (objects and their relations), when a large part of the per-
ceptual problem is precisely to capture that structure. We note,
for example, that state-of-the-art computer vision algorithms
(e.g., convolutional neural networks) excel at inferring the pos-
ition of a cat in an image but struggle at analyzing the structure
of an image. For example, the question “are there two identical
objects in the image?” seems to pose a very challenging computa-
tional problem, even though this is a trivial problem for humans
and animals (Ricci et al. 2018).

The only reason why such problems do not appear in accounts
of optimal perception is that those accounts are built from results
of constrained experiments, in which a few experimental variables
are allowed to vary within a fixed structure. In other words, the
focus is on “known unknowns”: We do not know the value of
the variables, but we know they exist and we know their probabil-
ity distribution a priori (Rumsfeld 2011). This is not generally the
case in ecological settings, where the perceptual system has to deal
with “unknown unknowns.” This makes the scope of optimality
claims somewhat limited.

It should be stressed that building knowledge from observa-
tions is not generically a statistical inference problem. For
example, Newtonian mechanics (and, in fact, science in general)
have not been derived by a process of statistical inference applied
to the movements of bodies. To turn it into a statistical inference
problem, one would first need to come up with a few candidate
models. This requires designing appropriate variables (e.g., accel-
eration of the center of mass) and postulate relations between
them (acceleration equals gravity). Once this work has been
done, what remains is relatively trivial.

In the same way, perception requires determining what consti-
tutes an object, what are relevant object properties, and what
might be the relations between objects. Hence, the optimality
framework trivializes the problem of perception by focusing on
statistical inference on a fixed model, leaving aside the most dif-
ficult questions, in particular object formation and scene analysis.
The proposition of R&D does not seem to address this issue, as
observer models are still cast within the Bayesian framework
(their Box 1), and the difficult questions appear to be hidden in
point (1), the description of the generative model, which is a
context-dependent model fixed by the scientist rather than result-
ing from the perceptual process itself.

This is not to deny that statistical inference can be a part of
perceptual processes, but it constitutes only a part, arguably a
small one. In this light, it seems difficult to make sense of
broad claims such as “human perception is close to the

Bayesian optimal” (Körding & Wolpert 2006), given that percep-
tion as a whole cannot possibly be modeled by a Bayesian model.
In the same way, the Bayesian brain hypothesis that “the world is
represented by a conditional probability density function over the
set of unknown variables” (Knill & Pouget 2004, p. 712) seems
devoid of content, given that variables have no meaning by them-
selves, unless the model is also represented (which is not part of
the hypothesis).

In brief, by casting perception as a statistical inference prob-
lem, claims of optimality miss the real computational problem
of perception: The world is not noisy, it is complex.

Although optimal models are useful,
optimality claims are not
that common

Claire Chambers and Konrad Paul Kording

Department of Bioengineering and Department of Neuroscience, University of
Pennsylvania, PA 19104.
clairenc@seas.upenn.edu kording@seas.upenn.edu http://kordinglab.com/

doi:10.1017/S0140525X18001462, e228

Abstract

Rahnev & Denison (R&D) argue that human behavior is often
described as “optimal,” despite many previous findings of sub-
optimality. We address how the literature handles these concepts
and discuss our own findings on suboptimality. Although we
agree that the field should embrace the “systematic weirdness
of human behavior” (sect. 6, para. 1), this does not detract
from the value of the Bayesian approach.

Rahnev & Denison (R&D) rightly point out a fact endorsed by
many prominent Bayesian theorists, that human behavior often
deviates from the predictions of statistically optimal models
(Acerbi et al. 2014b; Beck et al. 2012; Summerfield & Tsetsos
2015). Being data scientists, we want to first trace the way the lit-
erature handles the concepts discussed by the authors.
Specifically, we want to establish whether there is a “current nar-
row focus on optimality,” as argued by R&D (sect. 1, para. 5). We
searched PubMed for journal articles published between January
1, 1995, and April 1, 2018, that addressed optimality in human
behavior. We found that although the number of articles that
apply Bayesian modeling to human behavior has increased
(Fig. 1), only a small proportion of the articles that we analyzed
make optimality or near-optimality claims (0.30), and that claims
of suboptimality are in roughly equal proportion (0.25). Nor have
optimality claims drastically increased relative to the overall
number of articles that use Bayesian modeling over the last two
decades: 2000s (0.32) and 2010s (0.30). The majority of publica-
tions that we analyzed use Bayesian modeling as a tool to under-
stand behavior at the computational level and/or emphasize the
suboptimality of behavior. Therefore, optimality claims may not
be as prevalent as the authors contend.

We endorse the view of R&D that humans deviate from stat-
istically optimal behavior, and some of our recent perceptual

Commentary/Rahnev and Denison: Suboptimality in perceptual decision making 21

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X18000936
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 10 Jan 2019 at 15:53:30, subject to the Cambridge Core terms of use, available at

http://orcid.org/0000-0001-8408-4499
mailto:clairenc@seas.upenn.edu
mailto:kording@seas.upenn.edu
http://kordinglab.com/
http://kordinglab.com/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X18000936
https://www.cambridge.org/core


work has added new ways in which behavior is suboptimal. For
example, prior knowledge acquired in a sensorimotor task does
not fully generalize to a perceptual decision-making task that
requires the same probabilistic treatment of sensory and prior
information (Chambers et al. 2017a). Also, we show that young
children fail to incorporate experimentally imposed priors into
their sensorimotor estimates and learn to approximate efficient
use of statistical information during development (Chambers
et al. 2017b). If the underlying neural processes are innately
“Bayes optimal,” then behavior should reflect this under different
conditions and without learning. We have observed this not to be
the case when the decision modality changes in decision making
in adults and during child development. These findings underline
the importance of assessing the generality of claims concerning
the efficient use of statistical information in human decision mak-
ing and add to the literature on suboptimal perceptual decision
making discussed by R&D.

R&D advocate for a change in the culture of how behavioral
data are modeled. They argue that much existing work is limited
because it includes one ad hoc model for one set of experiments.
We agree that this is problematic because based on this ad hoc
approach we cannot know how well optimal models generalize
or “transfer” to other situations (Maloney & Mamassian 2009).
The authors recommend that in cases of findings of suboptimal-
ity, the assumptions of each model component (likelihood, prior,
cost function, decision rule) should be examined, and that in cases
of good agreement with optimal models, model performance
should be examined under different conditions and tasks. We
agree with the authors’ prescriptions on a more rigorous approach
to following up on previous claims and believe that this practice
will help the field to develop models that provide more complete
accounts of human behavior.

However, it should be emphasized that Bayesian optimal mod-
els remain an important tool for building computational models
of behavior. Uncertainty exists in the outside world, and we do
well in everyday tasks by taking uncertainty into account
(Kersten et al. 2004; Körding & Wolpert 2006; Vilares &
Kording 2011). Alternative non-optimal frameworks, like the

“bag of tricks” (Ramachandran 1990) mentioned by the authors
and heuristic models (Gigerenzer & Gaissmaier 2011;
Kahneman et al. 1982a) do not contain explicit formulations of
how probabilistic information should be combined and do not
as easily capture how we deal with uncertainty as Bayesian models
do. The Bayesian framework has other advantages as a computa-
tional framework. It provides an important benchmark for
human performance that can constrain non-optimal models. It
is a compact mathematical framework that avoids assumptions
about implementational details. It is transparent: The components
of the model (prior, likelihood, cost function, decision) must be
declared (Griffiths et al. 2012). Although we agree that the useful-
ness of labeling of behavior as “optimal” is questionable, we main-
tain that Bayesian modeling is still an important tool for the
computational understanding of behavior.

Serial effects are optimal

Guido Marco Cicchinia and David C. Burrb

aCNR Institute of Neuroscience, Pisa, 56124, Italy and bDepartment of
Neuroscience, Psychology, Pharmacology and Child Health, University of
Florence, 50139, Italy.
cicchini@in.cnr.it www.pisavisionlab.org/cicchini
dave@in.cnr.it www.pisavisionlab.org/burr
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Abstract

In the target article, Rahnev & Denison (R&D) use serial effects
as an example of suboptimality. We show here that serial effects
can be beneficial to perception, serving to reduce both error and
response times in a near-optimal fashion. Furthermore, serial
effects for stable attributes are positive, whereas those for
changeable attributes are negative, demonstrating that they are
engaged flexibly to optimize performance.

We read with great interest the article by Rahnev & Denison
(R&D), reporting both a wide coverage of the issue of optimality
in perception, as well as the many instances in which optimality
has been hard to prove. One example of non-optimality for the
authors is serial dependence, the influence of previous stimuli
on current responses, in a sequential task (Burr & Cicchini
2014; Cicchini et al. 2014; Cicchini & Kristjánsson 2015;
Fischer & Whitney 2014; Frund et al. 2014; Liberman et al.
2014). The authors speculate that because the experimental set-
ting prescribes independence between trials, it is suboptimal to
carry over information from the previous trial. The only possibil-
ity they see is that perhaps the perceptual system is attuned to a
general rule of continuity, which accidentally spills over into
laboratory performance.

We encountered serial effects while studying perception of
numerosity, finding that subjects were strongly biased toward
the previous estimate, by up to 20% (Cicchini et al. 2014).
Importantly, at higher numerosities – where sensory resolution
is lower – the serial effects were larger. This prompted us to inves-
tigate the effect with a standard Bayesian model in which the pre-
vious sensory experience can be considered an extra source of
information (Fig. 1).

Figure 1 (Chambers). Number of journal articles as a function of year of publication
that use Bayesian models to describe behavior, that make (near) optimality claims,
and that make suboptimality claims. We used the following search terms: “(sub)opti-
mality perception,” “(sub)optimal perceptual decision making,” “Bayesian psycho-
physics,” and “Bayesian observer model behavior/perception.” We included in our
analysis the 185 articles that reported human psychophysics data and modeling.
We manually coded the type of the claim made by each paper.
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Simulations show that in the case of similar successive stimuli,
this strategy is beneficial, as the uncertainty associated with the
current judgment may benefit from integrating information
from the past. According to our model, previous sensory
experience should be weighted, taking into account the sensory
resolution of the current and previous stimulus (σcurr, σprev)
along with the difference in intensity between two presentations

(d): wprev = s2
curr

s2
curr + s2

curr + d2
. This simple rule states that when-

ever there is multiple, congruent information, it is beneficial to
blend it, without needing assumptions of continuity or
meta-priors.

This model of optimal performance provided a good fit to the
numerosity data set (Cicchini et al. 2014). We went on to apply it
successfully to orientation reproduction tasks (Cicchini et al.
2017; Cicchini et al. 2018). In this experiment, we collected indi-
vidual measures of precision and predicted (with zero degree of
freed model and no further assumptions) subject behavior,
obtaining an excellent fit both of the amount of serial depend-
ence, as well as the range of orientation differences over which
the effect occurs (Cicchini et al. 2018). With the same data set,
we also measured the benefit of serial dependence. We compared
trials that were preceded by an identical stimulus (maximal
dependence) and those preceded by a stimulus 45 degrees apart
(when serial dependence waned). As predicted, we found a reduc-
tion of the squared error, about 45%, when serial dependence was
maximal. We also compared response times and found that they
were up to 60 ms faster for identical than for differing preceding
stimuli. Overall, the two results show that the serial presentation
of similar stimuli led to a genuine increase of information in the
system. This latter result was totally unexpected as our model was
developed starting from optimal cue integration literature (Alais

& Burr 2004; Beierholm et al. 2008; Cicchini et al. 2012; Ernst
& Banks 2002; Jazayeri & Shadlen 2010; Roach et al. 2006) and
was meant to optimize response error without considering time
limits.

A final example that serial dependence does not result merely
from a passive, no-optimal stickiness of the system is the demon-
stration that stimuli can induce either positive or negative serial
dependencies, depending on their usefulness to the task in
hand. Taubert et al. (2016) asked subjects to judge both the gen-
der and expression (happy/sad) of sequentially presented faces.
Strong positive serial dependence was found for gender – a stable
attribute of a face that does not change over time. In the same
experiment, with the same face stimuli, negative serial depend-
ence was observed for expression, a labile attribute that changes
frequently and rapidly, where the information is often in the
change. Carrying over signals of expression from previous expos-
ure would be of little help for the task in hand, and the system
does not do it. This is a very clear demonstration that serial
dependence is not an automatic result of the sluggishness of the
system, but an active and flexible strategy to improve, and possibly
optimize, perception.

Overall, we believe that the Bayesian framework has several
merits for brain science. First, it encourages researchers to think
of the brain as a statistical observer who accumulates information,
and second, because it has helped to discover several strategies to
obtain the same performance with fewer resources, such as
removal of redundancy from retinal images to be transmitted
via a small optic nerve. We agree with the authors that optimality
is a loose concept and cannot be the only principle working in the
brain; however, it has proved to provide an excellent framework
with which to uncover the mechanisms of an organism that
started evolving 200 million years ago.

Figure 1 (Cicchini & Burr). Serial dependence can be optimal. We
illustrate the behavior of a noisy observer (σ = 10°) who is bound to
estimate a stimulus at 40° orientation and can make optimal use of
the previous trial which was at 30°. Response distributions are dis-
played in the top panel (black, memoryless model; red, model with
serial dependence) and show a slight shift of responses toward the
previous trial with a tightening of the distribution. Bottom panel
shows the histograms of squared error cost: The overall error of
the model taking advantage of serial dependencies is smaller
than that of the memoryless model.
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LPCD framework: Analytical tool or
psychological model?
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Abstract

The target article uses a mathematical framework derived from
Bayesian decision making to demonstrate suboptimal decision
making but then attributes psychological reality to the frame-
work components. Rahnev & Denison’s (R&D) positive proposal
thus risks ignoring plausible psychological theories that could
implement complex perceptual decision making. We must be
careful not to slide from success with an analytical tool to the
reality of the tool components.

Throughout the target article, Rahnev & Denison (R&D)
employ the likelihood function, prior, cost function, and decision
rule (LPCD) framework, as they analyze the (sub)optimality of
perceptual decision making in terms of the likelihood of the
world state (i.e., stimulus) given the internal “signal” (i.e., percep-
tual experience); the prior probability of that world state; the cost
function of an action given the world state; and the decision rule
used to determine what action to take in light of the other three
components. This framework is mathematically derived from
models of Bayesian decision making and mirrors much of the lan-
guage – mathematical and conceptual – used by proponents of
optimality in perceptual decision making. Over the course of
their target article, however, R&D shift between two different inter-
pretations of this mathematical framework and thereby provide a
positive proposal that does not follow from their empirical survey.

For the first four sections of the target article, R&Duse the LPCD
framework as an analytical tool to decompose the complex behav-
ioral functions identified in the many experiments that they survey.
In general, people’s decisions are a complicated function of the cur-
rent environment, task demands, internal constraints (e.g., memory
or attention), perceptual history, andmore. R&D briefly discuss the
complexity, and so possible computational intractability, of the
optimal function, but of course, ouractualperceptual decision func-
tions are also incredibly complicated. The LPCD framework pro-
vides a way to decompose this complicated behavioral function
into tractable, interpretable components.

This use of the LPCD framework is analogous to a Fourier
decomposition of a complex waveform into a set (possibly infinite)
of component sine waves of varying frequency and amplitude.
Importantly, those component sine waves need not correspond to
any underlying causal or generative processes; they are simply a
more tractable way to understand the input waveform. Similarly,
we can use the LPCD framework as an analytical tool to decompose

people’s perceptual decision functions into those four components,
without thereby thinking that the LPCD components correspond to
anything in the perceptual or cognitive system. Those mathematical
components are only relatively simpler functions that jointly provide
accurate (and sometimes, rationally defensible) predictions.

In section 5.1, however, R&D shift to using LPCD in a very dif-
ferent way. In particular, they start to interpret the four compo-
nents realistically, as elements that are really present in the
mind/brain. For example, they propose that we should search
for hypotheses about the content, functional form, or source of
particular LPCD components, where those are understood to be
represented internally (LPC) or actually used to make a decision
(D). That is, R&D no longer use LPCD solely as an analytical tool,
but rather interpret the components as psychologically real. For
example, many of the hypotheses in their Table 1 treat the
LPCD components as discrete psychological or neurally encoded
elements that can be independently measured and manipulated
by researchers. They are not simply a useful way of mathematic-
ally decomposing a complex behavioral function, but are pre-
sumed to be legitimate targets of direct scientific inquiry.

R&D might well be right that the LPCD components are psy-
chologically real and can be shaped or influenced in various
ways. For example, some of the cited papers that develop optimality
models of perceptual decision making also provide evidence for the
psychological reality (and modularity) of one or another element in
a Bayesian model. However, R&D do not base their realist commit-
ments on those studies, but rather on extrapolation from the struc-
ture they propose for observer models. But if we do not have a
background assumption of optimality (or near optimality), then
we need not assume that perceptual decision making decomposes,
in any realist sense, into the LPCD components. Mathematical
decompositions do not necessarily provide a guide to underlying
causal or psychological processes. For example, the function
f(x, y) = x2− y2 can be mathematically decomposed into x2 and
y2 “modules,” but that does not imply that the underlying system
actually computes x2 and y2 in distinct components and then sub-
tracts the results. The system could just as easily have components
that compute (x + y) and (x – y) and then multiply the results. Or
the function could be actually computed in many other ways.

Moreover, the realist commitments in section 5 are not
idle, but rather can have real impacts. As R&D note, there are
many different types of models that we might consider, not
only Bayesian or LPCD-based models. Nonetheless, R&D’s
positive proposal involves viewing all of these proposals through
the LPCD lens and, therefore, privileging that particular decom-
position of the complex perceptual decision-making function,
even if the mind/brain does not actually work that way. Of course,
all science requires some theoretical commitments, but there is
well-known value in having variation across the scientific commu-
nity. In contrast, R&D propose that the LPCD components, in the
form of standard observer models, should be the default theoret-
ical framework for this research domain.

R&D demonstrate the utility of the LPCD framework as a tool
for identifying suboptimal behaviors. They do not, however, pro-
vide reason to prefer substantive psychological hypotheses that are
expressed with LPCD components, and so their positive proposal
about how to advance the science risks placing unnecessary con-
straints on our theorizing.
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Optimality is critical when it comes
to testing computation-level
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Abstract

We disagree with Rahnev & Denison (R&D) that optimality
should be abandoned altogether. Rather, we argue that adopting
a normative approach enables researchers to test hypotheses
about the brain’s computational goals, avoids just-so explana-
tions, and offers insights into function that are simply inaccess-
ible to the alternatives proposed by R&D.

Although we concur with Rahnev & Denison (R&D) that proving
the optimality of human behavior should never be a goal in and of
itself, we disagree that optimality should be discarded altogether.
Rather, we argue that an ideal observer approach is the only valid
approach for understanding the nature of the computational pro-
blems that the brain is trying to solve (Marr 1982).

Understanding the brain’s computational goals is key to
understanding human behavior. Knowing what the system is try-
ing to do, and why, can inform hypotheses about the algorithms
that the brain uses to achieve these goals, and how these algo-
rithms are implemented in neurons and connectivity (see Marr
1982). To test computational theories, researchers typically trans-
late hypotheses into predictions that can be compared against
human data. Although this translation can take many forms, we
argue that the best recipe for converting computational goals
into predictions is provided by the normative approach, because
this approach rightly specifies what kind of behavior participants
ought to display under the hypothesized goals. For any other
description, the translation from hypothesis into prediction may
be imprecise, making it impossible to determine whether the
hypothesis or rather its translation was incorrect, when predicted
behavior fails to match human data.

Consider, for example, visual orientation perception. Human
orientation perception tends to be biased toward vertical and hori-
zontal (cardinal) orientations, such that a tilted (oblique) stimulus
appears slightly more cardinal than it really is (Tomassini et al.
2010). In a seminal study, Girshick et al. (2011) hypothesized
that such biases arise because observers, when judging stimulus
orientation, use knowledge about the distribution of orientations
in the natural environment (where cardinal orientations are pre-
dominant). To address this hypothesis, the authors presented
human participants with random orientation stimuli, asking

them to estimate the orientations they had seen. Girshick et al.
(2011) then specified the behavior of an ideal observer who com-
bines noisy sensory measurements of a stimulus with knowledge
about its prior probability. By using this approach to model
human behavior, the authors were able to characterize the prior
beliefs about orientation that the participants applied in their per-
ceptual estimates. Interestingly, this prior distribution resembled
the actual distribution of orientations in the environment, corrob-
orating the theoretical predictions.

This study nicely illustrates how the ideal observer framework
can be exploited to not only describe, but also explain behavior,
by starting with a specific hypothesis about what the system is try-
ing to do (minimizing perceptual error in a natural environment
by taking into account natural orientation statistics) and translat-
ing this hypothesis into a computational model that predicts
behavior. Precisely because human behavior matched that of the
ideal observer, rather than some arbitrary formulation, the find-
ings provided strong evidence for the computational theory and
offered insights into function that are simply inaccessible to the
non-normative alternatives (e.g., “bag of tricks” or “neural net-
work” models; sect. 5.2, para. 1) proposed by R&D.

Note that in the example discussed previously, human behav-
ior was, in fact, suboptimal for the experimental situation in
which the participants were tested: When presented with a uni-
form distribution of orientation stimuli, it would make little
sense for an observer to show biased judgments toward vertical
or horizontal orientations. Yet, the ideal observer framework
enabled the researchers to address what kinds of knowledge the
observers did bring to the task, by comparing human task behav-
ior against that of an ideal observer using prior knowledge of the
orientation statistics of the natural environment.

We argue that it is precisely these kinds of situations that are
informative. The ideal observer framework provides a powerful
tool to implement hypotheses and, as such, offers insight into
the knowledge and goals that a human observer brings to the
task at hand. When human behavior does not conform to the the-
ory’s predictions, one should rather conclude that the theory makes
incorrect assumptions about the computational goals of the system
and try to improve the theoretical assumptions, instead of refuting
the normative tools that merely implemented the theory.

The role of (bounded) optimization
in theory testing and prediction

Andrew Howesa and Richard L. Lewisb

aSchool of Computer Science, University of Birmingham, Edgbaston,
Birmingham B15 3TT, United Kingdom and bDepartment of Psychology,
University of Michigan, Ann Arbor, MI 48109.
HowesA@bham.ac.uk https://www.cs.bham.ac.uk/∼howesa/
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doi:10.1017/S0140525X18001486, e232

Abstract

We argue that a radically increased emphasis on (bounded) opti-
mality can contribute to cognitive science by supporting predic-
tion. Bounded optimality (computational rationality), an idea

†Authors Chetverikov and van Bergen contributed equally to this work.
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that borrowed from artificial intelligence, supports a priori
behavioral prediction from constrained generative models of
cognition. Bounded optimality thereby addresses serious failings
with the logic and testing of descriptive models of perception
and action.

The target article claims that cognitive science “should abandon
any emphasis on optimality or suboptimality” (Rahnev &
Denison [R&D], sect. 1, para. 4). In contrast, we argue that a rad-
ically increased emphasis on (bounded) optimality is crucial to the
success of cognitive science. This commentary draws on a signifi-
cant literature on bounded optimality, an idea that is borrowed
from artificial intelligence (Russell and Subramanian 1995). It
argues that comparing the behavior of bounded optimal (also
known as computationally rational) models to human behavior
is a better way to progress the science of the mind than the authors’
“observer models.” Observer models are a form of descriptive
model. In contrast, bounded optimal models can be predictive
and explanatory (Howes et al. 2009; 2016; Lewis et al. 2014).

Lewis et al. (2014) proposed computational rationality as an
alternative to the standard use of optimality (rational analysis) in
cognitive science. Computational rationality is a framework for
testing mechanistic theories of the mind. The framework is
based on the idea that behaviors are generated by cognitive
mechanisms that are adapted to the structure of the external envir-
onment and also to the structure of the mind and brain itself. In
this framework, theories of vision, cognition, and action are speci-
fied as “optimal program problems,” defined by an adaptation
environment, a bounded machine, and a utility function. This
optimal program problem is then solved by optimization (one of
the utility maximizing programs is identified and selected), and
the resulting behavior is compared to human behavior. Success
is not used to conclude that people are either optimal or subopti-
mal, but rather, success indicates evidence in favor of the theory of
the environment, bounded machine, and utility function.

One example of how computational rationality can be used to
test theories was provided by Howes et al. (2009). Consider an
elementary dual-task scenario in which a manual response must
be given to a visual pattern and a verbal response to the pitch
of a tone. This task, known as a psychological refractory period
(PRP) task, has been used extensively in an effort to understand
whether cognition is strictly serial or whether it permits parallel
processing (Meyer and Kieras 1997). Although many theories
had been proposed prior to Howes et al.’s work, they were suffi-
ciently flexible that both serial and parallel models could be fitted
to a large range of PRP data. A key source of the flexibility was the
cognitive program (the strategy) by which elementary cognitive,
perceptual, and motor processes were organized. Before Howes
et al. (2009), different (but plausible) programs were used to fit
models to a wide range of data irrespective of whether cognition
was assumed to be serial or parallel. Similarly, in perceptual
decision-making tasks, the decision rule (criterion or threshold)
is a simple example of a strategy or program. Freed from the
requirements that the decision rule is optimal for the defined
problem, almost any data might be fitted.

For the PRP task, Howes et al. used separate computational
theories of the serial and parallel bounded machine and derived
the optimal program for each. The optimal program was used
to predict behavior. Optimality was not under test, but rather it
was used as a principled method of selecting cognitive programs,

independently of the observed data. What was under test was
whether either serial and/or a parallel cognition could predict
the observed behavior. On the basis of detailed quantitative ana-
lysis, their conclusion was that it was the serial theory that offered
a better explanation of the data. Similarly, Myers et al. (2013)
tested the implications of noise in peripheral vision for human
visual search. They found that a particular model of noise in per-
ipheral vision predicts well-known visual search effects.

Illustrated with the previous examples and supported by the
analysis of Lewis et al. (2014), we can see that computational
rationality has the following similarities and differences to the
authors’ observer models:

Neither computationally rational models nor observer models set
out to test whether people are optimal or suboptimal. In both
cases, the aim is to test the collective set of theoretical assump-
tions in the model.

Unlike observer models, the computational rationality framework
assumes that a program (a strategy or decision rule) will be
determined, by the scientist, using an optimization algorithm.
In so doing, it allows a quantitative and causal relationship
to be established between theoretical assumptions and behav-
ior. In contrast, with observer models, the analyst is permitted
to pick any “plausible” decision rule (step 2 of Box 1 of R&D).
As a consequence, despite their desire to reduce the perceived
flexibility of the optimality approach (Bowers & Davis’s [2012a]
just-so stories), R&D permit potentially extensive flexibility
through the informal notion of plausibility.

By virtue of the fact that programs are determined through opti-
mization, computational rationality supports prediction,
whereas observer models are descriptive. For example, in
Howes et al. (2009), model parameters (e.g., noise level) were
calibrated to single-task scenarios; optimal strategies were
determined for dual-task scenarios; and test variables, including
dual-task duration, were predicted by executing the optimized
model. In contrast, observer models are descriptive by virtue of
the admission of plausible decision rules. The potential arbitrari-
ness of plausible decision rules dooms step 4 (Box 1), “specify
how the conclusions depend on the assumptions,” to be an infor-
mal process of constructing just-so stories. In other words, obser-
ver models cannot be said tomake predictions if the analyst must
intervene to determine what is and what is not plausible.

In summary, although we agree with R&D that the focus of the
behavioral sciences should be on testing theories of how the mind
processes information, we believe that optimization, used by a sci-
entist as a tool to determine the adaptive consequences of theor-
etical assumptions, offers a better way forward for psychological
science than the proposed (descriptive) observer models.

Model comparison, not
model falsification

Bradley C. Love

Experimental Psychology, University College London, London WC1H 0AP,
United Kingdom.
b.love@ucl.ac.uk http://bradlove.org
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Abstract

Systematically comparing models that vary across components
can be more informative and explanatory than determining
whether behaviour is optimal, however defined. The process of
model comparison has a number of benefits, including the pos-
sibility of integrating seemingly disparate empirical findings,
understanding individual and group differences, and drawing
theoretical connections between model proposals.

Determining whether behaviour is optimal can be difficult because
what is optimal is often a matter of debate. For example, optimality
can be defined in terms of task, related real-world environments,
hypothesised evolutionary environments, short- versus long-term
rewards, and so forth. Furthermore, notions of optimality can be
expanded to respect resource limitations, such as constraints spe-
cified in terms of energy, time, effort, or cognitive resources. More
thought may go into choosing a measure of optimality than in
evaluating how people compare to the chosen yardstick. Many
of these issues recapitulate criticisms of rational approaches to
understanding perception and cognition (Jones & Love 2011).

Sensibly, Rahnev & Denison (R&D) argue for moving away
from notions of optimality. Instead, they specify various ways in
which people can be suboptimal. Although one can argue about
the particular set of components identified as sources of subopti-
mal decision making, the basic approach is promising. Careful
comparison of models has the potential to identify the root causes
of behaviour as opposed to making a blanket statement about a
debatable notion of optimality.

Indeed, one could go further and simply advocate for model
comparison without considering optimality. Although thinking
about optimality can be a useful starting point for developing
models and evaluating human performance, a strong focus can
be restrictive. The question of whether people are optimal invites
a Popperian odyssey to falsify the claim. Unfortunately, accepting
or rejecting a hypothesis in isolation is usually not very inform-
ative or explanatory. Alternatively and perhaps more productively,
one could specify a rich set of hypotheses, formalise these hypoth-
eses as models, and perform a proper model comparison. The
outcome of such a process is the best available explanation (i.e.,
model) of the data.

Model comparison offers a route for model and theory devel-
opment. New model proposals can draw on past models that have
enjoyed success. For example, in the category learning literature,
the lineage of models stretches across decades. Past work has
influenced my own proposals (e.g., Love et al. 2004). As new
sources of data become available, such as brain imaging data,
model comparison approaches can embrace these new data
sources (Mack et al. 2013).

Finally, model comparison offers a number of advantages for
our science. Model comparison requires specifying what the rele-
vant data are. In doing so, the scope of models becomes clearer.
Formalising theories as models of course has its own advantages
in terms of making assumptions clearer, enabling quantitative
prediction in novel circumstances, characterising individual and
group differences in terms of fitted parameter values, directing
future experimentation, and identifying broad principles that
span data sets and models. Overall, model comparison offers a
path to explain behavioural phenomena that can be more integra-
tive and explanatory than blanket statements about optimality.

Identifying suboptimalities with
factorial model comparison

Wei Ji Ma

Center for Neural Science and Department of Psychology, New York University,
New York, NY 10003.
weijima@nyu.edu
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Abstract

Given the many types of suboptimality in perception, I ask how
one should test for multiple forms of suboptimality at the same
time – or, more generally, how one should compare process
models that can differ in any or all of the multiple components.
In analogy to factorial experimental design, I advocate for factor-
ial model comparison.

Rahnev & Denison (R&D) identify many possible sources of
(apparent) suboptimality in behavior, including capacity limita-
tions, incorrect observer assumptions about stimulus statistics,
heuristic decision rules, and decision noise or criterion jitter
(their Table 1). They urge the field to test the collective set of
these hypotheses. I strongly support this message; for example,
in recent work, we tested no fewer than 24 alternatives to the opti-
mal decision rule (Shen & Ma 2016). However, the research
agenda as a whole encounters a practical challenge: It is in most
cases impossible to test one hypothesis at a time, as it would
require the experimenter to make arbitrary choices regarding
the other hypotheses.

The rational approach, which is taken surprisingly rarely in the
study of perception and cognition, is to consider each hypothesis as
a factor in a model (Keshvari et al. 2012; van den Berg et al. 2014).
Each factor could be binary or multivalued; for example, the factor
“decision rule” could take the values “optimal,” “heuristic 1,” and
“heuristic 2.” Just like factorial design is a cherished tool in experi-
mentation (Fisher 1926), models can also be combined in a factor-
ial manner: Every logically consistent combination of values of the
different factors constitutes a model that should be tested. If there
are n binary factors, there will be up to 2n models. The goodness of
fit of each model is then evaluated using one’s favorite metric, such
as the Akaike information criterion (AIC; Akaike 1974) or
leave-one-out cross validation (Vehtari et al. 2017).

In factorial model comparison, ranking all individual models is
usually not the end of the road: often, one is less interested in the
evidence for individual models than in the evidence for the differ-
ent levels of a particular factor. This can be obtained by aggregat-
ing across “model families.” A model family consists of all models
that share a particular value for a particular factor (e.g., the value
“heuristic 1” for the factor “decision rule”). In the binary example
with 2n models, each model family would have 2n-1 members. The
goodness of fit of a model family is then a suitably chosen average
of the goodness of fit of its members. In a fully Bayesian treat-
ment, this averaging is marginalization. If AIC is the metric of
choice, one could average the AIC weights (Wagenmakers &
Farrell 2004) of the family members (Shen & Ma, in press).
Finally, one could represent each family by its best-performing
member (van den Berg et al. 2014).

Commentary/Rahnev and Denison: Suboptimality in perceptual decision making 27

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X18000936
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 10 Jan 2019 at 15:53:30, subject to the Cambridge Core terms of use, available at

http://orcid.org/0000-0002-9835-9083
mailto:weijima@nyu.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X18000936
https://www.cambridge.org/core


An alternative to factorial model comparison is to construct a
“supermodel,” of which all models of interest are special cases
(Acerbi et al. 2014a; Pinto et al. 2009). For example, an observer’s
belief about a Gaussian stimulus distribution with fixed mean and
variance could be modeled using a Gaussian distribution with
free mean and variance. Then, all inference amounts to parameter
estimation, for which one can use Bayesian methods. In some
cases, however, a factor is most naturally considered categorical –
for example, when comparing qualitatively distinct decision rules.

My lab performed factorial model comparison for the first
time in a study of change detection, crossing hypotheses about
the nature of encoding precision with ones about observer
assumptions about encoding precision, and with ones about the
decision rule (Keshvari et al. 2012). In this case, an optimal-
observer model with variable encoding precision and right obser-
ver assumptions won convincingly.

Factorial model comparison is no silver bullet. It is easy to end
up with statistically indistinguishable models in the full ranking. In
a study of the limitations of visual working memory, we crossed
hypotheses about the number of remembered items with ones
about the nature of encoding precision, and with ones about the
presence of non-target reports (van den Berg et al. 2014). This pro-
duced 32 models, many of which were indistinguishable from
others in goodness of fit. Family-wise aggregation helped to draw
conclusions, but even that might not always be the case. Such non-
identifiability, however, is not a problem of the method but a reflec-
tion of the difficulty of drawing inferences about multicomponent
processes based on limited behavioral data. As we wrote in van den
Berg et al. (2014, p. 145), “Factorially comparing models using
likelihood-based methods is the fairest and most objective method
for drawing conclusions from psychophysical data. If that forces
researchers to reduce the level of confidence with which they
declare particular models to be good representations of reality,
we would consider that a desirable outcome.”

Satisficing as an alternative to
optimality and suboptimality in
perceptual decision making

Antonio Mastrogiorgioa and Enrico Petraccab,c
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Abstract

Rahnev & Denison’s (R&D) critique of optimality in perceptual
decision making leads either to implicitly retaining optimality as
a normative benchmark or disregarding the normative approach
altogether. We suggest that “bounded rationality,” and particu-
larly the “satisficing” criterion, would help dispense with
optimality while salvaging normativity. We also suggest that

satisficing would provide a parsimonious and robust explanation
for perceptual behavior.

For decades, the field of judgment and decision making (under the
constant impulse coming from economics) has been struggling over
how to overcome optimality as a default framework for decision
making. With the benefit of this experience, we comment on
Rahnev & Denison’s (R&D) article, which may be traversing
through similar hurdles in the field of perceptual decision making.
Symptomatic of the fact that R&D (and thewhole field of perceptual
decisionmaking) are in the early stages of a struggle with optimality
is that they are inevitably led to call perceptual behavior that violates
“optimality” suboptimal. By doing so, they compel themselves
within the strictures of the optimality/suboptimality dichotomy,
making their subsequent plea to overcome optimality – although
repeatedly stated – methodologically unconvincing. R&D’s plea
for the construction of a standard observer model closely resembles
well-known attempts to descriptively amend optimality frameworks
in the face of evidence of optimality violations (e.g., Kahneman &
Tversky 1979), maintaining, however, optimality as a normative
benchmark, even if only for diagnostic purposes. On a more radical
reading, R&Dwould reject normativity in perceptual decision mak-
ing altogether, in favor of a purely descriptive account of both opti-
mal and suboptimal behavior. We argue that both of these ways
would methodologically result in a dead end. This would mainly
be attributable to R&D’s reliance on the hidden assumption that
conflates optimality and normativity (i.e., the assumption that con-
siders optimality as the sole possible normative benchmark for per-
ceptual decision making). In this commentary, we advance the idea
that “bounded rationality,” and particularly the notion of “satis-
ficing” (Simon 1955; 1956), are able to altogetherovercomeoptimal-
ity by (1) providing a benchmark that rejects optimality but salvages
normativity in perceptual decisionmaking and (2) proposing amore
parsimonious and robust explanation of perceptual behavior.

With regard to the first point, R&D’s contention that “[bounded
rationality models] still place the greatest emphasis on the optimal-
ity of the decision rule” (sect. 5.1, para. 1), while mentioning
Herbert Simon (1955) and Gigerenzer and Selten (2001) in support
of their statement, is particularly striking. Simon (1956) was reso-
lutely against any form of optimality, so much that he founded
the notion of “bounded rationality” on a completely new criterion
called “satisficing” (a neologism conflating “satisfy” and “suffice”).
As Simon (1996) stated, “Many… have argued that the gap between
satisfactory and best is of no great importance, hence the unrealism
of the assumption that the actors optimize does not matter; others,
including myself, believe that it does matter, and matters a great
deal” (p. 29). Given the naturally limited availability of time, infor-
mation, and computational capacity to make decisions in real-
world environments, agents’ decision rules cannot optimize, but
rather obey a criterion of satisfaction, operationally meaning that
satisfaction is achieved when a certain threshold, or “aspiration
level,” is reached. More recently, Gigerenzer et al. (1999), building
upon Simon’s framework, have emphasized its ecological traits,
maintaining that a decision rule is rational “to the degree that it is
adapted to the structure of an environment” (p. 13). In both
Simon’s andGigerenzer’s frameworks, “adaptation” is the keyword,
as it provides an alternative normative framework to decision mak-
ing (e.g., Hands 2014). Notably, this adaptation framework rejects
the very idea that adaptive criteria, such as satisficing, could be
reduced to some form of optimization (typically, optimization
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under constraints) (Gigerenzer 2004). R&D’s misconception of
Simon’s and Gigerenzer’s theories – particularly when they say
that “influential theories [of bounded rationality] postulate that
evolutionary pressures produced heuristic but useful, rather than
normative, behavior” (sect. 5.3, para. 3) – has to be traced back to
a failure to figure out that bounded rationality’s and satisficing’s
normative content lies in adaptation. This is most unfortunate, as
bounded rationality’s normative core would greatly help perceptual
decisionmaking overcome optimality in any residual form, without
abdicating to normativity.

With regard to the second point, satisficing could also provide a
more parsimonious and robust explanatory framework for percep-
tual behavior with respect to optimality and suboptimality. To see
how, we specifically consider the “diffusion model,” typically used
to explain the speed/accuracy tradeoff in perceptual decisions. As
it is commonly described, “the diffusion model assumes that deci-
sions are made by a noisy process that accumulates information
over time from a starting point toward one of two response criteria
or boundaries.…When one of the boundaries is reached, a response
is initiated” (Ratcliff & McKoon 2008, p. 875). It is surprising how
closely this model’s mechanism resembles satisficing models of
decision making introduced by Simon (1955). The descriptive con-
sistency of these two classes of models can be used, we suggest, to
parsimoniously explain the puzzling evidence that some subjects
set decision thresholds optimally while others only suboptimally
in the same task (Bogacz et al. 2010). In principle, evidence of indi-
vidual differences in threshold setting is consistent with the idea
that individual variability falls within a common adaptive interval.
In this adaptive interpretation, the main question addressed by dif-
fusionmodels should not bewhether thresholds are optimal or sub-
optimal, but whether they are adapted or not to a given perceptual
task. In this line of argument, although ecology is mentioned as an
explanation of optimality in the speed/accuracy tradeoff (e.g.,
Bogacz 2007), ecological arguments seem to be missing in R&D’s
discussion of suboptimality. As certain perceptual tasks are dis-
tinctly oriented to accuracy and others distinctly oriented to
speed, ecological arguments dictate whether speed and accuracy
should be treated together or separately (Todd & Gigerenzer
2003, p. 151). The usual explanation that first assumes the speed/
accuracy tradeoff and then describes either speed-oriented or accur-
acy-oriented behavior as “limiting cases” can be unnecessarily
complex from an ecological point of view. More generally, as ana-
lysis of optimality/suboptimality typically explains perceptual
behavior in tasks that are relatively simple, it can say little regarding
more complex tasks, such as those considered by Simon (Bogacz
et al. 2010, p. 888). In these latter cases, there are ecological reasons
to argue that satisficing procedures may provide a robust explan-
ation for a wider range of perceptual tasks (e.g., Martignon &
Hoffrage 2002).

Optimality is both elusive
and necessary

Joachim Meyer

Department of Industrial Engineering, Tel Aviv University, Tel Aviv 6997801,
Israel.
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Abstract

Optimality of any decision, including perceptual decisions,
depends on the criteria used to evaluate outcomes and on the
assumptions about available alternatives and information. In
research settings, these are often difficult to define, and there-
fore, claims about optimality are equivocal. However, optimality
is important in applied settings when evaluating, for example,
the detection of abnormalities in medical images.

A long history of research supports the notion that human deci-
sions may not be optimal. Many of the early studies dealt with
probability learning and “probability matching.” In these studies,
decision makers often choose the alternative with the higher pay-
off probability according to this probability (e.g., when there is a
70% chance to get a positive payoff from choosing an alternative,
participants tend to choose it 70% of the time). The optimal strat-
egy in such experiments is always to choose the alternative with
the higher payoff probability. Kenneth Arrow (1958, p. 14) stated
60 years ago, referring to probability matching, that “the remark-
able thing about this is that the asymptotic behavior of the indi-
vidual, even after an indefinitely large amount of learning, is not
the optimal behavior.”

However, probability matching may actually be optimal. This is
the case if it is used in an environment with possible changes and
competition for resources (Gallistel 2005). This description prob-
ably characterizes the vast majority of environments outside the
experimental psychology lab. Therefore, probability matching
may be the optimal strategy in most settings, and using it in a
lab experiment does not imply non-optimality of human decisions.
Hence, we need to define the criteria according to which one eval-
uates a decision. A decision may be optimal under some assump-
tions and will be non-optimal under different assumptions.

The optimality of decisions does not only depend on the
assumptions on which evaluations are based. Optimality is also
always judged from a particular point of view. Perceptual deci-
sions may seem non-optimal when evaluated from a “god’s eye
view,” knowing the true probabilities of events. However, as
Rahnev & Denison (R&D) point out, prior expectations affect
judgments. If a person believes certain events are more likely
than others and bases her decisions on this belief, the decisions
may very well be optimal, considering the information that is
available when the decision is made.

Similarly, the decision maker’s experience in the experiment
determines likelihood estimates. In binary classification experi-
ments, the probability of events is binomially distributed. As
long as the number of observations is relatively small, assessments
of the probabilities of events may differ greatly from the “true”
probabilities. Furthermore, even if the person observed a large
number of events, the assessed likelihood depends on the memory
for the events (the relative number of true and false positive and
true and false negative classifications). Not all of these events may
be equally salient in memory, leading to possibly biased likelihood
estimates. An optimal response to biased likelihood estimates will
seem non-optimal.

Hence, the notion of optimality is not very informative.
Instead, an attempt should be made to model the cognitive pro-
cesses that lead to the perceptual decisions, in line with R&D’s
suggestions. Such models should consider the context in which
decisions are made, the person’s prior expectations, and the
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events the person encounters. They should also take into account
the properties of the memories these events leave. The “optimal-
ity” criterion can be some benchmark to which one can compare
decisions, but unless we believe people have some supernatural
ability for clairvoyance, we should not expect people to reach
this optimality criterion.

However, in some conditions, optimality is critical, and the
criteria for optimality are relatively clearly defined. This is often
the case outside the laboratory, as when clinicians make decisions
regarding the existence of malignancies in medical images. The
optimality of decisions in such tasks depends on the costs and
benefits of different outcomes and the likelihood of malignancies
in a population. If such decisions deviate systematically from opti-
mality, some steps can be taken to lower the discrepancies (e.g.,
provide training, change procedures). Alternatively, it may be pos-
sible to provide human decision makers with aids that help in the
detection process (based on image analyses, etc.). If such aids are
available, the question of whether people assign optimal weights
to the information from these aids is of major importance. In
fact, it turns out that people often assign insufficient weight to
valid aids, and they over-rely on their own perceptions (as, e.g.,
in Meyer et al. 2014). If people clearly deviate from optimality,
and the perceptual decisions can be made without involving
humans (e.g., by employing some computer vision and artificial
intelligence [AI] mechanisms), then perhaps we should not
include people in these tasks. Hence, the optimality of human
decisions can be a factor in the design and evaluation of human-
computer systems.

To conclude, in a research context one may aim to predict
human decisions from a detailed understanding of the evolving
situation in which the decisions are made, without committing
oneself to the elusive notion of optimality. In applied settings, it
is important to analyze performance and to compare it to opti-
mality criteria when evaluating a system that is used to achieve
some goal. These two statements do not contradict each other.
To achieve both goals, we should develop models of the task, of
the way the human performs the task, and of the implications
this task performance may have. These models can help us to
understand human decisions, whether these are optimal or not.
The models can also serve to predict the overall performance of
a system in which humans use technology to perform some
task involving perceptual decisions.

The standard Bayesian model is
normatively invalid for
biological brains
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Abstract

We show that the benchmark Bayesian framework that Rahnev
& Denison (R&D) used to assess optimality is actually subopti-
mal under realistic assumptions about how noise corrupts deci-
sion making in biological brains. This model is therefore invalid
qua normative standard. We advise against generally forsaking
optimality and argue that a biologically constrained definition
of optimality could serve as an important driver for scientific
progress.

Rahnev & Denison’s (R&D) extensive review of the perceptual
decision-making literature points to the fact that human behavior
substantially deviates from optimality. Notably, R&D define opti-
mality according to a standard Bayesian framework (henceforth,
the “benchmark model”). Here, we would like to support and elab-
orate on the claim that this benchmark model has limited validity
in describing perceptual decisions. However, rather than addres-
sing the descriptive (in)ability of the model to account for behav-
ioral data, we would like to go a step further and postulate that this
model has limited normative validity once constraints of informa-
tion processing in biological brains are taken into account.

Specifically, we argue that the assumptions of the benchmark
model are over-simplistic, considering how perceptual processing
is implemented in biological brains, and that under more realistic
assumptions the benchmark model ceases to be optimal. A key
assumption in the benchmark model is that encoding noise is
the sole corrupting element of perceptual decisions (sect. 2.2).
Alas, decision-making operations are never limited to stimulus
encoding. Rather, they involve a sequential cascade of processes
past the encoding stage, such as integration of information across
different sources, mental inference, decision formation, response
selection, and motor execution. In biological brains, these pro-
cesses are performed across a hierarchy of cortical layers, which
are prone to different sources of noise (Servan-Schreiber et al.
1990). Hence, perceptual choices are unavoidably corrupted by
“late,” post-encoding, noise. This notion was corroborated in a
recent study that dissociated the contributions of three noise
sources to decision suboptimality: sensory encoding, response
selection, and mental inference (Drugowitsch et al. 2016).
Strikingly, noise in mental inference, rather than encoding, was
found to be the main contributor to suboptimality.

Here, we argue that in the presence of post-encoding sources
of noise, the benchmark model ceases to be optimal. As we
next show, higher accuracy can be obtained by down-weighting
some aspects of the available information via a “selective integra-
tion” process (Tsetsos et al. 2016a; 2016b; see Osmmy et al. [2013]
for an illustration of how a different form of information down-
weighting can facilitate signal detection performance).

To illustrate the superiority of the selective integration model,
we consider a simple binary choice scenario, as in R&D’s Figure 1.
We assumed that the measurement distributions of these two
stimuli are N( ± 1, 0.72), that both stimuli are presented with
equal prior probabilities, and that observers are awarded or pena-
lized one point for each right or erroneous choice, respectively.
Critically, unlike R&D, we assumed that predicted action costs
calculated by observers are prone to an additional source of late
Gaussian noise denoted by N(0, ξ2). Note that this late noise
affects only the costs that observers predict but not the actual
rewards and penalties they receive (± 1). We assumed that late
noise is independent across actions and independent of the

30 Commentary/Rahnev and Denison: Suboptimality in perceptual decision making

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0140525X18000936
Downloaded from https://www.cambridge.org/core. Georgia Institute of Technology, on 10 Jan 2019 at 15:53:30, subject to the Cambridge Core terms of use, available at

http://orcid.org/0000-0002-7641-2402
http://orcid.org/0000-0003-2709-7634
mailto:rani.moran@gmail.com
https://www.mps-ucl-centre.mpg.de/en/people/rani-moran
https://www.mps-ucl-centre.mpg.de/en/people/rani-moran
mailto:k.tsetsos62@gmail.com
https://sites.google.com/site/konstantinostsetsos/
https://sites.google.com/site/konstantinostsetsos/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0140525X18000936
https://www.cambridge.org/core


encoding noise. Using R&D’s notations, the predicted cost of each
action is as follows:

cost predicted(a) =
∑
s[S

[l(s|x, u)p(s)L(s, a)]+ N(0, j2).

According to the benchmark model, the chosen action on each
trial minimizes predicted cost:

d(x) = argmina[A{cost predicted(a)}.

Unsurprisingly, the actually realized cost of the model-selected
action increases as a function of late noise, ξ (Fig. 1). Focal to our
interest, however, is the comparison between the benchmark and
the selective integration models. In the selective integration
model, cost predictions are based on “pseudo-likelihoods” l

′

defined as follows:

l′(x|si, u) = l(x|si, u), if l(x|si, u) ≥ l(x|sj, u)
l(x|si, u)w, if l(x|si, u) , l(x|sj, u),

{

where w <1 (in Fig. 1, w = 0.1). Note that the pseudo-likelihood
equals the standard likelihood for the more likely of the two stim-
uli. However, the likelihood of the less likely stimulus is selectively
down-weighted. Action selection is determined by minimization
of the predicted pseudo-costs:

cost′predicted(a) =
∑
s[S

[l′(s|x, u)p(s)L(s, a)]+ N(0, j2)

d′(x) = argmina[A{cost
′
predicted(a)}.

By down-weighting the likelihood of the less likely stimulus,
observers attenuate the harmful influences that late noise exerts
on performance (see Tsetsos et al. [2016a] for a detailed discus-
sion). Indeed, the selective integration model strikingly outper-
forms the benchmark model by achieving lower actual costs
(Fig. 1; negative costs correspond to positive gains). Therefore,
the benchmark model is suboptimal when post-encoding noise
is present and is thus an inadequate standard for assessing opti-
mality in behavior. We recently showed that an intriguing

violation of rational choice theory, intransitivity of choices, was
a by-product of adaptive selective integration processes (Tsetsos
et al. 2016a). Future research should investigate whether and
which of the sundry “suboptimal” behaviors reviewed by R&D
actually reflect biologically constrained adaptive processes.

Next, we wish to qualify R&D’s arguments about the overall
utility of assessing optimality (sect. 4). Although we agree that
addressing optimality should not be in itself the ultimate goal of
the study of perception, we still think that the notion of optimality
can serve as an important driver to scientific progress. From an
evolutionary perspective, perceptual processing reflects an
extended adaptation process and, as such, is ex ante expected to
be optimal (Moran 2015). Therefore, when theories of optimality
are defined appropriately, taking into account the biological con-
straints of human information processing, they can provide an
invaluable benchmark, guiding both theory development and
behavioral assessments. On the one hand, when organisms are
found to behave optimally, it raises questions about how optimal-
ity is achieved at the algorithmic and implementation levels.
When, on the other hand, suboptimal behaviors are found, it
raises questions pertaining to why these alleged deviations from
optimality occur. Such questions can lead to a better understating
of the constraints and limitations of human information process-
ing (Tsetsos et al. 2016a), of the cost function that neural systems
strive to minimize (Soltani et al. 2012), and of the statistical struc-
ture of the environment in which cognitive processes evolved
(Fawcett et al. 2014). This understating often leads to a subtler
definition of optimality, which supports novel behavioral hypoth-
eses and assessments. In sum, we conceive of scientific progress as
an iterative process, in which the notion of optimality, rather than
being relinquished, continually evolves and undergoes refinement.
It is challenging to define optimality, but we nevertheless think
that such attempts are instrumental in scientific progress.

Observer models of
perceptual development

Marko Nardinia and Tessa M. Dekkerb

aDepartment of Psychology, Durham University, Durham DH1 3LE, United
Kingdom and bDepartment of Experimental Psychology and Institute of
Ophthalmology, University College London, London WC1E 6BT, United
Kingdom.
marko.nardini@durham.ac.uk http://community.dur.ac.uk/marko.nardini/
t.dekker@ucl.ac.uk http://www.ucl.ac.uk/∼ucjttb1/
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Abstract

We agree with Rahnev & Denison (R&D) that to understand
perception at a process level, we must investigate why perform-
ance sometimes deviates from idealised decision models. Recent
research reveals that such deviations from optimality are perva-
sive during perceptual development. We argue that a full under-
standing of perception requires a model of how perceptual
systems become increasingly optimised during development.

Figure 1 (Moran & Tsetsos). Comparison between the Bayesian “benchmark” and
the selective integration models. Average actual cost is displayed as a function of
late noise (ξ). For simulation code, see https://osf.io/gexrd/?
view_only=aa02df150be94beebf310f1e56cec16f.
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Perceptual abilities undergo major development during infancy
and childhood – for example, for detecting low-contrast stimuli
(Adams & Courage 2002) and noisy patterns of motion (Hadad
et al. 2011) or recognising complex stimuli such as faces
(Mondloch et al. 2002). Classically, the focus of perceptual devel-
opment research has been on improvements in sensitivity (likeli-
hoods). As reviewed in the target article, decades of adult research
show how sensitivity changes can result from changes within a
decision-model framework that incorporates likelihoods, priors,
cost functions, and decision rules. Applying this framework to
development, we argue that perceptual improvements must be
explained in terms of changes to these components. This will
lead to a new understanding of how perceptual systems attain
their more highly optimised mature state.

Specifically, we need to know the following:

(1) Which elements of the observer model are changing (develop-
ing), leading to improvements in perceptual function? Recent
evidence suggests that multiple components of the decision
model are developing significantly during childhood. Until
late into childhood, observers are still using decision rules
less efficiently: misweighting informative cues (Gori et al.
2008; Manning et al. 2014; Sweeny et al. 2015) or using quali-
tatively different decision rules altogether (Jones & Dekker
2017; Nardini et al. 2008; 2010). Other studies show abilities
to learn and use priors and costs also to be developing late
into childhood (e.g., Dekker & Nardini 2016; Stone 2011;
Thomas et al. 2010). The new, model-based approach to devel-
opment pioneered in these studies paves the way for under-
standing how likelihoods, priors, cost functions, and decision
rules are shaped as children learn, and for testing which com-
mon processes can explain perceptual development across a
range of different tasks. Studies to date have successfully cap-
tured developmental changes in performance by fitting how
parameters of specific components of the decision model
change with age on single tasks. This usefully sets quantitative
bounds on potential changes in these processes, but the data
are often compatible with more than one account. For
example, in a rewarded reaching task (Dekker & Nardini
2016), children up to the age of 11 years aim too close to a pen-
alty region to maximise their score, reflecting overconfidence
in likelihood of hitting the target, underestimation of cost, or
a central pointing prior. An important way forward is therefore
to evaluate the fit of developmental models to multiple tasks
and to test their predictions on new tasks.

(2) How are more efficient and adult-like decision rules, priors, and
cost functions acquired during development? Beyond character-
ising the changes in decision-model components underlying
perceptual development, the ultimate aim is to understand
the mechanisms driving these changes. A major contributing
factor is likely to be experience, which shapes the sensitivity
of neuronal detectors, determining likelihoods (Blakemore &
Van Sluyters 1975), changes priors (Adams et al. 2004), and
is needed to learn the potential consequences of actions
(cost factors). It is not clear in which circumstances such
experience is generalizable (e.g., priors or costs learned during
one task applied to another), how experience drives learning of
decision rules, or whether there are sensitive periods like those
for sensitivities (likelihoods) in other parts of the decision
model (e.g., for learning priors). A useful approach is investi-
gating the neural changes supporting improvements in
decision-model components as perception becomes more

optimised, such as more precise representation of likelihoods
(Van Bergen et al. 2015) and values (Wu et al. 2011), or
more precise computing of weighted averages, perhaps imple-
mented via divisive normalisation (Ohshiro et al. 2011). The
power of this approach is demonstrated by recent studies of
developmental disorders, in which there are exciting develop-
ments in linking components of observer models to specific
neural mechanisms (Rosenberg et al. 2015). For example, in
autism, tasks that involve combining new evidence with
prior knowledge are disproportionally affected, and this has
recently been linked to the overweighting of sensory likeli-
hoods versus priors, possibly because of altered neural opera-
tions mediated by noradrenaline and acetylcholine (Lawson
et al. 2017). In addition, a new, model-based approach to
developmental neuroimaging lets us disentangle components
of the developing decision model across different neural pro-
cessing stages. We recently showed that development of cue
integration during depth perception was linked to a shift
from using depth cues independently to combining them, by
neural detectors in sensory cortex (adopting a “fusion” rule;
Dekker et al. 2015). This suggests that the late development
of cue integration is driven by a change in how sensory infor-
mation is combined (sensory decision rule), rather than
improved readout of the fused estimate during task perform-
ance (higher-order decision rule or cost function). These stud-
ies demonstrate how a developmental approach can provide
computational-level understanding of the crucial ingredients
for building a mature optimised observer.

The end goal of this approach is an observer model incorpor-
ating processes of learning and development: a developing stand-
ard observer model. This will provide a more complete
understanding of perceptual systems and a basis for developing
intelligent machines that can learn to perceive in novel environ-
ments. For example, understanding the structure of experience
that scaffolds our ability to transfer previous likelihoods, cost
functions, and decision rules from one task to another can inform
the development of more flexible artificial intelligence (AI) agents
(Wang et al. 2017). Similarly, significant improvements in robotic
grasp performance have been gained from incorporating develop-
mental stages such as motor babbling and gradual improvements
in visual acuity into the training regime (Cangelosi et al. 2015). In
addition, understanding which developmental changes in the
decision model (e.g., sensitivity vs. decision rule) drive perceptual
improvements at different ages will provide a crucial basis for bet-
ter training of perception and action in patients with sensory loss.

Supra-optimality may emanate from
suboptimality, and hence optimality
is no benchmark in
multisensory integration

Jean-Paul Noel

Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
jean-paul.noel@vanderbilt.edu http://jeanpaulnoel.com/
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Abstract

Within a multisensory context, “optimality” has been used as a
benchmark evidencing interdependent sensory channels.
However, “optimality” does not truly bifurcate a spectrum from
suboptimal to supra-optimal – where optimal and supra-optimal,
but not suboptimal, indicate integration – as supra-optimalitymay
result from the suboptimal integration of a present unisensory
stimuli and an absent one (audio = audio + absence of vision).

Arguably the study of multisensory integration was born from the
recording of spikes in the feline superior colliculus (Stein &
Meredith 1993). These early studies presented animals with sim-
ple visual (V) flashes and auditory (A) beeps and held the occur-
rence of supra-additive responses (i.e., audiovisual [AV] responses
greater than the sum of auditory and visual responses) as the hall-
mark for multisensory integration. However, this phenomenon is
not common in the neocortical mantle (vs. subcortex; Frens &
Van Opstal 1998), nor when multisensory integration is indexed
via behavior or by measuring ensembles of neurons (e.g., local
field potentials, electroencephalography [EEG], functional mag-
netic resonance imaging [fMRI]; Beauchamp 2005). Hence, over
the last two decades there has been a greater appreciation for sub-
additive responses as equally demonstrating an interesting trans-
formation from input (i.e., A + V) to output (i.e., AV), and thus
highlighting the synthesis of information across senses. That is,
arguably the classic study of multisensory integration has grown
to conceive of sub- and supra-additivity as being on extremes of
a spectrum where both ends are interesting and informative.

In parallel, the originally described “principles of multisensory
integration” (e.g., information that is in close spatial and temporal
proximity will be integrated) have been translated to a computa-
tional language that is seemingly applicable throughout the cortex
and widely observed in behavior. As Rahnev & Denison (R&D)
underline in their review, this computational framework dictating
much of the current work within the multisensory field is that of
Bayesian decision theory. Indeed, among others, audiovisual
(Alais & Burr 2004), visuo-tactile (Ernst & Banks 2002), visuo-
vestibular (Fetsch et al. 2009), and visuo-proprioceptive (van
Beers et al. 1999) pairings have been demonstrated to abide by
maximum likelihood estimation (MLE) – the weighting of likeli-
hoods by relative reliabilities and concurrent reduction in inte-
grated (vs. unisensory) variance. Given this extensive body of
literature, I believe the gut reaction of many multisensory
researchers – mine included – to this review and the thesis that
assessing optimality is not useful was that we must acknowledge
the limitations of solely considering “optimality” without examin-
ing the underlying components (e.g., prior, cost function), but
that this construct is nevertheless valuable. If subjects behave opti-
mally (i.e., reduction of uncertainty), then at minimum, there is
evidence for interdependent channels. Namely, the reduction of
variance in multisensory cases (vs. unisensory) is evidence for
the fact that at some point, unisensory components are fused;
the next step is to understand exactly how these channels are
fused. Furthering this argument, it could be conceived that
supra- and suboptimality exist on a continuum where evidence
for supra-optimality or optimality is evidence for multisensory
integration (admittedly without providing much mechanistic
insight given the points raised by R&D), while suboptimality
does not bear evidence of a synthesis across the senses. In other
words, indexing optimality as a benchmark for integration is

useful because Bayesian computations are ubiquitous in the
brain and behavior, and in that it reduces the state space of inte-
gration from “anything apart from linear summation” (i.e., from
sub-additive to supra-additive excluding additive) to “anything
greater than or equal to optimal” (i.e., from optimal to
supra-optimal but not suboptimal).

However, upon further consideration, I believe this reasoning
to be erroneous (and therefore I agree with the thesis put forward
by R&D). In short, contrarily to the case of additivity, optimality
does not lie on a spectrum from sub- to supra-optimal, and hence
optimality per se is no benchmark.

Traditionally, supra-optimality (an apparent impossibility)
within multisensory systems has been hypothesized to emerge
from a process of “active sensing” (Schroeder et al. 2010). That is,
the presence of a second sensory stimulus (e.g., A) may sharpen
the representation of a first unisensory stimulus (e.g., V) so that
when these are combined (e.g., AV), sharper unisensory estimates
than originally considered are combined, resulting in apparently
supra-optimality. Nonetheless, as Shalom and Zaidel (2018) have
recently highlighted, somewhat paradoxically, it could additionally
be the case that supra-optimality results from suboptimal integra-
tion. Namely, researchers typically take unisensory likelihoods at
face value. However, within a multisensory (e.g., AV) context, the
presentation of auditory stimuli alone is in fact not auditory alone
(e.g., A), but instead the presence of auditory information and the
absence of visual information (e.g., A + no V). Therefore, in this
example, researchers are underestimating the reliability of the audi-
tory channel (which is truly A-likelihood + a flat visual likelihood),
whichwill ultimately result in claims of supra-optimalmultisensory
integration. This second observation (by Shalom & Zaidel 2018) is
similar to the case of active sensing, in that the sharpness of unisen-
sory likelihoods is underestimated. However, the perspective is
quite different in that supra-optimality is not the result of cross-
modal feedback enhancing unisensory representation solely when
presented in a multisensory context, but in fact, in this latter case,
supra-optimality is merely an experimental construct that results
from the erroneous underestimation of a unisensory likelihoods;
theworld is by naturemultisensory, and hence unisensory estimates
are impoverished estimates wherein a cue has been artificially
removed. That is, supra-optimality can result from the non-optimal
integration of a signal (e.g., A) and noise (e.g., a non-present V sig-
nal). In turn, there is no true gradient between supra- and subop-
timality, and hence positioning optimality as a benchmark
bifurcating between multisensory fusion and fission is ill advised.
Instead, as highlighted by R&D, we ought to conceive of (multisen-
sory) perception as a dynamic systemwhere likelihoods, priors, cost
functions, and decision criteria all interact interdependently in both
feedforward and feedback manners.

When the simplest voluntary
decisions appear patently
suboptimal

Emilio Salinas , Joshua A. Seideman

and Terrence R. Stanford
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Abstract

Rahnev & Denison (R&D) catalog numerous experiments in
which performance deviates, often in subtle ways, from the theor-
etical ideal. We discuss an extreme case, an elementary behavior
(reactive saccades to single targets) for which a simple contextual
manipulation results in responses that are dramatically different
from those expected based on reward maximization – and yet
are highly informative and amenable to mechanistic examination.

The conclusions drawn by Rahnev & Denison (R&D) rely on
analyses spanning many tasks and experimental conditions in
which perceptually guided decisions deviate, for a variety of rea-
sons, from those of an ideal observer model. Indeed, they exhaust-
ively build a convincing argument. But sometimes a single,
powerful example can illustrate a general result with great elo-
quence. That is the case with an elegant paradigm known as the
one-direction-rewarded, or 1DR, task.

The 1DR task is deceptively simple (Hauser et al. 2018;
Hikosaka et al. 2006; Lauwereyns et al. 2002). The subject (a mon-
key, in this case) is instructed to perform an elementary action: to
look at a lone, clearly visible stimulus. Each trial starts with the
monkey briefly fixating on a central spot on an otherwise blank
screen. Then the fixation spot disappears, and, at the same
time, a target stimulus appears at one of four possible symmetric
locations (or one of two locations, depending on the study). The
stimulus location varies randomly across trials. The monkey is
rewarded for making a quick eye movement, a saccade, to the tar-
get – a reaction that is, in fact, quite natural.

But there is a catch. Correct saccades to one location yield a
large reward, whereas correct saccades to the other locations
yield either a small reward or no reward (this varies by monkey,
but, importantly, the results are the same). The rewarded location
stays constant for a block of trials. The spatial asymmetry in
reward expectation leads to a conflict: The monkey wants to
look in one direction but is often instructed to look elsewhere.
Nevertheless, all trials must be completed, whether the reward
on offer is large or small. There is no strategic advantage to
responding differently in one condition compared with the
other. Only one alternative is available, so deliberating is unneces-
sary. To maximize the reward rate, the monkey should look at the
target as quickly and as accurately as possible each time, regard-
less of where it appears.

However, the observed behavior diverges quite drastically from
this prescription. Saccades in congruent trials, in which the target
and the highly rewarded locations coincide, are initiated more
quickly and are more accurate than those in incongruent trials,
in which the target and the highly rewarded locations differ.
The effects are huge. For example, in our own data (Hauser
et al. 2018), we found that the reaction time (RT) went from
about 150 ± 25 ms (mean ± standard deviation) to about 250 ±
80 ms, with the error rate changing from virtually zero (99.7%
right) to about 10% of incorrect saccades. The extraordinary sen-
sitivity of the monkeys to reward asymmetry also manifests in
other, low-level behavioral metrics, such as the peak saccade

velocity, as well as in the swiftness with which the animals
respond to changes in the asymmetry over time. When the
rewarded location changes, which happens without warning, it
takes a single trial for the spatial bias to switch accordingly
(when only two locations are used). This rich phenomenology
is highly consistent between animals, laboratories, and task var-
iants, and it remains stable for months, even after many thou-
sands of trials of practice (Hauser et al. 2018; Hikosaka et al.
2006; Takikawa et al. 2002; Watanabe et al. 2001).

Such behavior runs counter to the expectation based on
reward maximization, as outlined previously. Within the behav-
ioral repertoire discussed by R&D, the spatial bias represents a
particularly drastic breakdown of the speed-accuracy tradeoff
(sect. 3.4), because one condition (congruent) leads to more
accurate and much faster responses than the other (incongruent).
The 1DR behavior can also be considered as a limit case of a
choice task in which different responses have different payoffs
(sect. 3.3). Normally, in monkeys, such asymmetry produces a
shift in criterion (Feng et al. 2009; Stanford et al. 2010). Here,
the perceptual uncertainty about the right option is eliminated,
and the adjustment in criterion is grossly inappropriate. Either
way, the underlying “cost function” guiding the behavior must
be radically different from those that may be naively construed
as optimal.

It is not difficult to imagine why such a discrepancy arises. The
capacity to discriminate and seek rewarding events must be critical
for survival, so it is not surprising that reward drives or modulates
numerous cognitive processes. In particular, reward expectation is
intimately linked to attentional deployment and oculomotor con-
trol (Hikosaka et al. 2006; Maunsell 2004; Peck et al. 2009;
Preciado et al. 2017). The conditions in the 1DR task likely set up
a cognitive trap of sorts – the illusion of a choice – such that the
monkeys never cease to strongly prioritize the rewarded location.
In essence, they demonstrate persistent wishful thinking.

Regardless, the 1DR paradigm has been extremely useful, even
though it does not adhere to a normative theory. For many years,
Hikosaka and colleagues have exploited it to investigate how cog-
nition and motivation interact, seeking to identify and function-
ally characterize the oculomotor and reward-encoding neural
circuits that mediate the biasing effects and their motor expres-
sion. Theirs is an impressive research program that has uncovered
many such contributions and mechanistic components (e.g., Ding
& Hikosaka 2006; Ikeda & Hikosaka 2003; Isoda & Hikosaka
2008; Tachibana & Hikosaka 2012; Takikawa et al. 2004;
Yasuda & Hikosaka 2017). In this context, justifying the animals’
behavior on the basis of an optimality principle or ideal observer
model seems rather unnecessary. Furthermore, in our own labora-
tory, we recently developed a mechanistic model that replicates
the monkeys’ RT distributions as well as single-neuron activity
in the frontal eye field (FEF) during performance of the 1DR
task (Hauser et al. 2018). This model explains the observed behav-
ior in great quantitative detail based on dynamical interactions
found in FEF.

In summary, the results in the 1DR task exemplify one of the
main conclusions drawn by R&D – that although a normative
benchmark may provide useful interpretive guidance in
many cases, it is by nomeans necessary for understanding a particu-
lar behavior, or for generating a complete mechanistic description
of it.
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Abstract

Current perspectives propose that observer models accounting
for both optimal and suboptimal behaviour may yield real pro-
gress in understanding perception. We propose that such models
could, in addition, be very useful for precisely characterising the
variation in perception across healthy participants and those
affected by psychiatric disorders, as well as the effects of neuro-
modulators such as oxytocin.

In their thought-provoking target article, Rahnev & Denison
(R&D) argue that real progress in understanding perception
could be achieved by observer models that account for optimal
and suboptimal behaviour. We believe that such models could
furthermore be very useful for characterising variations in percep-
tion across healthy participants and those affected by psychiatric
disorders. Inter-individual variations in perception (e.g.,
Grzeczkowski et al. 2017; Partos et al. 2016; Schultz & Bülthoff
2013; van Boxtel et al. 2017) and perceptual decision making
(Ratcliff et al. 2010; 2011; Schmiedek et al. 2007) have been widely
reported. An established approach to investigate these processes
and their variations has been to model accuracy and response
times using diffusion models (Ratcliff 1978; Ratcliff et al. 2016).
Comparing parameters of these models with personality traits
across healthy participants, or between healthy participants and
patients, provides insight into the origins of the variability. This
has allowed researchers to relate individual differences in percep-
tual decision making to individual differences in IQ, working
memory, and reading measures (Ratcliff et al. 2010; 2011;
Schmiedek et al. 2007) and to characterise deficits in participants
with aphasia (Ratcliff et al. 2004), dyslexia (McKoon & Ratcliff
2016), attention-deficit/hyperactivity disorder (Mulder et al.
2010), schizophrenia (Moustafa et al. 2015), depression, and anx-
iety (White et al. 2009).

As part of the Research Domain Criteria (RDoC) project (Insel
et al. 2010) aiming to incorporate genetics, neuroimaging, and
cognitive science into future psychiatric diagnostic schemes,
applying neurobiologically plausible models of value-based deci-
sion making to characterise deficits observed in psychiatric disor-
ders (Collins et al. 2017; Huys et al. 2015) has led to the
development of computational psychiatry (Maia et al. 2017;
Wiecki et al. 2014). This approach promises mechanistic explana-
tions of how psychiatric symptoms such as cognitive biases may
result from failures of decision variable evaluation (Huys et al.
2015). Bayesian models combining prior information with sen-
sory evidence are particularly promising in yielding insight into
pathophysiological mechanisms of perceptual distortions
observed in schizophrenia. For example, information processing

favouring prior knowledge over incoming sensory evidence
can account for differences in visual illusion perception
observed in early psychosis and schizotypy (Partos et al. 2016;
Teufel et al. 2015). The “jumping-to-conclusions” bias in
event probability estimation typical of schizophrenia can be
characterised by increased circular inference – that is, the cor-
ruption of sensory data by prior information, with feedforward
and feedback loops of the model correlating with negative and
positive symptoms, respectively (Jardri et al. 2017). In time,
such approaches may allow us to develop specific therapeutic
approaches, such as metacognitive training (e.g., see Moritz &
Woodward 2007).

Observer models may allow similar progress in understanding
the mechanisms underlying dysfunctions of social perception and
interaction. Parameterizable social stimuli may prove very helpful
in this regard; for example, point-light motion stimuli and tasks
assessing different levels of processing have allowed researchers
to better understand how autistic traits affect certain aspects of
biological motion perception (van Boxtel et al. 2017). The
response to others’ gaze is also affected in autism (Leekam et al.
1998; Wallace et al. 2006); here, a recently developed computa-
tional model of the perception of gaze direction (Palmer &
Clifford 2017) has yielded insight into the origin of those dysfunc-
tions: It has been proposed that autism is associated with reduced
divisive normalisation of sensory responses, attributable to an
increased ratio of cortical excitation to inhibition (Rosenberg
et al. 2015). Interestingly, both divisive normalisation and sensory
adaptation occur robustly in autism in the context of gaze pro-
cessing (Palmer et al. 2018). This suggests that the differences
in response to others’ gaze may instead be related to differences
in the interpretation of gaze direction or the spontaneous follow-
ing of others’ gaze (Senju et al. 2009). Similar work could be
undertaken for elucidating other essential social cognitive func-
tions, such as face recognition. Face recognition capacities widely
vary across healthy participants (Wilmer et al. 2012), ranging
from congenital prosopagnosia (Behrmann & Avidan 2005;
McConachie 1976) to “super-recognition” (Russell et al. 2009).
Although progress towards understanding the cognitive and
neural underpinnings of congenital prosopagnosia is being
made (Susilo & Duchaine 2013), the most widely used tests
may not capture the alternative perceptual strategies adopted by
people afflicted by prosopagnosia (Esins et al. 2016).
Parameterizable face stimuli (Dobs et al. 2014; Esins et al. 2014;
2016) may allow us to better characterise those strategies by allow-
ing direct comparisons between human and ideal observer per-
formance (Dobs et al. 2016; 2017). Such approaches may be
instrumental in identifying alternative heuristics used by partici-
pants with congenital prosopagnosia and other impairments of
social perception.

Recent studies have demonstrated that exogenous administra-
tion of the neuropeptide oxytocin (OT) influences the perception
of social stimuli such as facial emotions in a dose-dependent
manner (Spengler et al. 2017b). Furthermore, OT modulates
attractiveness judgements of faces (Hurlemann et al. 2017;
Striepens et al. 2014), alters the sensory quality of social touch
(Kreuder et al. 2017; Scheele et al. 2014) and body odours
(Maier et al. 2018), increases a tendency to anthropomorphise
(Scheele et al. 2015), or, in rats, boosts the salience of acoustic
social stimuli (Marlin et al. 2015). At present, it is still unclear
whether the behavioural effects of OT result from perceptual
changes, such as increased attention to the socially informative
eye region (Guastella et al. 2008), improved recognition of cues
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about sex and relationship (Scheele et al. 2013), and/or facilitated
sensing of and responding to emotional stimuli (Spengler et al.
2017a). Analysing these effects using observer models may help
identify which aspect of the perceptual decision-making process
is influenced by OT. As OT is also a promising therapeutic
(Hurlemann 2017; Palmer & Clifford 2017), understanding its
mode of action may be informative in order to specifically target
dysfunctional perceptual processes particularly amenable to OT
treatment.

Inclusion of neural effort in cost
function can explain perceptual
decision suboptimality

Yury P. Shimansky and Natalia Dounskaia

Kinesiology Program, Arizona State University, Phoenix, AZ 85004.
yury.shimansky@asu.edu natalia.dounskaia@asu.edu

doi:10.1017/S0140525X18001309, e242

Abstract

A more general form of optimality approach applied to the
entire behavioral paradigm should be used instead of abandon-
ing the optimality approach. Adding the cost of information
processing to the optimality criterion and taking into account
some other recently proposed aspects of decision optimization
could substantially increase the explanatory power of an opti-
mality approach to modeling perceptual decision making.

Use of an optimality approach has been remarkably successful in
many different domains of the natural sciences. Its application to
biological organisms equipped with a well-developed central ner-
vous system (CNS) is generally based on the fact that these organ-
isms learn, thus optimizing their behavior. Hence, a well-learned
behavior can be considered optimized, and various features of
such behavior can be explained as a result of optimization with
respect to a specific criterion (also known as cost function). The
explanatory power is perhaps the main advantage of an optimality
approach. To fully benefit from that advantage, an optimality
approach should be applied to the entire behavioral paradigm.
However, the suggestion of Rahnev & Denison (R&D) to abandon
the optimality approach is based on examples of suboptimality
obtained through application of an optimality approach to the
decision rule only. Here we argue that this suboptimality is indi-
cative of incompleteness of the used optimality criterion, and
therefore, instead of abandoning the optimality approach, it is
more productive to focus on the identification of the important
aspects of the entire behavioral paradigm in addition to the per-
ceptual decision rule. Here, we will demonstrate that optimization
of behavior as a whole accounts for the suboptimality of the deci-
sion rule on two examples discussed by the authors – namely,
inter-observer/trial variability, while decision rule optimality is
observed on average (sect. 3.1.2 and 3.2) and perceptual biases
(sect. 3.8.1 and 3.8.4).

The inter-observer/trial variability can be explained as a result
of overlooking important components of the optimality criterion.

In particular, the cost of neural effort for information processing
should be taken into account (Dounskaia & Shimansky 2016;
Shimansky & Rand 2013). Decision making is based on process-
ing sensory information and integrating it with internal represen-
tations of past experience. These steps of information processing
are required for estimating the state of the relevant constituents of
the environment (perhaps including own body) to which the
decision rule is applied. These steps are an essential component
of the behavioral paradigm, and therefore, the cost of the corre-
sponding neural effort needs to be included in the optimality cri-
terion. In the field of movement control, where an optimality
approach has successfully accounted for vast experimental data
(for reviews, see Shimansky et al. 2004; Todorov 2004), the con-
sideration of the cost of information processing was critical for
understanding even relatively simple motor behaviors such as
reaching to grasp (Shimansky & Rand 2013) and point-to-point
movements (Rand & Shimansky 2013). Also, the “trailing” pat-
tern of joint coordination typically observed during well-learned
arm movements can be fully understood only if neural effort
for joint coordination is considered as a primary component of
the optimality criterion (Dounskaia & Shimansky 2016; Goble
et al. 2007).

The consideration of the cost of neural effort for information
processing implies that the total cost function is a weighted sum
of this cost and the cost of deviations from decision optimality.
The brain is therefore required to perform a tradeoff between
the two costs. Disregarding this tradeoff and focusing on decision
optimality only would lead to a conclusion that experimentally
observed decisions are suboptimal. However, deviations of the
decisions from optimality are predicted by a tradeoff between
the two costs: Decision optimality often requires a neural effort
of excessive cost, thus making the total cost greater than optimal.
Hence, perceptual decision suboptimality can be explained by
applying an optimality approach to the entire behavior instead
of to the decision rule only. Similar considerations were employed
to explain the variability of hand motion during reach-to-grasp
movements (Shimansky & Rand 2013).

Experimentally observed perceptual biases may also be consist-
ent with perceptual decision optimality. Shimansky (2011) used
an optimality approach to predict perceptual biases in experimen-
tal conditions that included a combination of perceptual uncer-
tainty with loss asymmetry with respect to the direction of
decision error. An example can be jumping over an obstacle
under poor visibility conditions. As Shimansky (2011) demon-
strated, an optimality approach predicts a tendency to overesti-
mate the size of the obstacle under these conditions.

In addition to suboptimality of experimentally observed per-
ceptual decisions, another criticism of the optimality approach
formulated by R&D is “flexibility” of the optimization criterion
because of uncertainty about its exact composition. Similar argu-
ments against the optimality approach were formulated in the
field of movement control. Namely, it was noted that use of an
optimality approach leads to “circulatory” reasoning, meaning
that experimental data are used to determine the optimization cri-
terion, and then the optimality approach is used for explaining the
experimental results (e.g., Diedrichsen et al. 2010). A solution to
this seeming paradox has been proposed by Shimansky and Rand
(2013). In brief, it consists of using a relatively small subset of the
total amount of collected experimental data for determining
unknown parameters of the optimality criterion (e.g., weights of
the cost function components), with subsequent testing of the
determined parameters on the rest of the experimental data.
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Although validity of this method of establishing the optimality
criterion was demonstrated for data obtained in experiments on
reach-to-grasp and point-to-point movements, this method can
be extended to the field of perceptual decision making.

It is also noteworthy that even though R&D suggest abandon-
ing the optimality approach, the specific hypotheses they formu-
late (their Table 1) are indirectly based on a certain model of
optimal behavior. For example, the terms “corrupt,” “weird,” or
“‘suboptimal behavior” (used in Table 1) make sense only with
respect to a certain criterion of behavior optimality. Therefore,
an optimality approach is needed to measure the extent of opti-
mality and, in case of suboptimality, help identifying possible fac-
tors causing it.

In conclusion, the suboptimality of perceptual decisions
described in the target article does not warrant abandoning the
usage of an optimality approach. A more general form of optimal-
ity approach is required, where an assumption of optimality is
applied to the entire paradigm instead of the decision rule
alone, which would require use of a more complex form of cost
function. Specific hypotheses regarding possible reasons for deci-
sion rule suboptimality could be formulated in terms of additional
cost function components.

Discarding optimality: Throwing out
the baby with the bathwater?

Patrick Simena and Fuat Balcıb

aNeuroscience Department, Oberlin College, OH 44074 and bDepartment of
Psychology & Research Center for Translational Medicine, Koç University, 34450
Sarıyer/Istanbul, Turkey.
psimen@oberlin.edu http://www.oberlin.edu/faculty/psimen/
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doi:10.1017/S0140525X18001401, e243

Abstract

Rahnev & Denison (R&D) argue against normative theories and
in favor of a more descriptive “standard observer model” of per-
ceptual decision making. We agree with the authors in many
respects, but we argue that optimality (specifically, reward-rate
maximization) has proved demonstrably useful as a hypothesis,
contrary to the authors’ claims.

Rahnev & Denison (R&D) have produced a comprehensive survey
and incisive critique of optimality hypotheses in perceptual deci-
sion research. It is an important and corrective contribution. For
us, as for the authors, whether an organism behaves optimally or
suboptimally is largely beside the point. What we really want to
know is: What are the neural mechanisms underlying perception,
cognition and action, and how do they work?

One thing seems clear: Perceptual decision making is funda-
mentally adaptive. Animal perception is alive with adaption, from
performance improvements with practice, to the biasing effects of
rewards. But inherent in the concept of adaptation is some form
of objective or utility function, such that changes in an organism’s
behavior tend to increase its value. The authors advocate the devel-
opment of a standard observer model of perceptual decision

making: a model that describes simply what is – not what is ideal.
We applaud this proposal, but we venture to guess that a well-
defined utility function will be found at the core of any future stand-
ard observer model, and that brain mechanisms of adaptation will
be most readily uncovered if aided by a well-developed theory of
optimality.

The authors advocate ditching the optimal-suboptimal dichot-
omy altogether, based on their strong position that the optimality
concept itself is essentially meaningless. They also cite widespread
findings of suboptimal behavior, and they note the problematic
coexistence of multiple meanings of optimality in the literature.
We agree that terminology abuse is truly a problem. We disagree,
however, when the authors cite our own work as evidence of sub-
optimality in speed-accuracy tradeoff adjustment, even according
to an explicitly stated definition – namely, that behavior is optimal
if it maximizes the rate of rewards earned for performance
(Bogacz et al. 2006).

Our interpretation of our work on speed-accuracy tradeoff
adjustment and the reward-rate-optimality hypothesis is that
there is strong evidence for reward-rate-optimal tradeoffs in
some circumstances. Further, we argue that, far from being a use-
less concept, optimality analyses have generated interesting and
falsifiable predictions about two-choice perceptual decisions. We
tested them and found that people, as a group, appeared to be dis-
tributed in their behavior around the reward-rate-maximizing
speed-accuracy tradeoff (Simen et al. 2009). We also found that
individually, people exhibited striking transitions between fast
guessing and evidence accumulation in a manner consistent
with some of the most intuition-defying predictions, in Bogacz
et al. (2006), of a diffusion model with reward-rate-optimal
boundary and starting point parameters

Most importantly, we found that there are some decision-task
features that people can handle almost reward rate optimally
with sufficient training, whereas there are others for which
they remain notably suboptimal. In short, people tend to shift
toward the reward-rate-optimal speed-accuracy tradeoff when
changes in a task have to do with time or rate. For example,
the reward-rate-optimal speed-accuracy tradeoff favors speed
for shorter inter-trial delays but accuracy for longer delays.
There is good evidence that people not only adapt in the direc-
tion predicted by reward-rate-optimality, but that they (at least
young participants) come very close to achieving optimality
when the incentive structure is clear (Evans & Brown 2017;
Simen et al. 2009; Starns & Ratcliff 2010). Our participants col-
lectively appeared to be clustered in their boundary and starting
point parameter settings around the ideal observer values, earn-
ing 97%–99% of the maximum possible reward. Participants did
exhibit a slight, but consistent over-emphasis on accuracy. This is
evidence for suboptimality, but only in the sense that 3.14 does
not equal pi.

On the other hand, our participants tended to fail miserably to
approximate optimal performance when it was the signal-to-noise
ratio that changed across conditions (Balcı et al. 2011b). That failure
may have an explanation in terms of the reward-rate-optimality
hypothesis. Contrary to what is stated in the first paragraph of sec-
tion 3.4, the reward-rate-optimal tradeoff is non-monotonic over
the range of possible signal-to-noise ratios. For very high and low
signal-to-noise ratios, one should decide quickly; only when the
signal-to-noise ratio is at an intermediate level should one slow
down to boost accuracy (Bogacz et al. 2006). Only an optimality
analysis reveals this prediction, and tests of it reveal thatmost people
do not follow it when the signal-to-noise ratio is low, though our
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highest-earning participants did. At very low signal-to-noise ratios,
it is difficult to tell whether one should try harder or give up and
guess. Further, although decreasing decision thresholds within
trials are required by reward-rate-optimality in many circum-
stances, we found that fixed thresholds within trials gave the most
parsimonious account of our data (Karşılar et al. 2014).

We conclude from these findings that when simple heuristics
allow near-optimal computation, people can and often do imple-
ment those heuristics and adapt toward optimality. Time is a
dimension in which people and animals routinely show evidence
of reward-rate-optimal performance. Signal-to-noise ratio just is
not. In fact, when it comes to timing tasks, people and animals
show striking conformance with predictions of the reward-rate-
optimality hypothesis (e.g., Balcı et al. 2009; 2011a; Çavdaroğlu
et al. 2014; Simen et al. 2011).

We agree with the authors that the term “optimal” is widely used
with different meanings. Bayesian modelers frequently describe
models that incorporate new evidence according to Bayes’ rule to
be “optimal.” Implicit in this assumption is that accurate evidence
updating will automatically yield whatever sort of optimal outcome
you ultimately choose to define. Yet added to the general computa-
tional intractability of Bayesian inference, the best rules for reading
out that evidence into choices may themselves be intractable (e.g.,
with more than two options; McMillen & Holmes 2006). Surely
then, heuristics are the best we can do, in general.

Nonetheless, optimality hypotheses can aid the development
of suboptimal, heuristic models that adhere to plausible con-
straints. For example, reward-rate-optimality motivated our devel-
opment of a heuristic neural network model that nearly optimizes
speed-accuracy tradeoffs when tasks speed up or slow down, but
that fails to adapt to changes in signal-to-noise ratio (Simen et al.
2006) – a behavioral pattern we later observed. Optimality ana-
lyses may therefore advance the standard observer model goal
by establishing usable benchmarks for heuristic designers to
exploit during the model-design phase. Hence, the scientific
reward-rate-optimal theoretical stance may involve more optimal-
ity theory than the authors recommend.

Credo for optimality

Alan A. Stocker

Department of Psychology, University of Pennsylvania, Philadelphia PA 19104.
astocker@psych.upenn.edu https://www.sas.upenn.edu/∼astocker

doi:10.1017/S0140525X18001346, e244

Abstract

Optimal or suboptimal, Rahnev & Denison (R&D) rightly argue
that this ill-defined distinction is not usefulwhen comparingmod-
els of perceptual decisionmaking. However, what theymiss is how
valuable the focus on optimality has been in deriving thesemodels
in the first place. Rather than prematurely abandon the optimality
assumption, we should refine this successful normative hypothesis
with additional constraints that capture specific limitations of
(sensory) information processing in the brain.

Scientific progress depends on our ability to formulate clear
hypotheses that can be experimentally tested (i.e., models).

The goal is to be able to explain why the data are what they
are, which goes beyond a mere description of the data.
Optimal inference (Helmholtz 1867) as a general hypothesis of
perception has served the community extremely well in that
regard, in particular in combination with the Bayesian frame-
work (Knill & Richards 1996). It provided quantitative but
nonetheless intuitive explanations for many fundamental charac-
teristics of perception, such as how sensory information from
different sources is combined (Ernst & Banks 2002), how
prior information affects the percept (Körding & Wolpert
2004), and how stochastic choice behavior naturally emerges
from a process of probabilistic inference (Stocker & Simoncelli
2006a). That some of these specific models are not universally
valid (the listed examples of “suboptimalities” in Rahnev &
Denison’s [R&D] article) lies in the iterative nature of scientific
progress: Parsimonious models must be successively refined as
new data demand modifications. It seems rather foolish to ques-
tion a very successful general hypothesis because specific
assumptions of a particular model implementation turn out to
be simplistic. We are far from having exhaustively explored
the optimality hypothesis and therefore should not abandon it
lightly; I elaborate on this in the following:

The discussion is premature. “Optimal” per definition refers
to best possible with respect to some given limitations/constraints.
What separates an “optimal observer” from an “ideal observer”
is that the latter only considers limitations in terms of infor-
mation provided to the observer and thus is well defined in
an experimental setting, whereas the former also includes
constraints that are internal to the observer. Because we just
started to explore these constraints (such as limited representa-
tional resources), we are not yet in a position to make with any
confidence a general assessment of whether perception is opti-
mal or not. Hence, we should simply abstain from drawing
any premature conclusions.

Optimality is a very valuable, normative hypothesis. The gen-
eral hypothesis has proved extremely valuable in deriving models
of perceptual decision making, in particular (but not only) in
combination with the Bayesian formalism. Its normative nature
allows us to formulate with relative ease an observer model for
any specific task and thus to possess a quantitative model hypoth-
esis before actually running the experiment and knowing the data.
This is a substantial advantage as it empowers us to not only
design experiments that are most efficient in validating the
model, but also to cross-validate the model by making specific
predictions for a new task based on the model parameters deter-
mined from data of a previous task. It is also important to realize
that without optimality assumption, the Bayesian formalism
would have been unlikely adopted by the community over the
last 20 to 30 years, a formalism that undeniably was very success-
ful by any rational metric. Bayesian decision theory and the opti-
mality assumption are in many ways synonymous; without the
latter, the former is not meaningful. Finally, optimality is by no
means an arbitrary hypothesis but ultimately directly follows
from the theory of evolution: A system’s actions and behaviors
are aimed to perform in the best way possible in order to optimize
the chances of survival and reproduction in a competitive envir-
onment. Briefly, the optimality assumption is a well-supported,
very useful assumption.

Is there an alternative? “To deny that we reason in a Bayesian
way is to assert that we reason in a deliberately inconsistent [i.e.,
random] way” (Jaynes 1957/2003, p. 133). Clearly, Jaynes did not
think that there was an alternative. But even with a more measured
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view, it is difficult to conceive of such a possibility. As R&D rightly
state, “suboptimal” is not an alternative: Simply rejecting the null
hypothesis is not a hypothesis, a common fallacy far too often
encountered in the psychological sciences. Any alternative hypoth-
esis of equal value must have a normative character (i.e., it must
allow us to formulate quantitative models for specific perceptual
decision-making tasks). Not only that, but it also must explain
why under some conditions perceptual behavior is seemingly opti-
mal and under others it is not. R&D’s proposed “standard observer
model” is as fuzzy as they described it (could be a “bag of tricks” or
a “neural network”; sect. 5.2, para. 1) because they have no idea
what alternative hypothesis it should represent – there simply is
no equivalent alternative to the optimality assumption at the
moment.

So, how do we best move forward? Let us simply follow proper
scientific procedure: The current evidence in favor of optimality
far outweighs the evidence in favor of any other potential hypoth-
esis (whatever that might be). This does not mean that the experi-
mental evidence suggesting “suboptimal” behavior should be
ignored, on the contrary. But we should not prematurely abandon
the optimality assumption either. Rather we should continue
probing the general normative hypothesis that has been so good
to us and try to refine and extend it to make it fit with new
experimental data that require so. Recent work from my labora-
tory may serve as an example for this approach: We have noticed
that perceptual biases (e.g., in perceived visual orientation) are fre-
quently away from the peak densities of the expected prior distri-
bution, which contradicts the predictions of a traditional optimal
Bayesian observer (de Gardelle et al. 2010; Tomassini et al. 2010).
But rather than claiming suboptimal behavior and calling it a day,
we realized that the traditional Bayesian observer model relies on
implicit assumptions that actually may be incorrect (in this case
the noise distributions). Indeed, we showed that if we add an
additional constraint to the observer model – namely, that the
observer’s representational resources are limited and must be
used efficiently (the efficient coding hypothesis [Barlow 1961],
another optimality assumption) – then such “suboptimal”
behavior indeed turns out to be perfectly optimal (Wei &
Stocker 2015). Not only that, but the additional constraint also
allowed us to discover a new perceptual law, describing a func-
tional relationship between perceptual bias and discrimination
threshold (Wei & Stocker 2017). Many of the “suboptimalities”
that R&D list (in their Table 1) can be thought of as observer-
related constraints and limitations, and it seems more likely
than not that eventually, they can all be described within an opti-
mal model. There is much potential in using the optimal
(Bayesian) observer model as our well-defined standard model
and improving and extending it with additional constraints that
we discover based on computational, psychophysical, and physio-
logical considerations.

Eventually, however, I absolutely agree with R&D that we
should not waste our energy with dogmatic battles (in particular
because the topic of these battles seems not well defined) but
rather focus on “building and testing detailed observer models
that explain behavior across a wide range of tasks” (abstract)
and “capture all the systematic weirdness of human behavior
rather than preserve an aesthetic ideal” (sect. 6, para. 1). We are
scientists, and as such, we should ideally value and judge different
models solely based on their ability to account for and rightly pre-
dict the full richness of the data. However, in putting us in a pos-
ition to do this, the value of the optimality hypothesis is currently
unrivaled.

Perceptual suboptimality:
Bug or feature?

Christopher Summerfield and Vickie Li

Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG,
United Kingdom.
christopher.summerfield@psy.ox.ac.uk chui.li@psy.ox.ac.uk
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Abstract

Rahnev & Denison (R&D) argue that whether people are “opti-
mal” or “suboptimal” is not a well-posed question. We agree.
However, we argue that the critical question is why humans
make suboptimal perceptual decisions in the first place. We sug-
gest that perceptual distortions have a normative explanation –
that they promote efficient coding and computation in biological
information processing systems.

Rahnev & Denison (R&D) argue that psychologists and neuros-
cientists are unduly concerned with the question of whether per-
ceptual decisions are “optimal” or “suboptimal.” They suggest that
this question is ill posed, and that researchers should instead use
observer models to provide an idealised benchmark against which
to compare human behaviour.

In large part, we agree. Nevertheless, we suggest that the article
rather sidesteps the major conceptual issue that underpins this
debate from the standpoint of cognitive science, neuroscience,
and machine learning: Why do these suboptimalities occur in the
first place? Here, we argue that paradoxically, perceptual distortions
observed in the lab often have a sound normative basis. In other
words, perceptual “suboptimality” is best seen as a “feature” rather
than a “bug” in the neural source code that guides our behaviour.

The authors discuss how suboptimal behaviours arise from
distortions in the prior or likelihood functions, or misconceptions
about the relevant cost function or decision rule. As they show,
the Bayesian framework offers an elegant means to characterise
the sources of bias or variance that corrupt decisions. However,
it does not offer principled insights into why perceptual distor-
tions might occur. To illustrate why this question is pressing, con-
sider the perspective of a researcher attempting to build an
artificial brain. She needs to know whether a given behavioural
phenomenon – for example, the sequential decision bias that
R&D discuss – is something that the artificial system should
embrace or eschew. Only by knowing why biological systems dis-
play this phenomenon can this question be addressed.

Over recent years, advances have been made towards addres-
sing the “why” of perceptual distortion. One elegant example per-
tains to the oblique effect (Appelle 1972), which (as R&D allude
to) can be brought under the umbrella of Bayesian inference by
considering human priors over the natural statistics of visual
scenes, in which cardinal orientations predominate. But here,
the Bayesian notion of a “prior” is an oversimplification that
does not explain how or why the effect arises. In fact, the oblique
effect can be understood by considering the optimisation prin-
ciple that allows visual representations to be formed in the first
place. Various classes of unsupervised learning rule, such as
Hebbian learning, encourage neural systems to form
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representations whose statistics match those of the external world
(Simoncelli 2003). This gives rise to an efficiency principle:
Neural coding is distributed in a way that ensures maximal
resources to be devoted to those features that are most likely to
be encountered in natural environments (Girshick et al. 2011;
Wei & Stocker 2015; 2017). The “why” of the oblique effect has
an answer: It arises because of a neural coding scheme that has
evolved to be maximally efficient.

Another way of understanding why perceptual distortions
might arise is via consideration of the sources of uncertainty that
corrupt decisions. When judging visual stimuli, noise arising dur-
ing sensory encoding limits performance – for example, low-
contrast stimuli are hard to see. However, for a capacity-limited sys-
tem (such as a biological agent), noise that arises “late” – that is,
during inference itself – place a further constraint on the fidelity
of information processing (Drugowitsch et al. 2016). Recently, cat-
egorisation tasks that require the integration of information in
space and time have revealed perceptual distortions in humans,
such as the “robust averaging” of visual features to which R&D
refer (de Gardelle & Summerfield 2011). The compressive non-
linearity that produces this effect leads to performance reductions
for an observer with limitless capacity. However, simulations show
that distorted transduction can paradoxically maximise reward
when decisions are corrupted by “late” noise – that is, noise that
arises during inference, rather than at the level of sensory encoding.
This is again because of an efficiency principle – when computa-
tional resources are limited, the best policy may be to transduce
perceptual information nonlinearly, allowing gain to be allocated
by preference to some features over others (Li et al. 2017). In
fact, the precise form of the reward-maximising distortion varies
according to the overall distribution of stimuli observed, and
both behavioural and neural data suggest that humans shift from
a compressive to an anticompressive form of distortion in a way
that consistently maximises their performance (Spitzer et al. 2017).

Although the details are only emerging, we think it is likely
that the wide range of perceptual “suboptimalities” that R&D
highlight – sequential trial history effects, central tendency biases,
sluggish belief change, and adaptation and/or normalisation pro-
cesses – are all hallmarks of a cognitive system that has evolved to
perform efficient computation in natural environments that
exhibit stereotyped statistics and autocorrelation both in space
and time. Indeed, a similar efficiency principle has been shown
to hold for decisions in other domains, including the well-
described decision biases in economic tasks, such as deciding
among prospects with differing value. In one example, policies
that lead to violations of axiomatic rationality can be shown to
be optimal under late noise, providing an “optimal” explanation
for economic irrationality (Tsetsos et al. 2016a).

More generally, biological information processing systems have
intrinsic costs and constraints that place a premium on computa-
tional efficiency. In other words, brains have evolved to minimise
both a behavioural cost function (maximising reward) and a neural
cost function (minimising computational load). Rather than being
ad hoc failure modes in biological brains, “suboptimalities” in
perception expose how computation has adapted efficiently to
the structure of the natural environments in which biological
organisms exist. A principled research agenda, rather than merely
documenting deviations from optimality, should attempt to
explain them.
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Abstract

We agree with the authors that putting forward specific models
and examining their agreement with experimental data are the
best approach for understanding the nature of decision making.
Although the authors only consider the likelihood function,
prior, cost function, and decision rule (LPCD) framework,
other choices are available. Bayesian statistics can be used to esti-
mate essential parameters and assess the degree of optimality.

Rahnev & Denison (R&D) perform a useful service by reminding
us that human behavior often deviates from what can be con-
strued as optimal, once some target variable (such as expected
reward) has been specified. We would like to remind readers
that Bayesian statistics can be used to fit models and to contribute
to our assessment of the degree of optimality. This differs from
the usual Bayes rational approach (BRA). Unlike BRA, Bayesian
statistics can be used to assess optimality by fitting a model to
data and assessing how close the resulting parameter estimates
are to optimal settings. For example, if an observer model is spe-
cified in such a way that one parameter combination results in
optimal performance, one can use posterior estimates to quantify
(i.e., in terms of both the parameter estimates and their uncer-
tainty) how likely subjects were to have been performing
optimally.

We have used such techniques in our own work to further sup-
port the author’s conclusion that optimality is rarely observed in
human decision making. The models we use are often process
models that are not formulated within the likelihood function,
prior, cost function, and decision rule (LPCD) framework,
although variables or relationships among them within the mod-
els could be used to derive LPCD quantities. Hence, LPCD may
not characterize the actual computations performed during deci-
sion making. We illustrate these points through consideration of
two topics, as discussed subsequently.

Although the authors note many suboptimal results in the sig-
nal detection theory model, it may be useful to separate the ques-
tion of whether people are optimal from the question of whether
their behavior is best understood in terms of the elements of
LPCD. Some other process models might allow the constructs
of LPCD to be seen as descriptions of the outcome of a learning
process that does not employ these constructs directly. Turner
et al. (2011) developed a category-learning model that encodes
feature information about categories – the more general case of
signal detection – and gradually forms a representation of
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category structure that resembles the learning process observed in
several experiments. The model has explicit mechanisms that bind
feature information to category structure, but also allows the
degree of association through repeated presentations to affect
the acquisition of new or consistent knowledge. When feature-
to-category associations are first being formed, changes in the
strength of associations are rapid, enabling a general sense of cat-
egory structure to be established quickly. However, with contin-
ued and consistent associations, the changes in associative
strengths asymptote, meaning that further stimulus exposure
does not necessarily change the category representation. In this
model, both prior and likelihood information are latent in the cat-
egory knowledge distributions. When the model is fitted to
human data, it only conforms to optimal Bayesian integration
under some parameterizations (Anderson 1991; McClelland
2013; Sanborn et al. 2010; Shi et al. 2010; Turner, under review;
Turner & Van Zandt 2014; Turner et al. 2011). Turner (under
review) investigated the degree to which the Bayes optimal version
of the model could account for data across three experiments that
exploited unannounced shifts in the properties of the feature-
to-category maps over time. Across all experiments, the optimal
version of the model only accounted for 11 out of 135 subjects,
suggesting generally weak evidence for optimal category learning
across different manipulations.

We have also observed suboptimal performance in perceptual
decision making when subjects are asked to integrate multiple
cues to form a decision. In the context of multimodal integration,
Turner et al. (2017) investigated how subjects integrate two
sources of information – auditory and visual cues – to arrive at
a single perceptual representation. In their experiment, subjects
completed three conditions, varying on whether subjects experi-
enced (1) visual information alone, (2) auditory information
alone, or (3) both streams of information together (the bimodal
condition). Having the two unimodal conditions allowed
Turner et al. to isolate the individual contribution of each modal-
ity in the decisions observed in the bimodal condition. Following
the literature on optimal decision making, Turner et al. examined
three different methods for integrating the two streams of infor-
mation. The first two considered different forms of optimal inte-
gration, whereas the third method simply allowed the weights
assigned to each cue to be freely estimated. By allowing the
modality weighting parameters to freely vary, the third model
could be compared to the two optimal models. If the (posterior
estimate of the) weight parameter for the third model overlapped
with the weights derived from either optimal model, then subjects
could conceivably be combining the cue information together in
an optimal fashion. However, of the six subjects in Turner et al.,
only two subjects showed any evidence of such an overlap, indi-
cating that auditory and visual cues were not being integrated
optimally by most of the participants.

In another multiple source integration study of perceptual
decision making, Hotaling et al. (2015) examined optimality of
inference with an experiment in which participants categorized
faces based on resemblance to a family patriarch. Each face was
split into two parts, and the amount of evidence contained in
the top and bottom halves of each test face was independently
manipulated. In one condition, the two halves were aligned to
appear as a configural whole face; in another condition, the two
halves were misaligned into separate parts. These data allow us
to investigate a canonical example of suboptimal information
integration from the judgment and decision-making literature,
the dilution effect, which refers to the finding that adding weak

but positive evidence to strong positive evidence for a hypothesis
decreases the estimated support participants derive for that
hypothesis, rather than increasing it as required by Bayesian
inference. Hotaling et al. used a multicomponent information
accumulation model, a hybrid optimal/averaging model of infor-
mation integration, to successfully account for key accuracy,
response time, and dilution effects. The model weights repre-
sented the probability of attending to optimal or suboptimal
information, which provided a parameter to assess an individual’s
approximation to optimal integration. Splitting the top and bot-
tom halves of a face, a manipulation meant to encourage con-
trolled integration of information, produced farther from
optimal behavior and larger dilution effects.
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Abstract

Rahnev & Denison (R&D) addressed the issue of (sub)optimal-
ities in perception but only made a passing reference to evolu-
tionary thinking. In our commentary, we concur with the
authors’ claim that evolution does not work toward optimalities,
but argue that an evolutionary perspective on perception ques-
tions the Bayesian approach that the authors adopted.

Although Rahnev & Denison (R&D) addressed the question of
(sub)optimalities in perception, they mentioned evolutionary
thinking only briefly. However, the theory of evolution can shed
light on this important issue, suggesting that suboptimalities in
perception (and other biological functions) are to be expected.
The reason for this is twofold.

First, evolution by natural selection works if and only if three
conditions are met: There is variability among the members of a
species; the variability is hereditable; and there is differential
reproduction based on this variability (e.g., Lewontin 1970). If
we apply this line of thinking to the perceptual realm, it implies
that the perceptual systems of members of a species vary and dif-
fer in degree of fitness – some members perceive the environment
more adaptively than other members. And although the power of
“natural selection in the wild” (Endler 1986) should not be under-
estimated, it is unlikely that it will eliminate all the variability in
the evolving population (e.g., Mayr 2004). After all, many percep-
tual tasks are not crucial for survival and reproduction, allowing
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for a fair amount of variability and suboptimality among the
members of a species (e.g., Withagen & Chemero 2009).

A second reason why suboptimalities are to be expected is that
there are always multiple constraints that have a severe influence
on evolving organisms. As Gould and Lewontin (1978) noted,
organisms are “integrated wholes, with Baupläne […] constrained
by phyletic heritage, pathways of development, and general archi-
tecture” (p. 581; emphasis in original). These constraints (e.g.,
Dawkins 1982; Gould & Lewontin 1978; Mayr 2002) imply that
it is unlikely that the best possible (i.e., optimal) perceptual system
is always available in the population that natural selection is work-
ing on (Withagen 2004).

Although an evolutionary analysis of perception predicts the
suboptimalities that R&D discussed and defended to some extent,
it questions the overall Bayesian approach that they adopted. As
Darwin (1859/1985) had already claimed toward the end of On
the Origin of Species, his theory of evolution by natural selection
provides psychology with “a new foundation” (p. 458). Yet when
it comes to theorizing about perception, many post-Darwinian
theories of perception follow pre-Darwinian theories both in the
conceptualization of what perception is (i.e., a mental state residing
in the head) and how it comes about (i.e., by means of inferential
processes). The Bayesian account that R&D adopted is no excep-
tion. Although this account is often connected to Helmholtz’s per-
spective, ultimately the gist of both accounts can be traced back to
Descartes’ theory of perception—the stimulus information that
reaches the senses is impoverished; hence, inferential processes
are needed to gain knowledge of the environment (Reed 1982).
In fact, when theorists of perception adopt evolutionary thinking,
they often consider it as an “afterthought,” one that does not affect
the fundamental principles of their theorizing (Heft 2007, p. 92).

Gibson was one of the first to complain about this situation. As
he put it in his book The Senses Considered as Perceptual Systems,
“[t]he classics of vision were unaffected by evolutionary considera-
tions or by knowledge of animal behavior but nevertheless they
dominate the theories of perception” (Gibson 1966, p. 155).
Gibson took evolutionary considerations seriously and argued
that they require us to rethink the fundamentals of the science of
perception. We agree. After all, from an evolutionary perspective,
the main function of perception is not to gain knowledge of the
environment, as many theories of perception hold, but to guide
our actions in the environment (e.g., Anderson 2014; Chemero
2009). Animals have to perceive what Gibson called affordances,
the action possibilities the environment provides them.

Crucially for present purposes, Gibson claimed that an evolu-
tionary approach questions the dominant assumption of impover-
ished stimulus information that, as mentioned earlier, also
underlies the Bayesian approach. Fundamentally, this assumption
implies that the animal is in a state of uncertainty about the envir-
onment. As Müller (1837–1840/1938), Helmholtz’ mentor, put it,
“[i]n our intercourse with external nature it is always our own
sensations that we become acquainted with, and from them we
form conceptions of the properties of external objects, which
may be relatively correct” (p. 1068; emphases added). If animals
are in such a state of uncertainty about what is “out there” in
the environment, it is hard to explain how animals can generally
adaptively cope with the environment. Hence, Gibson replaced
the representational theory of perception with a so-called contact
theory of perception (Dreyfus & Taylor 2015). In his view, percep-
tion is not a mental state in the head, but a “keeping-in-touch
with the world” (Gibson 1979/1986, p. 239). Gibson argued that
this direct contact can be established because there is information

in the ambient energy arrays that specifies the affordances, that is,
that informs about them. And if animals detect these specifying
variables, a direct and adaptive perceptual contact with the affor-
dances in their environment is established. Notably, the availabil-
ity of such rich information obviates the need for inference, be it
Helmholtzian or Bayesian.

One might argue that this focus on specifying variables is not
in keeping with the suboptimal performances that have been
demonstrated in empirical studies and are implied by the above
evolutionary analysis. Indeed, to be a truly evolutionary view,
the Gibsonian perspective needs to recognize that animals (occa-
sionally) behave and perceive suboptimally (e.g., Chemero 2009;
Withagen 2004). However, suboptimality (or optimality, for that
matter) need not be explained in Bayesian terms of uncertainty,
but can also be accounted for in terms of the informational vari-
ables that animals detect (e.g., Jacobs & Michaels 2007). The
numerous patterns in the ambient energy arrays that animals
might possibly detect differ in degree of usefulness, and the adap-
tiveness of the perceptual grip on, and actions in the environment
is determined by which of these variables is picked up (e.g., de
Wit et al. 2015; Withagen 2004; Withagen & Chemero 2009).
Contrary to the Bayesian approach that R&D adopted, such a per-
spective stays closer to the fundamental change in thinking that
Darwin’s evolutionary program implies.

Leveraging decision consistency to
decompose suboptimality in terms
of its ultimate predictability
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Abstract

Although the suboptimality of perceptual decision making is
indisputable in its strictest sense, characterizing the nature of subop-
timalities constitutes a valuable drive for future research. I argue that
decision consistency offers a rarely measured, yet important behav-
ioral metric for decomposing suboptimality (or, more generally,
deviations from any candidate model of decision making) into
ultimately predictable and inherently unpredictable components.

The function of perceptual decision making is to make sense of an
uncertain environment whose current state is only partially
observable through imperfect sensory measurements. At this
“computational” level of description (Marr 1982), the question
of whether human observers process information available in
their environment as accurately as possible has been the subject
of a large body of work in the recent years. Rahnev & Denison
(R&D) make an important case that the labeling of perceptual
decisions as suboptimal does not yield much insight regarding
the precise nature of suboptimalities. Rather than focusing on
which aspects of decision making are suboptimal in a particular
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task, R&D propose an alternative road map for future research,
which consists in developing a general “observer model” of per-
ceptual decision making across many different tasks.

This proposition is particularly attractive because optimality is
often undefined for certain aspects of a task. For example, human
observers carry priors, which can be suboptimal for a particular
laboratory experiment, but optimal when considering the overall
statistics of natural environments (Girshick et al. 2011).
Similarly, the cost function assigned to most perceptual decisions
is unknown, such that seemingly suboptimal biases in the strictest
statistical sense can be seen as optimal in terms of efficient coding
(Wei & Stocker 2015). However, the endeavor proposed by R&D
is likely to face challenges for which the framework outlined in
their Box 1 will be of little help.

Perhaps most strikingly, the long list of suboptimalities sum-
marized by R&D in Table 1 is by definition non-exhaustive.
Therefore, it remains unknown how much an observer model
fails to capture unspecified suboptimalities in any given task.
The approach proposed by R&D, which consists in specifying
additional forms of suboptimalities and then testing whether
they improve model fits, sounds a bit like fumbling in the dark.
When will one know that a current “observer model” captures a
dominant fraction of suboptimalities? Quality-of-fit metrics are
only meaningful in a relative sense – that is, for comparing can-
didate models (Palminteri et al. 2017) – and they are thus blind to
“how wrong” a given model is in an absolute sense.

To address this difficult question, it is important to consider
not which aspects of the decision process may be suboptimal,
but whether suboptimalities produce random or deterministic
variability in behavior – a decomposition known as the “bias-
variance tradeoff” in statistics. These two forms of suboptimalities
map onto the classical distinction between noise and bias – for
example, sensitivity and criterion in signal detection theory
(Green & Swets 1966). Independently of any specific theory, the
difference between random and deterministic suboptimalities is
important in this context because biases trigger suboptimal deci-
sions, which are ultimately predictable, whereas noise triggers
suboptimal decisions, which are inherently unpredictable. If the
long-term goal of R&D’s framework is to predict decision behav-
ior across tasks, then knowing the upper bound on the predict-
ability of decision making in any given task is indispensable.

Although the theoretical distinction between random and
deterministic suboptimalities may seem at first abstract and dis-
tant from behavior, the two produce antagonistic effects on a sim-
ple behavioral metric that can be easily measured in most
perceptual tasks: the consistency of decisions across two repeti-
tions of the exact same trial/condition (Wyart & Koechlin
2016). Indeed, deterministic biases tend to increase the consist-
ency of decisions, whereas random noise tends to decrease the
same quantity. Therefore, I propose to use decision consistency
to decompose suboptimality (or, more generally, deviations
from any candidate model of decision making) into a bias (pre-
dictable) term and a variance (unpredictable) term. In practice,
the only modification that needs to be made to existing tasks is
that the same trial/condition has to be presented at least twice,
in order to measure the fraction of repeated trial pairs for
which decisions are matched – irrespectively of whether they
are right or not.

In terms of modeling, the approach consists in comparing
behavior to simulations of a candidate model of decision making
in terms of decision consistency. If simulated decisions are less
consistent across repeated trial pairs than human decisions are,

then a fraction of the noise fitted by the model is attributable to
unspecified biases – in other words, to unknown sources of sub-
optimalities that have not been captured by the model rather than
to true randomness in the decision process. This discrepancy can
be quantified in terms of the fraction of random variance in the
model that can be pinned down to unknown biases. As an
example, we obtained a value of 32% in a canonical probabilistic
reasoning task when fitting an optimal model corrupted by noise
to human decisions (Drugowitsch et al. 2016). This indicates that
about a third of deviations from optimality are attributable to
deterministic, predictable biases. This decomposition of subop-
timality into ultimately predictable biases and unpredictable
noise can serve not only to measure the effective precision of
the decision process in a given task (i.e., the absolute variance
of the unpredictable noise term), but also to determine how
much a candidate model of decision making lacks additional,
to-be-specified biases.

Like any approach, this bias-variance decomposition of subop-
timalities has its limits. First, the bias termwill by definition capture
only within-trial biases, not sequential biases that propagate across
successive trials (Wyart & Koechlin 2016). Sequential biases should
therefore be specified in the model to be accounted for in the ana-
lysis of decision consistency. Second, biases that change over the
course of the experiment will spill into the variance term. To control
for the existence of such time-varying biases, the experimental
design can be made such that the distance between repeated trials
is varied across trial pairs (Drugowitsch et al. 2016).

An important corollary of R&D’s road map is to build an
observer model that provides an accurate split between subopti-
mal biases and true randomness in decision making. Therefore,
analyzing decision consistency should become standard practice
to determine how much a candidate model approximates the
decision process as good as it possibly can.

Descending Marr’s levels: Standard
observers are no panacea

Carlos Zednika and Frank Jäkelb

aOtto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany and
bTechnische Universität Darmstadt, Centre for Cognitive Science, D-64283
Darmstadt, Germany.
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Abstract

According to Marr, explanations of perceptual behavior should
address multiple levels of analysis. Rahnev & Denison (R&D)
are perhaps overly dismissive of optimality considerations at
the computational level. Also, an exclusive reliance on standard
observer models may cause neglect of many other plausible
hypotheses at the algorithmic level. Therefore, as far as explan-
ation goes, standard observer modeling is no panacea.

Rahnev & Denison (R&D) argue that “we should abandon any
emphasis on optimality or suboptimality and return to building
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a science of perception that attempts to account for all types of
behavior” (sect. 1, para. 4). We agree that the current fixation
on optimality is unhealthy. At the same time, however, we ques-
tion whether standard observers are really sufficient to “account
for” perceptual behavior. Because they cut across different tasks,
they may provide some much-needed unification (Colombo &
Hartmann 2017). Nevertheless, they are by themselves unlikely
to constitute full-fledged explanations. Following Marr (1982),
explanations of perceptual behavior should answer questions at
three distinct levels of analysis. Alas, it is not clear how standard
observers help descend Marr’s levels from the computational level
to the algorithmic and implementational levels.

At the computational level, investigators ask “what” a percep-
tual system is doing and “why.” The popularity of ideal observers
(Swets et al. 1961) stems in part from answering both of these
questions. Because ideal observer models are tweaked to fit behav-
ioral data, they provide mathematical descriptions of “what” a
perceptual system is doing. They also answer questions about
“why”: A perceptual system behaves as it does because that behav-
ior is optimal for the task (Bechtel & Shagrir 2015).

Like ideal observers, standard observers address “what” ques-
tions at the computational level by fitting behavioral data.
Whereas ideal observer models are often criticized for failing to
address questions below the computational level (Jones & Love
2011), R&D’s standard observer models also address “how” ques-
tions at the algorithmic level. Many (but not all) of the hypotheses
in Table 1 of the target article emphasize algorithmic-level fea-
tures such as capacity limitations, imprecisions, ignorance, or
the inability to employ complex decision rules. These algorith-
mic-level aspects are easily accommodated once optimality is
given up. In other words, R&D trade in the ability to answer ques-
tions about “why” for an improved ability to answer questions
about “how.”

We applaud this shift in emphasis from “why” to “how.”
However, we feel that (a) “why” questions should not be dis-
missed quite so quickly, and that (b) properly answering
“how” questions may require taking into account hypotheses
that are unlikely to be considered within the standard observer
approach.

Regarding (a), R&D’s dismissive attitude toward optimality is
understandable insofar as the explanatory value of “why” ques-
tions remains unclear (Danks 2008; but cf. Shagrir 2010).
Nevertheless, such questions can still have pragmatic import; con-
sidering what a system is supposed to be doing may lead to an
improved understanding of what it is actually doing. R&D
admit as much in section 4.2 but do not go far enough. Many
historical attempts to uncover mechanisms in biology and
neuroscience begin by specifying these mechanisms’ roles in the
containing environment: The heart is viewed as a pump for the
circulatory system (Bechtel 2009), and dopamine is known to con-
tribute to the regulation of emotions (Craver 2013). In this vein,
Swets et al. (1961, p. 311) argue that ideal observers should be
used not only to describe optimal behavior, but also as a “con-
venient base from which to explore the complex operations of a
real organism.” In line with this view, we believe that perceptual
scientists may productively tweak an ideal observer’s optimal
solution so as to eventually arrive at an organism’s actual solution
(see also Zednik & Jäkel 2016). Hence, although we agree that it is
a mistake to rely too heavily on the unclear explanatory value of
optimality considerations, we believe that it would be a mistake to
dismiss these considerations altogether.

Regarding (b), more should be said about the transition from
“what” and “why” questions at the computational level to “how”
questions at the algorithmic level. We have previously argued
that Marr’s hierarchy can be descended by applying heuristic
strategies to identify candidate hypotheses at lower levels of ana-
lysis (Zednik & Jäkel 2014; 2016). Many of the hypotheses sum-
marized in Table 1 result from the “push-down” and
“plausible-algorithms” heuristics: Whereas the former involves
hypothesizing that an ideal observer’s computational-level struc-
ture reflects an algorithmic-level description of the underlying
mechanism, the latter involves adapting this description accord-
ing to established psychological principles about, for example,
capacity limitations. Additionally, R&D’s plea for standard
observers that can unify models across different tasks attaches
great importance to what we have called the “unification” heur-
istic. Many other useful heuristics are not considered in the tar-
get article, however. In particular, some of the most promising
recent work is driven by the “tools-to-theories” heuristic (cf.
Gigerenzer 1991), in which algorithms developed in, for
example, machine learning and Bayesian statistics are co-opted
as algorithmic-level hypotheses for explaining how real organ-
isms approximate (or fail to approximate) ideal observers. In
particular, Sanborn et al. (2010) suggest that particle filters ‒ a
class of algorithms for approximating Bayesian inference ‒ accur-
ately describe the algorithms that humans deploy to learn cat-
egories. Interestingly, these algorithms approximate priors and
posteriors through samples and thereby suggest very different
components and processes than the original ideal observers.
Hence, whereas developing standard observers may be one viable
way of addressing “how” questions at the algorithmic level, other
approaches may lead to different answers that also merit
consideration.

In summary, although we agree that perceptual scientists
should in fact shift from questions about “what” and “why” to
questions about “how,” we warn against thinking of the standard
observer framework as a panacea. For one, “why” questions may
continue to play an important role in the process of scientific dis-
covery at the computational level and should not be dismissed
prematurely. For another, although standard observers may be
one promising way to answer “how” questions at the algorithmic
level, other approaches might yield diverging and even incompat-
ible answers. Finally, very little has yet been said about “where”
questions at the implementational level (Stüttgen et al. 2011;
Zednik 2017). Therefore, although standard observer models
may play an important role in explanations of perceptual behav-
ior, until we have satisfactory explanations on all three of Marr’s
levels, we should be patient and let different research strategies
run their course.

Non-optimal perceptual decision in
human navigation

Mintao Zhaoa and William H. Warrenb
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Abstract

We highlight that optimal cue combination does not represent a
general principle of cue interaction during navigation, extending
Rahnev & Denison’s (R&D) summary of nonoptimal perceptual
decisions to the navigation domain. However, we argue that the
term “suboptimality” does not capture the way visual and non-
visual cues interact in navigational decisions.

We appreciate Rahnev & Denison’s (R&D) brave target
article for both its comprehensive summary of non-optimal
perceptual decisions in various behaviors and its stringent critique
of the conceptual shortcoming of optimality in characterizing
human perception. Nonetheless, R&D’s description of non-
optimal perceptual decisions as suboptimal suggests that they
are still trapped by the “optimality doctrine,” rather than aban-
doning it. Taking studies of cue combination in navigation as
an example, we argue (1) that perceptual decisions in navigation
are not optimal in the sense of Bayesian theory, and (2) that sub-
optimality does not capture the nature of cue interaction in
navigation.

Within the framework of the “Bayesian brain” (e.g., Knill &
Pouget 2004), researchers have argued that perceptual decisions
in navigation are statistically optimal (Cheng et al. 2007; Nardini
et al. 2008). According to this view, when independent sources
of spatial information (e.g., visual landmarks and idiothetic infor-
mation about self-motion) are available for judging one’s location
or orientation, they are combined based on the reliability of each
source. The greater the reliability of a source, the more heavily it is
weighted in determining the navigator’s decision. Under certain
circumstances, the relative weighting of visual and self-motion
cues in human navigational decisions conforms nicely to the
prediction of Bayesian integration (e.g., Chen et al. 2017;
Nardini et al. 2008; Zhao & Warren 2015b; see also Xu et al.
[2017] for cue integration in spatial reorientation).

However, optimal cue combination does not represent a gen-
eral principle of cue interaction in navigational decisions. For
example, it has difficulty accounting for the competition among
spatial cues in determining the direction of locomotion.
Although visual and self-motion cues may be optimally integrated
to reduce the variability of spatial judgments (e.g., Chen et al.
2017; Nardini et al. 2008), these cues often compete to determine
the direction in which a navigator should go (Tcheang et al. 2011;
Zhao & Warren 2015b). Visual cues often “veto” self-motion cues
when they provide conflicting estimates of orientation or location;
when such conflict becomes substantially large, the dominance
reverts to self-motion cues (Foo et al. 2005; Mou & Zhang
2014; Zhang & Mou 2017; Zhao & Warren 2015b; see Cheng
et al. 2007 for a review). This competition between visual and self-
motion information occurs in both human and nonhuman ani-
mal navigation and manifests in terms of both behavioral and
neurophysiological responses (e.g., Etienne & Jeffery 2004;
Yoder et al. 2011). Such cue dominance in navigation indicates
that spatial cues are not generally combined in a statistically

optimal or even suboptimal fashion, posing a challenge to
Bayesian optimality in navigation. Without additional assump-
tions, the reliability-based theories of optimal cue combination
predict neither the dominance of less reliable cues nor the coex-
istence of cue combination and cue competition in the same spa-
tial judgment (Zhao & Warren 2015b).

Another challenge to optimal cue combination in navigation is
that many factors irrelevant to cue reliability also modulate cue
interactions. One such factor is feedback about performance.
Distorted feedback can change the reliability of visual or self-
motion cues and their combination during navigation (Chen
et al. 2017). Therefore, in addition to cue reliability per se, sub-
jective evaluation of cue reliability also contributes to the weight-
ing of spatial cues in navigation. Another factor is related to
previous experience. Exposure to a stable visual environment
can completely “silence” the contribution of self-motion cues to
navigation (Zhao & Warren 2015a), whereas experience with an
unstable visual world can reduce or “switch off” the reliance on
visual cues (Chen et al. 2017; Zhao & Warren 2015a). Such
experience-dependent cue interaction is observed in both
human and nonhuman animal navigation (e.g., Knight et al.
2014) but is rarely considered in formulating optimal cue combin-
ation in navigation. The last factor we want to highlight here is
individual differences. Optimal cue combination is often
demonstrated at the group level. However, whether spatial cues
are combined and, if so, the optimality of integration can vary
substantially between individuals (Chen et al. 2017; Cheng et al.
2007; Nardini et al. 2008; Zhao & Warren 2015b).

As R&D mention, these challenges to Bayesian optimality
might be addressed by adjusting assumptions about the likeli-
hood, prior, cost function, and decision rules (LPCD), and their
combinations – although this renders Bayesian models uncon-
strained and unfalsifiable (Bowers & Davis 2012a; Jones & Love
2011). But before determining which components of LPCD are
responsible for nonoptimal decisions, a prior question is why
they should be optimal in the first place. If perceptual decisions
need not to be statistically optimal, then seeking the causes of
suboptimality will not help us to build models of perception
and cognition. We see little evidence to justify such necessity.
For example, optimal perceptual decisions assume that humans
are rational decision makers, which is often not the case
(Kahneman et al. 1982b). In navigation, when two spatial cues
point in different directions, optimally integrating them would
lead one to walk somewhere in between, guaranteeing that one
gets lost. Ultimately, evolution does not necessarily produce opti-
mal solutions, given the rates of natural selection and environ-
mental change, pleiotropy and other structural constraints, the
heterogeneity of populations, and the random effects of genetic
drift.

Without establishing the necessity of optimal cue combination
in navigation, referring to the over- or underweighting of cues as
“suboptimal” still buys into the optimality approach. It implies
that spatial cues should interact in a Bayesian optimal manner,
and if they do not, some aspects of LPCD need to be better spe-
cified. This approach runs the risk of overlooking the cognitive
and neural processes that actually underlie cue interactions (see
also Jones & Love 2011). In fact, decades of research has shown
that navigational decisions in mind and brain are often captured
by one of two cues rather than their optimal – or suboptimal –
combination (Etienne & Jeffery 2004; Yoder et al. 2011).
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Abstract

The disagreements among commentators may appear substan-
tial, but much of the debate seems to stem from inconsistent
use of the term optimality. Optimality can be used to indicate
sensible behavior (adapted to the environment), globally optimal
behavior (fully predicted from optimality considerations alone),
locally optimal behavior (conforming to a specific model), and
optimality as an empirical strategy (a tool for studying behavior).
Distinguishing among these different concepts uncovers consid-
erable common ground in the optimality debate.

R1. Introduction

Is perceptual decision making optimal or not? At a superficial
level, our commentators could not disagree more. On one hand,
many commentators strongly defended optimality. Stocker
wrote a “credo for optimality,” Howes & Lewis proposed that
“a radically increased emphasis on (bounded) optimality is crucial
to the success of cognitive science” (para. 1), and Shimansky &
Dounskaia suggested that examples of suboptimality are in fact
optimal if neural effort is included in the cost function. On the
other hand, Withagen, van der Kamp, & de Wit (Withagen
et al.) claimed that there are “suboptimalities for sure,”
Chambers & Kording endorsed the view that “humans deviate
from statistically optimal behavior” (para. 2), and Salinas,
Seideman, & Stanford (Salinas et al.) argued that “a normative
benchmark … is by no means necessary for understanding a par-
ticular behavior” (para. 8). Hence, it may appear that we, as a
field, are hopelessly divided.

The division extended even to the commentators’ treatment of
evolution. Whereas some commentaries expressed the view that
optimality “directly follows from the theory of evolution”
(Stocker, para. 3; also endorsed by Moran & Tsetsos and possibly
by Shimansky & Dounskaia), two other commentaries argued
that “evolution does not work toward optimalities” (Withagen
et al., abstract; also endorsed by Zhao & Warren).

Nevertheless, a close reading of the commentaries convinced
us that there is perhaps more common ground than it appears
on the surface. In fact, a large part of the disagreements can be
traced to a failure to clearly distinguish substantive issues (i.e.,
issues relating to the nature of human behavior) from tools (i.e.,
the methods we use to uncover the nature of behavior). We

believe that appreciating this distinction and maintaining it zeal-
ously will go some way toward resolving disagreements in the
optimality debate.

We organize this response in two parts. In the first part (sects.
R2–R4), we discuss three main topics of disagreement:

(1) Are people globally optimal? (sect. R2)
(2) Is assuming that people are optimal a fruitful empirical

strategy? (sect. R3)
(3) Should we adopt Bayesian approaches or not? (sect. R4)

In the second part of this response, we discuss a number of
topics that arose from our target article, such as the merits of
focusing on building a standard observer model (sect. R5) and
specific comments regarding individual approaches or findings
(sect. R6). We conclude (sect. R7) on a hopeful note that rather
than entrenching fissures in the field, the current collection of
articles would contribute to a deep level of agreement and give
us the tools to express and recognize this agreement.

We include a Glossary to facilitate communication and as a
primer to those new to the field. Although our target article
was relatively narrowly focused on perceptual decision making,
this response is intended to generalize more broadly to all areas
of study where optimality considerations are relevant (Barth,
Cordes, & Patalano [Barth et al.]).

R2. Optimality as a substantive claim: Sensibleness versus
global optimality

The first area of disagreement among the commentators, and the
topic of our target article, is whether people’s behavior is optimal.
One set of commentators considered optimality a foregone con-
clusion (Geurts, Chetverikov, van Bergen, Zhou, Bertana, &
Jehee [Geurts et al.]; Howes & Lewis; Moran & Tsetsos;
Shimansky & Dounskaia; Stocker). For example, one of these
commentators argued that there is no alternative to optimality
because non-optimality means that “we reason in a deliberately
inconsistent [i.e., random] way” (Jaynes 1957/2003, as cited by
Stocker, para. 4). The surprise and horror could be sensed in
some of these commentaries: Could so many scientists really
believe that people’s behavior comes out of thin air and makes
no sense? Do they really believe that humans act randomly rather
than in ways that are shaped by our environments?

At the same time, another set of commentators considered
lack of optimality a foregone conclusion (Bachmann; Booth;
Brette; Withagen et al.). These commentators argued that opti-
mality in its strictest sense is either not well defined or clearly
unachievable. A similar level of surprise and horror could be
sensed in some of these commentaries: Could so many scientists
really believe that people’s behavior is optimal given that it was
produced by the messy process of evolution? How can anyone
claim that optimality is ever achievable in a biological system?

Although there is likely a substantive disagreement between
these two groups of commentators, we believe that a large part
of the disagreement boils down to differences in terminology.

R2.1. The concept of sensibleness

Some pro-optimality commentators (e.g., Stocker) saw the
alternative to optimal behavior to be “deliberately random”
behavior. However, neither we nor a single commentator
endorsed a view that behavior is random or makes no sense.
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In fact, impassioned arguments against optimality were fol-
lowed by statements about how animals “adaptively cope with
the environment” (Withagen et al., para. 6) or that “it is not
difficult to imagine why” a particular case of suboptimality
occurs (thus indicating that the suboptimality is not random
[Salinas et al., para. 6]).

We think it is fair to say that every single commentator agreed
that behavior “makes sense” on some level. To highlight the sub-
stantive agreement, we find it useful to invent a term unburdened
by previous inconsistent usage in order to communicate the con-
cept that behavior “makes sense.” We propose to use the term
sensibleness (see Glossary).

Sensibleness is a weak concept. We define sensible behavior as
behavior that is motivated by a combination of our goals and con-
straints, driven by the environment and evolutionary history. It is
generally accepted that natural selection produces sensible behav-
ior in that behavior is adaptive and functional (Rosenberg &
McShea 2008) – though it could be maladaptive in particular cir-
cumstances or environments. Sensible behavior may be subopti-
mal according to some definitions while remaining a “feature”
and not a “bug” (Summerfield & Li).

R2.2. The concept of global optimality

Many commentators embraced sensibleness but argued against
optimality. Rejecting optimality for these commentators does
not mean that behavior is random, but that behavior is not always
as optimized as it possibly could be. Another way to put this is
that behavior cannot be predicted by optimality considerations
alone. However, statements like “people are optimal” or “percep-
tion is optimal” are not uncommon in the literature. These state-
ments give the impression that optimality can in fact be used to
predict all of our behavior.

Just as with the concept of sensibleness, we find it useful to
introduce an unburdened term for this interpretation of optimal-
ity. We propose the term global optimality (see Glossary). Global
optimality is the view that behavior can be fully predicted by opti-
mality considerations alone after taking into account our environ-
ment and evolutionary history, which together determine our
goals and the constraints on our behavior. Concretely specifying
globally optimal behavior would require full knowledge of these
goals and constraints. At an abstract level, global optimality
entails that (1) given enough information, we can unambiguously
specify the globally optimal behavior, and (2) people’s behavior
perfectly matches the globally optimal behavior.

Let us illustrate this position with two examples. In the famous
marshmallow task, people are allowed to have one marshmallow
immediately or two after a certain delay. The global optimality
assumption holds that in this task one can identify the globally
optimal course of action for every individual and that everybody
takes this course of action (though what is globally optimal may
be different for different people). Both behaviors are sensible
because they can easily be justified, but only one of them can
be globally optimal for a given individual. A second example,
from perception, is the following: Should different images pre-
sented to the two eyes be merged, should they alternate, or should
one image dominate in conscious perception? Again, each possi-
bility is sensible (can be reasonably justified), but for every pair of
images only one of these possibilities can be globally optimal. The
global optimality assumption holds that it is theoretically achiev-
able to identify the best possible percept and that people actually
form that percept.

Global optimality is a strong concept. It implies that each
organism is constantly at its most optimized state. In other
words, global optimality holds that complex organisms are able
to optimize jointly the thousands of behaviors in which they
engage.

GLOSSARY. We provide our definitions of new terms introduced in the target article and this response, as well as standard terms that are in wide use in the
literature.

New terms
Global optimality – the view that behavior can be fully predicted by optimality considerations alone after taking into account an organism’s environment and
evolutionary history. Such behavior is globally optimal. Researchers who hold this view are global optimalists.
Local optimality – optimality as defined for a particular model, regardless of the accuracy of that model.
LPCD – the four components of all Bayesian models: likelihood (L), prior (P), cost function (C), decision rule (D).
Optimality as an empirical strategy – an approach to studying behavior based on assuming optimality a priori. When suboptimal behavior is found, this
strategy dictates that the model should be changed. Precludes inferences that behavior is optimal, because optimality is assumed.
Sensibleness – the view that behavior is generally adaptive and functional, motivated by a combination of an organism’s goals and constraints, which are in
turn driven by its environment and evolutionary history. Such behavior is sensible. Researchers who hold this view are sensibilists.

Standard terms
Bayesian statistics – a field of statistics in which Bayes’ theorem is used to draw inferences from data.
Bayesian theories – scientific claims that the brain represents Bayesian variables and performs Bayesian computations (e.g., Bayesian components [LPCD] are
explicitly represented by the brain; people actually calculate posteriors using Bayes’ rule).
Bayesian tools – a mathematical formalism for decomposing decision behavior into LPCD components. Specifies how to combine a likelihood and prior to
form a posterior, and how to derive a locally optimal decision rule from the posterior and a cost function.
Bounded rationality – a theoretical framework in which decision rules are selected to achieve good enough levels of performance, rather than the best
possible performance.
Ideal observer model – a model that includes a full generative model of an observer’s internal responses, mathematically specifies all of the components of
the decision-making process, and postulates a locally optimal decision rule.
Normativity – having some standard of evaluation. Behavior that is normative is as it “should” be.
Optimality – the minimization of costs given constraints; “as good as possible.”
Optimal model – equivalent to ideal observer model.
Process model – a general term for a mechanistic model of the processing underlying a specific behavioral task.
Rationality – often used in the context of economic decision making; can refer to internal consistency, pursuit of self-interest, or perfect strategic foresight, as
defined by some mathematical model of behavior.
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R2.3. The case against global optimality

There are both theoretical and practical arguments against global
optimality. Such arguments are featured in the target article and
in several of the commentaries.

Theoretically, it is unlikely that any optimization algorithm
could find the global optimum in an optimization task as
complex as jointly optimizing all behaviors, especially considering
that the algorithm would also need to optimize resource
allocation to different behaviors (Mastrogiorgio & Petracca).
Given the trial-and-error process behind natural selection,
genetic drift, and random genetic variation across individuals,
it is doubtful that all behaviors are as optimized as they
possibly could be (Bachmann; Withagen et al.; Zhao & Warren).

More practically, our target article illustrates that a global
optimalist view is not appealing given existing data. Our approach
was to define optimality in the most “standard” way and then sur-
vey hundreds of instances of suboptimality. As might be expected,
several commentators took issue with the assumptions we used to
define optimality. For example, Shimansky & Dounskaia argued
that “inclusion of neural effort in cost function can explain per-
ceptual decision suboptimality” (similar sentiments were
expressed by Howes & Lewis; Stocker), whereas Moran &
Tsetsos showed that assuming late noise in the system leads to
qualitatively different predictions for optimal behavior. We antici-
pated such criticisms and in the second part of our target article
argued that it is impossible to specify what is optimal in a global
sense.

Indeed, although we define global optimality in the abstract,
we doubt it can be specified in a way that would make it empir-
ically testable. The commentators who defended optimality
unfortunately did not seriously grapple with the issue of whether
it is possible to define global optimality unambiguously – though
this issue was addressed by many others such as Bachmann;
Brette; Love; Meyer; Noel; and Wyart. It is easy to argue that a
conclusion of suboptimality in some task is invalidated because
it is based on wrong assumptions. However, that argument also
invalidates all of the conclusions of optimality that are based on
the same assumptions.

If we follow this line of reasoning, then we must conclude that
there is no firm evidence that people are either globally optimal or
suboptimal. This is in fact the conclusion we reached in our target
article and is precisely why we argued that the optimal/sub-
optimal distinction is not useful. We were especially surprised
to read Stocker’s admission that this distinction is “ill-defined,”
as it was followed by a fervent defense of optimality. Later on,
Stocker claimed that optimality allows us to build “a quantitative
model hypothesis before actually running the experiment”
(para. 3). We see a contradiction here, which is at the heart of
the issue at hand: If we do not have enough information to specify
what is globally optimal, how can we generate any firm predic-
tions based on the concept of optimality? All predictions can
only be based on the assumptions built into a specific model
and are therefore tentative and dependent on the validity of the
model’s assumptions.

We do not think that at present there is evidence for a global
optimalist view and, given the definitional difficulties, are doubt-
ful that there ever could be. We therefore consider the argument
between sensibilists and global optimalists to be philosophical
rather than scientific.

R2.4. Pinning down the commentators’ philosophical
commitments

The majority of our commentators (e.g., Booth; Chambers &
Kording; Cicchini & Burr; Love; Ma; Meyer; Salinas et al.;
Simen & Balcı; Summerfield & Li; Wyart; Zednik & Jäkel)
appeared to be sensibilists but not global optimalists. Although
it is impossible to prove that all behavior is sensible, both we
and all commentators consider behavior to be generally sensible.

However, it was more difficult to discern whether any com-
mentator is a global optimalist. In particular, the commentaries
of Geurts et al.; Howes & Lewis; Moran & Tsetsos; Shimansky
& Dounskaia; and Stocker could be interpreted as supporting a
global optimalist position. Another interpretation, however, is
that these commentators only argued that optimality is a fruitful
empirical strategy, without committing themselves to a global
optimalist view. We explore this position in section R3. We
hope researchers can use the sensibilist/global optimalist distinc-
tion to clarify their positions regarding the nature of human
behavior.

Even if most (or all) researchers turn out to agree that human
behavior is sensible but not globally optimal, it is still likely that
there are remaining differences in opinion about the substantive
question of how close behavior is to global optimality. There is
potentially a vast space between a sensibilist and a global optim-
alist. The disagreement is perhaps best captured by the simple
question: “Assuming perfect knowledge of an organism, what per-
cent of its behavior can be predicted using optimality considera-
tions alone?” This question can be seen as defining a “global
optimality scale.” To be a global optimalist is to answer 100%.
It is likely that researchers who are moved to defend optimality
are high on the global optimality scale, whereas researchers who
are moved to attack optimality are low on the global optimality
scale. It should be stressed that where one places oneself on the
global optimality scale is based on a philosophical perspective
rather than empirical findings; in fact, it is unclear that we can
ever find the correct answer or that such an answer even exists.
We think of the global optimality scale as a useful shorthand
for highlighting differences in opinion rather than as a topic for
empirical investigation.

Hence, appreciating the distinction between sensibleness and
global optimality does not necessarily resolve all our differences.
However, it (1) forces us to clarify our positions, which may
otherwise slide back and forth between implying global optimality
or only sensibleness; (2) highlights agreements, which we think
are more extensive than they appear on the surface; and (3) dis-
courages arguments that misrepresent other researchers’ views
as belonging to 0% or 100% on the global optimality scale. We
hope this distinction provides the language to express more pre-
cisely one’s position and escape false either/or dichotomies. We
are all optimalists when that means sensibleness; few (if any) of
us are optimalists when that means 100% global optimality.

R2.5. Relating sensibleness and global optimality to other
optimality-related terminology

We defined the terms sensibleness and global optimality to clarify
areas of agreement and disagreement in the optimality debate. We
think these terms are useful, because careful consideration of the
commentaries convinced us that common optimality-related
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terms are used inconsistently. Here we briefly review how our
commentators used such terms and relate their meaning to our
sensibleness/global optimality distinction.

R2.5.1. Optimality
Some authors expressed the view that optimality is an ill-defined
concept (Bachmann; Brette; Cicchini & Burr; Love; Meyer;
Noel; Stocker; Summerfield & Li; Wyart). Others talked about
optimality as an a priori assumption (Danks; Geurts et al.;
Howes & Lewis; Moran & Tsetsos; Shimansky & Dounskaia;
Stocker). Still others described optimality as defined in the con-
text of a specific model (Bachmann; Barth; Brette; Chambers &
Kording; Geurts et al.; Howes & Lewis; Ma; Mastrogiorgio &
Petracca; Moran & Tsetsos; Nardini & Dekker; Summerfield &
Li, Stocker; Turner, McClelland, & Busemeyer [Turner et al.];
Wyart; Zednik & Jäkel; Zhao & Warren). Importantly, there is
significant overlap in these lists showing that the same people
sometimes talk about optimality in different ways. This is not a
criticism of our commentators; in fact, we made each of these
three claims about optimality in our target article. Rather than
contradicting each other, these different uses of the term optimal-
ity refer to different concepts. Statements about optimality as an
ill-defined concept or as an a priori assumption refer to a “global”
sense of optimality, which is best captured by our term global
optimality. Statements about optimality in the context of a specific
model have a “local” sense, which we call local optimality (see
Glossary).

Note that all empirical studies test for optimality in the “local”
sense. For all such studies, it should be understood that because
the model itself is not definitely correct, findings of optimality/
suboptimality do not allow statements about global optimality.
That is, optimality/suboptimality according to a particular
model only has implications about global optimality if the
model faithfully captures all of the goals and constraints of deci-
sion making, including how they developed over evolutionary his-
tory. It can be safely assumed that no current model does, and
therefore “local” and “global” optimality remain unbridgeable.

These considerations demonstrate that the word optimality can
be used in a global sense to mean global optimality or in a local
sense to refer to a specific decision rule in the context of a specific
model. Because these concepts are very different, we advise that
the term optimality be used only in the local sense. When a global
meaning is desired, optimality should be replaced by sensibility or
global optimality, depending on the intended interpretation. We
adopt this practice in the rest of this response.

R2.5.2 Normativity, rationality, and ideal observer
When discussing the topic of optimality, many commentators
also used related terms such as normativity, rationality, and
ideal observer.

The Stanford Encyclopedia of Philosophy defines a normative
(see Glossary) theory of decision making as “a theory of how peo-
ple should make decisions” (Briggs 2017). Defined this way, nor-
mative implies that some decisions are better than others
according to some standard, but it leaves entirely open how one
determines better and worse. This definition of normative is
closest to our term sensible. Indeed, some commentators
(Mastrogiorgio & Petracca; Summerfield & Li) used the term
in this way. However, the majority of the commentators
(Geurts et al.; Howes & Lewis; Moran & Tsetsos; Salinas
et al.; Simen & Balcı; Stocker) used the term seemingly syn-
onymously with either local or global optimality, as they asserted

that a normative approach allows us to make specific predictions.
In fact, we also equated normativity with optimality when we
wrote that according to bounded rationality (see Glossary), evolu-
tion does not produce normative behavior. What we meant is that
according to bounded rationality, evolution does not produce glo-
bally optimal behavior. However, Mastrogiorgio & Petracca criti-
cized us as they interpreted this statement to mean that bounded
rationality does not produce sensible behavior. Clearly, then, dif-
ferent researchers use normativity with different intended
meanings.

Another common optimality-related term is rationality (see
Glossary). Rationality was mostly used in the commentaries in
the context of economic decision making (Moran & Tsetsos;
Summerfield & Li; Zhao & Warren) to refer to concepts such
as intransitivity (the notion that if you prefer A over B and B
over C, then you should prefer A over C). However, rationality
was also a component of two other terms, computational ration-
ality and bounded rationality. Howes & Lewis seemed to use the
term computational rationality as synonymous with global opti-
mality, whereas Mastrogiorgio & Petracca described the long
tradition of bounded rationality theories that use this term in
ways that are closest to what we call sensibleness. Again, the
term rationality does not have a single meaning.

A final optimality-related term that appeared in many com-
mentaries was ideal observer. Most authors saw ideal observer
models as examples of optimal models (Geurts et al.; Salinas
et al.; Schultz & Hurlemann; Simen & Balcı; Zednik & Jäkel).
That is, an ideal observer model includes a full generative
model of an observer’s internal responses and mathematically
specifies all of the components of the decision-making process.
The decision rule that minimizes costs can then be determined,
and this is the rule an “ideal observer” uses. Because the optimal
decision rule here is based on a specific model, the concept of
ideal observer is equivalent to local optimality. Stocker, however,
drew a distinction between ideal observer models and optimal
models, where an ideal observer “only considers limitations in
terms of information provided to the observer,” whereas an opti-
mal observer “also includes constraints that are internal to the
observer” (para. 2). This is an interesting distinction, which
may reflect early uses of the term ideal observer (e.g., Siegert’s
ideal observer, described in Lawson & Uhlenbeck 1950), but in
the current literature, ideal observer models typically include at
least internal noise and often additional constraints (Geisler
2011), which makes them indistinguishable from optimal models.
For the most part, the term ideal observer does seem to be used in
a consistent way.

R2.5.3. Adopting unambiguous terminology
Common optimality-related terms, then, have multiple interpreta-
tions and are used inconsistently. This is especially true for opti-
mality, normativity, and rationality. On the other hand, terms
such as bounded rationality and computational rationality have
well-defined meanings but are more specialized. Finally, the
term ideal observer is a good synonym for what we have been call-
ing local optimality. However, when global statements are
intended, we suggest the use of the terms sensibleness and global
optimality.

We believe that the use of more unambiguous terminology will
help the field find common ground in the optimality debate. For
example, the disagreement regarding whether evolution makes us
(globally) optimal – Moran & Tsetsos; Shimansky & Dounskaia;
and Stocker argued yes; Withagen et al. and Zhao & Warren
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argued no – could perhaps be settled using unambiguous termin-
ology: Evolution produces sensible but not globally optimal
behavior. Better terminology would not dissolve the substantive
areas of disagreement, but it would help us form more nuanced
positions. The distinction between global optimality and local
optimality (ideal observer models) might help distinguish
between the rather philosophical issue of the global nature of
human behavior and the more concrete issue of how close behav-
ior is to a specific ideal based on a particular set of assumptions.

R3. Optimality as an empirical strategy: Studying behavior
by assuming optimality

Several commentators we identified as potential global optimalists
(Geurts et al.; Howes & Lewis; Moran & Tsetsos; Shimansky &
Dounskaia; Stocker) may instead have been defending the
assumption of optimality as a useful empirical strategy, rather
than as a fact about human behavior. Other commentators were
skeptical of assuming optimality, given doubts about the substan-
tive claim of global optimality (Bachmann; Brette; Love; Meyer;
Noel), though they did not explicitly discuss optimality as an
empirical strategy.

R3.1. What is optimality as an empirical strategy?

Cicchini & Burr; Geurts et al.; Howes & Lewis; Moran &
Tsetsos; Shimansky & Dounskaia; Simen & Balcı; Stocker;
and Zednik & Jäkel argued that, at least in some cases, optimality
is useful as an a priori assumption for studying behavior. In this
empirical strategy, it is assumed that the correct model of a task
will have a locally optimal decision rule. The idea is that assuming
local optimality (often along with various other standard assump-
tions, as described in the target article) constrains the problem of
generating a model of a task. Critically, a finding of suboptimality
leads to proposals about new constraints that will preserve the
presumed optimality, and these new constraints are then inde-
pendently validated.

For example, in a Bayesian framework, one specifies the
relevant likelihood function, prior, cost function, and decision
rule – what we call the LPCD components (see Glossary).
Optimality as an empirical strategy (see Glossary) consists of
assuming that the decision rule (D) should be optimal and adjust-
ing the LPC components to make it so. These LPC components
are new hypotheses that are then independently tested and either
supported – leading to new discoveries – or disconfirmed –
prompting new LPC hypotheses to be generated. Several com-
mentaries (e.g., Cicchini & Burr; Geurts et al.; Stocker) provided
compelling examples of this strategy at its best.

R3.2. Pitfalls of optimality as an empirical strategy

Although optimality as an empirical strategy is fruitful when used
carefully, it invites a number of pitfalls that require consideration
by researchers who use this strategy.

R3.2.1. Using the strategy to infer optimality
Unfortunately, there is a tendency to conflate optimality as an
empirical strategy – a tool for generating hypotheses – and the
substantive claim about the local optimality of human behavior.
For example, Stocker wrote that “the optimality assumption is a
well-supported, very useful assumption” (para. 3). There are

two separate statements here: (1) (global?) optimality is well sup-
ported, and (2) optimality as an empirical strategy is useful. We
disagree with (1) but agree with (2). We think that the conflation
of these two statements contributes to unnecessary disagreement
in the field.

For researchers who use optimality as an empirical strategy, we
urge clear separation of tool from substance. If local optimality is
already assumed, it cannot be falsified (Barth et al.); it is an a
priori commitment (as can be seen, for example, in Geurts
et al.; Howes & Lewis; Moran & Tsetsos). The only things that
can be uncovered are relevant LPC components, because the deci-
sion rule is already assumed to be optimal. Therefore, what should
be advertised is the nature of the LPC components and not opti-
mality, which was assumed all along.

R3.2.2. Accepting hypotheses without independent validation
It is inappropriate to accept hypotheses generated using optimal-
ity as an empirical strategy without independently validating
them.

A tendency to overlook the independent validation step can be
seen in some commentators’ statements about what makes a
model believable. For example, Geurts et al. contended that “pre-
cisely because human behavior matched that of the ideal observer,
rather than some arbitrary formulation, the findings provided
strong evidence for the computational theory” (para. 4). This
statement seems to suggest that optimal behavior implies the ver-
acity of the model even without independent verification. An
apparent underemphasis of independent validation could be
detected in statements by commentators who maintained that
optimality as an empirical strategy can be used to “explain”
behavior. For example, Shimansky & Dounskaia argued that
“the explanatory power is perhaps the main advantage of an opti-
mality approach” (para. 1), and Stocker contended that optimal-
ity has “provided quantitative but nonetheless intuitive
explanations” (para. 1).

However, as we and others have pointed out, one can always
find a set of LPC components that makes the decision rule locally
optimal. Therefore, the ability of optimality as an empirical strat-
egy to “explain” behavior is trivial; it is only useful as a tool for
generating hypotheses. The strategy succeeds not when one
finds a model that makes behavior locally optimal but when
new hypotheses expressed as components of the model have
been independently validated.

R3.2.3. Overemphasizing the decision rule
The optimality of the decision rule should not be emphasized over
the other model components. In the target article, we advocated for
moving away from such overemphasis, which we called “the opti-
mality approach.” In retrospect, this wording was unfortunate, as
this phrase was interpreted by many commentators to mean
what we now call “optimality as an empirical strategy.”
Optimality as an empirical strategy can invite overemphasis of
the decision rule, because it is focused on making the decision
rule optimal. But used carefully, it will not do so. In fact, optimality
as an empirical strategy cannot discover anything about the deci-
sion rule, because the exact form of the decision rule is already
assumed. Therefore, researchers interested in the decision rule
should not use this strategy. Instead, they should test a variety of
decision rules, which could be optimal or suboptimal (Love; Ma).
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R3.3. Is optimality as an empirical strategy a fruitful strategy?

In the commentaries, it seemed that researchers who thought
optimality as an empirical strategy was useful were high on the
global optimality scale, and vice versa. However, views on tools
and substance need not be this tightly linked. We believe that
as long as behavior is sensible, optimality as an empirical strategy
is likely to be fruitful.

At the same time, other research strategies can also be fruitful.
A great many discoveries have been made by explicitly rejecting
optimality (e.g., Kahneman & Tversky 1979) or not considering
optimality (e.g., Gibson & Radner 1937; Hubel & Wiesel 1970;
Müller-Lyer 1889). Hence, we agree with Barth et al.; Danks;
and Zednik & Jäkel on the importance of maintaining a diversity
of strategies for understanding human behavior. What is critical is
to uncover phenomena that are replicable and generalizable, not
the strategies that we use to uncover them.

R4. Bayesian approaches: Bayesian tools versus Bayesian
theories

The third area of disagreement among our commentators relates
to the usefulness of Bayesian approaches to perceptual decision
making. A number of commentators appeared strongly either
pro- or anti-Bayesian. Here we examine the areas of agreement
and disagreement, as well as the relationship between Bayesian
approaches and optimality.

As discussed in sections R2 and R3, a considerable part of the
optimality disagreement could be attributed to whether one
focuses on the nature of behavior or optimality as an empirical
strategy. In a similar fashion, the conflict between pro-Bayesian
and anti-Bayesian commentators may be largely attributable to
whether a commentator focused on Bayesian tools or Bayesian
theories. Bayesian tools (see Glossary) refer only to the mathem-
atical formalism for decomposing decision behavior into likeli-
hood, prior, cost function, and decision rule (the LPCD
components); they make no scientific claims. Bayesian theories
(see Glossary), on the other hand, entail scientific claims, such
as that Bayesian components (LPCD) are explicitly represented
by the brain and people actually calculate posteriors and decision
rules using Bayes’ rule.

Note that what we are calling Bayesian tools are different from
Bayesian statistics (see Glossary), which were discussed by Turner
et al. The term Bayesian statistics refers to a statistical analysis
method that uses Bayes’ theorem to draw inferences from data
and is often contrasted with frequentist statistics.

R4.1. Bayesian tools

Multiple commentators argued for the usefulness of Bayesian
tools in research on perceptual decision making (Chambers &
Kording; Cicchini & Burr; Geurts et al.; Howes & Lewis;
Nardini & Dekker; Schultz & Hurlemann; Stocker).
Commentators noted that Bayesian tools provide a compact,
transparent, and explicit formulation of how to integrate different
pieces of information. The Bayesian formulation can also provide
a benchmark for human performance (but see Noel for an argu-
ment against this claim). Commentators who seemed to adopt
optimality as an empirical strategy also noted that Bayesian
tools are a natural analytic framework for this strategy (Geurts
et al.; Howes & Lewis; Stocker); optimality is naturally expressed
in Bayesian terms. We agree with all of these arguments for the

usefulness of Bayesian tools, and we used these tools extensively
in our target article.

At the same time, it is important to acknowledge the limitations
of Bayesian tools. Several commentators pointed out that Bayesian
approaches do not provide insight into some of the hardest pro-
blems of perceptual decision science. Summerfield & Li noted
that the LPCD framework does not automatically provide mean-
ingful explanations of behavior and pointed to the idea of efficient
coding as a more satisfying kind of explanation. Brette observed
that a major challenge in developing a standard observer model
under the LPCD framework is specifying the generative model.
Perhaps another way to say this is that the hardest part of under-
standing perceptual decision making is understanding perception
itself. In fact, according to Brette, an overemphasis on using
Bayesian approaches can obscure the difficulties that perception
poses and can lead researchers to ignore or underemphasize
these difficulties. Finally, Bachmann argued that Bayesian models
may not map well onto the phenomenology of conscious percep-
tion. We agree with these perspectives, too.

In the end, this is almost always the nature of a single tool (e.g.,
a hammer): It is useful in certain contexts (e.g., putting a nail in a
wall) but is virtually never sufficient by itself to solve a larger
problem (e.g., building a house). Overly high expectations of
Bayesian tools can lead to both excessive reliance on them and
excessive criticism of them.

R4.2. Bayesian theories

In the field at large, there is a substantive debate about Bayesian
theories (i.e., theories that hold that the brain explicitly represents
LPCD components and explicitly computes using Bayes’ the-
orem). However, no commentator defended Bayesian theories
outright, so here we focus on their limitations. Simen & Balcı
reminded us of the computational demands of exact Bayesian
inference, which they argued make Bayesian theories unlikely to
be true. “Surely then,” they remarked, “heuristics are the best
we can do, in general” (para. 8). Turner et al. argued that some-
times behavior is not “best understood in terms of the elements of
LPCD” (para. 3) and suggested that process models (see Glossary)
could better capture the true mechanisms underlying behavior.
We agree that these are both serious difficulties for Bayesian the-
ories. Withagen et al. gave an evolutionary argument for rejecting
a Bayesian approach and questioned a foundation of Bayesian the-
ories, the notion of inference, arguing that the primary challenge
for human perception does not stem from uncertainty about the
environment. We agree that more attention should be given to the
interaction between perception and action, but we consider deal-
ing with uncertainty to be a central issue in perceptual decision
making.

R4.3. Conflating Bayesian tools and Bayesian theories

In section R3, we distinguished between optimality as a substan-
tive hypothesis and optimality as an empirical strategy. In a simi-
lar fashion, it is important to distinguish between Bayesian
theories (which are substantive claims about the nature of the
internal representation) versus Bayesian tools (which simply
refer to an analytical framework). Barth et al. discussed this
issue extensively and pointed out that successful use of Bayesian
tools does not imply that Bayesian theories are true. Danks
emphasized a similar distinction. He referred to Bayesian theories
as a “realist” interpretation and to Bayesian tools as an “as-if”
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interpretation of the Bayesian formalism. Danks explained the
difference between Bayesian theories and Bayesian tools and the
importance of not conflating them.

In fact, Danks criticized our target article for starting out by
using Bayesian approaches as tools and then switching to using
them as substantive theories. Let us clarify that we intended to
use the LPCD framework purely as a tool. The positive proposal
in section 5 of our target article was intended to be completely
approach-agnostic. This is why we stated that the standard obser-
ver model may eventually take the form of “a Bayesian model … a
‘bag of tricks’ … a neural network … and so forth” (sect. 5.2,
para. 1). The hypotheses that we thought might generalize across
tasks, such as “placing a premium on accuracy” (sect. 5.2, para. 5)
were not intimately linked to the Bayesian approach (we classified
them under different LPCD components purely for convenience).
We see the question of whether such hypotheses generalize across
tasks as independent from whether one supports Bayesian theor-
ies. Nevertheless, Danks’s criticism of our target article shows the
practical difficulties involved in keeping Bayesian tools clearly
separated from Bayesian theories and indicates the need for
enhanced conceptual clarity on this issue.

R4.4. Bayesian approaches and optimality

Continuing the theme of conflating concepts that should be kept
separate, the term Bayesian was sometimes equated with optimal
in the commentaries, a common issue we addressed in the target
article. For example, Stocker argued that “Bayesian decision the-
ory and the optimality assumption are in many ways synonym-
ous; without the latter, the former is not meaningful” (para. 3).
This view was also endorsed by Zhao & Warren. We agree
with these commentators that Bayesian tools are a natural choice
if one adopts the use of optimality as an empirical strategy.
However, optimality as an empirical strategy can be pursued inde-
pendently of Bayesian tools (e.g., maximizing a non-Bayesian util-
ity function), and Bayesian tools can be used without assuming
optimality (e.g., an LPCD model with a suboptimal decision
rule) – so the two should not be equated.

Bayesian tools and theories should also be clearly separated
from claims about optimality (Ma 2012). As just noted, the
Bayesian formalism can be used to model decision behavior,
whether that behavior is optimal or not, as with a suboptimal
decision rule (Chambers & Kording). Similarly, Bayesian theories
could be substantively correct in that the brain explicitly repre-
sents LPCD components and performs Bayesian computations,
but if the brain represents the wrong components, then behavior
could still be suboptimal. Hence, claims about both local and glo-
bal optimality should be kept separate from Bayesian tools and
theories.

R5. The standard observer model

In the first part of this response (sects. R2–R4), we addressed the
three main areas of disagreement in the commentaries. In this
second part, we discuss issues related to the standard observer
model (sect. R5) and specific suggestions and topics (sect. R6).

R5.1. The benefits and limitations of a standard observer
model

In our target article, we communicated a vision of a standard
observer model that will predict observers’ behavior on a wide

variety of perceptual tasks. We then urged researchers to actively
work toward building such a model. A number of commentators
reflected on the benefits and limitations of this type of effort.

The benefits of building a standard observer model were recog-
nized by a number of commentators (e.g., Nardini & Dekker;
Meyer; Simen & Balcı; Schultz & Hurlemann; Turner et al.;
Wyart). They noted the utility of having a model that applies
across a variety of tasks and quantitatively predicts novel behavior.
Further, the ability to make quantitative predictions would also
make the standard observer model readily falsifiable.

An observer model is a prerequisite for making any new pre-
dictions. Stocker appeared to disagree, contending that the prin-
ciple of optimality could generate predictions from first
principles, because optimality “allows us to formulate with relative
ease an observer model for any specific task” (para. 3). However,
neither global nor local optimality lead to specific models. Global
optimality is not specified in sufficient detail to model specific
tasks, and local optimality can only determine the decision rule
after the rest of the model is formulated (e.g., as Moran &
Tsetsos showed, local optimality makes different predictions
depending on whether observer models feature late noise or
not). At the same time, we agree with Simen & Balcı that what-
ever form the future standard observer model takes, some “utility
function will be found at [its] core” (para. 2). In other words, the
model would imply that behavior is sensible.

Some commentators were concerned that a focus on building a
standard observer model eschews the question of why behavior is
the way it is (Summerfield & Li; Zednik & Jäkel) and that such a
model is too descriptive (Howes & Lewis; Mastrogiorgio &
Petracca; Simen & Balcı). We are sympathetic to these concerns,
but at the same time, we doubt one could satisfactorily answer
why behavior is the way it is before understanding in much
more detail what people actually do and how they do it.
Nevertheless, we think that various components of the standard
observer model can and will be inspired by normative (i.e., sensi-
bilist) considerations like the ones Summerfield & Li discussed. In
the end, we support any approach that yields predictive, general-
izable models of human behavior.

Finally, Howes & Lewis criticized observer models for being
overly flexible because they are not constrained by a locally opti-
mal decision rule. However, it is important to point out that a
locally optimal decision rule is no solution for excessive flexibility
either (Bowers & Davis 2012a). Avoiding excessive flexibility is
why the components of any model need to be independently veri-
fied, and this is exactly the principle that we advocated for build-
ing the standard observer model.

R5.2. What to do about individual differences?

Perception science has traditionally focused on what is common
among all observers rather than what is different. However, as
several commentators pointed out, there are meaningful individ-
ual differences in how people perform perceptual decision-
making tasks (Bachmann; Booth; Love; Mastrogiorgio &
Petracca; Schultz & Hurlemann; Withagen et al.; Zhao &
Warren). Such differences create a big additional hurdle for the
global optimalist view (Bachmann; Booth; Withagen et al.),
which must explain why such differences should be globally opti-
mal in the first place. Individual differences create challenges for
observer models, too. Such differences are typically accommo-
dated by free parameters that can vary across individuals (such
as the level of internal noise), but it is possible that in some
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cases different model components may be needed for different
people (e.g., different observers may use qualitatively different
decision rules). In our view, individual differences ultimately
bring opportunities to develop and test observer models. The pre-
dictive validity of a model can be tested not only by generalizing
to a new stimulus or task but also to the individual differences
that could be expected for the stimulus or task.

R5.3. Finding the best approach for building a standard
observer model

One of the most pressing questions for a researcher who wishes to
contribute to building a standard observer model is what form
this model should take. Stocker criticized our vision as “fuzzy,”
which is not wrong. We certainly do not claim to know what
the final model will be. As some commentators thought we
were advocating for bag of tricks or neural network models
(Geurts et al.; Stocker) and others thought we were advocating
for LPCD models (Danks), we realized we did not make clear
that our position is one of agnosticism, not advocacy. We support
a diversity of modeling approaches in our field (Barth et al.;
Danks; Zednik & Jäkel), with the common theme that all
model components should be tested in multiple ways. There are
many types of modeling efforts in the field right now, and this
seems to us like a good thing.

Several broad views of how to proceed in studying perceptual
decision making were brought up in the commentaries. None of
them are specific observer models – they do not generate predic-
tions for behavior – but they provide overarching frameworks and
philosophies that guide research and can lead to the development
of observer models. We have already discussed optimality as an
empirical strategy (Geurts et al.; Howes & Lewis; Moran &
Tsetsos; Shimansky & Dounskaia; Stocker) and the LPCD
framework as potential approaches. Howes & Lewis argued for
“computational rationality” (or “bounded optimality”), which is
a particular take on optimality as an empirical strategy.
Mastrogiorgio & Petracca advocated for “bounded rationality,”
in which decision rules are selected to reach a good enough
level of performance, rather than the best possible performance.
Such “satisficing” is a clear example of sensibleness without global
optimality. (In the target article, we mischaracterized bounded
rationality as emphasizing “the optimality of the decision rule”;
bounded rationality does not assert that decision rules should
be globally or locally optimal.) Turner et al. and Salinas et al. dis-
cussed the option of implementing process models at Marr’s algo-
rithmic and implementational levels, which need not be
formulated using Bayesian tools. We see value in all of these
approaches and perspectives.

R6. Addressing specific suggestions and topics

We devoted most of this response to tackling the larger and more
theoretical issues that arose in the commentaries. However, the
commentaries were full of additional insights about research
methods and specific research topics. Though we only have
space to discuss these topics briefly here, we encourage readers
to read the relevant commentaries for further information.

R6.1. Modeling suggestions

A few commentators made specific methodological suggestions
related to modeling human behavior, which may prove useful in

the development of a standard observer model. Ma and Love
both discussed the importance of model comparison, a point
with which we wholeheartedly agree. Ma introduced the notion
of factorial model comparison, which allows researchers to sys-
tematically explore a large number of factors that could jointly
affect behavior. Turner et al. advocated for the use of Bayesian
statistics to compute posterior distributions for each model par-
ameter rather than a single point estimate of the parameter’s
most likely value. Shimansky & Dounskaia proposed that to val-
idate models, a useful strategy is to use a subset of the data to
determine unknown parameters and test the resulting model
using the rest of the data. Such cross-validation is already com-
mon in many fields and should indeed be adopted more often
in perceptual decision making. Finally, Wyart identified a key
issue in evaluating observer models: Given that behavioral data
are always noisy, how will we know when a model predicts the
data well enough? Wyart proposed a strategy for determining
this “good enough” level, also called a “noise ceiling,” for an indi-
vidual observer by measuring the observer’s decision consistency
across repeated trials.

R6.2. Specific topics

Many commentators gave examples of suboptimality not included
in our target article: Salinas et al. on reward processing; Noel;
Turner et al.; and Zhao & Warren on cue combination;
Chambers & Kording on sensorimotor behavior; and Turner
et al. on category learning. We appreciated these additional exam-
ples of the inability of “standard” optimality considerations to
predict behavior. Though we strove to be comprehensive in our
survey, there are likely many more such examples in the published
literature.

Some commentators argued that a specific effect we cited as
locally suboptimal is in fact locally optimal if further factors are
taken into account. Cicchini & Burr contended that serial
dependence is optimal if the previous perceptual information
can be used to reduce the uncertainty about the current stimulus.
Summerfield & Li suggested that many of the surveyed subop-
timalities may arise from the principles of efficient coding. We
find both of these to be promising hypotheses (efficient coding
considerations were discussed in the target article). Finally,
Simen & Balcı pointed out that our list of suboptimal findings
in speed-accuracy tradeoff (SAT) tasks included two articles
(Balcı et al. 2011b; Simen et al. 2009) that in fact primarily showed
optimal behavior. Their commentary provided a balanced view of
findings of optimality and suboptimality in SAT tasks.

Other commentators showed how our target article can be
extended to development (Nardini & Dekker), computational
psychiatry (Schultz & Hurlemann), detection of abnormalities
in medical images (Meyer), and other fields beyond perceptual
decision making (Barth et al.). Although we focused our target
article on perceptual decision making in healthy adults, we
strongly support such extensions.

Finally, Chambers & Kording criticized our claim that there is
a “current narrow focus on optimality” (target article, sect. 1,
para. 5). They surveyed articles from the last 23 years and
found a similar proportion of optimality and suboptimality
claims. However, their data, which they graciously shared with
us, suggested a potential difference in the visibility of optimality
versus suboptimality claims as measured by the impact factors
(IFs) of the journals in which they appeared. Indeed, the numbers
of optimality/“near optimality”/suboptimality claims were: 4/0/0
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for IF > 10, 7/2/1 for IF > 8, and 9/2/1 for IF > 6. We note that it
is difficult to know what the unbiased proportions of optimality
and suboptimality claims should be.

R7. Conclusion

Reading the collection of 27 commentaries has been a tremendous
source of insight and inspiration. Commentators eloquently
described points of view addressed too briefly in the target article
and introduced us to new perspectives and empirical findings.
Finally, we appreciated the many balanced views expressed.
Optimality is a complicated topic, and nuance is paramount. In
our view, much disagreement will dissolve if three distinctions
are zealously maintained.

First, researchers should not conflate local and global optimal-
ity. Every single empirical finding is a finding of local optimality
or local suboptimality (i.e., it depends on the assumptions of a
particular model). Every given behavior is simultaneously locally
optimal and locally suboptimal according to different models.
Arguably, “all models are wrong” (Box 1979, p. 202), so local find-
ings of optimality or suboptimality virtually never license state-
ments about global optimality. We will likely never know how
globally optimal human behavior actually is.

Second, researchers should recognize the philosophical distinc-
tion between sensibleness and global optimality. We find broad
agreement that human behavior is sensible but not globally opti-
mal, with perhaps some researchers adopting a global optimalist
position. Researchers who identify as global optimalists should
define and defend the view that behavior is globally optimal rather
than the easier-to-defend and already widely accepted view that
behavior is sensible. However, we ultimately consider this distinc-
tion to be scientifically unresolvable and therefore likely to remain
a matter of opinion.

Third, researchers should clearly separate tools from substan-
tive claims. Both the a priori assumption of optimality as an
empirical strategy and the adoption of the Bayesian formalism
are tools; they are not in themselves correct or incorrect.
However, there are correct and incorrect ways to use them.
These tools should be kept separate from substantive claims
about global optimality or Bayesian theories.

Maintaining these three distinctions depends on using consist-
ent terminology (see the Glossary). Being more precise with the
language we use to talk about optimality and related concepts
will help us to identify our common ground – which we believe
is more extensive than it might appear on the surface.

We end on the same note as in our target article, with a plea to
shift focus away from the optimality of behavior for its own sake
and to independently validate all of our hypotheses and assump-
tions, and all components of our models. We see this practice as
the best way to advance our understanding of human behavior
and work toward the major goal of developing a standard obser-
ver model for perceptual decision making.
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