
Received: May 4, 2023. Revised: September 5, 2023. Accepted: September 6, 2023
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Cerebral Cortex, 2023, 33, 11092–11101

https://doi.org/10.1093/cercor/bhad348
Advance access publication date 28 September 2023

Original Article

Quantifying the contribution of subject and group
factors in brain activation
Johan Nakuci1,*, Jiwon Yeon2, Kai Xue1, Ji-Hyun Kim3, Sung-Phil Kim3, Dobromir Rahnev1

1School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States,
2Department of Psychology, Stanford University, Stanford, CA 94305, United States,
3Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea

*Corresponding author: School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States. Email: jnakuci@gmail.com

Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual
differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses
are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method
consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to
a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual
decision-making task (n = 50) and find that activations related to task, reaction time, and confidence are influenced equally strongly by
group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing
increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of
brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
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Introduction
Human behavior is idiosyncratic: what elicits a certain behavior
in one person is often very different from what elicits that same
behavior in another (Eilam 2015; Forkosh et al. 2019). Similarly,
increasing amount of evidence points toward the existence of
substantial idiosyncrasy in brain activations, such that the same
task can elicit different patterns of activity in different subjects
(Seghier et al. 2008; Miller et al. 2009, 2012). Yet, it remains
unclear how to precisely quantify the strength of the observed
idiosyncrasy, as well as whether different types of analyses are
associated with different levels of idiosyncrasy.

To address these questions, here we develop a method to
determine the contribution of group- and subject-level factors
to observed activations in functional MRI (fMRI) studies. The
method requires the computation of subject-to-group similarity
and within-subject reliability of the observed activations. The
idea is that the subject-to-group similarity can inform us about
how different each person’s activation map is from the group.
However, this information has to be interpreted in the context
of the noisiness of each individual map, which can be quantified
by assessing its within-subject reliability. Critically, these values
can be submitted to a computational model that can assess the
relative contribution of group- and subject-level factors to each
activation map.

We collected data from a perceptual decision-making task
inside an MRI scanner where subjects (n = 50) judged whether a
briefly presented display featured more red or blue dots and pro-
vided a confidence rating (Fig. 1A). The experiment was organized
in 96 blocks of 8 trials each (see Materials and Methods for full

details). We performed standard analyses to assess the activation
maps associated with task trials, as well as with reaction time
(RT) and confidence (by comparing trials with higher- vs. lower
than the trial-level median RT and confidence). We show that the
model can successfully quantify the contribution of group- and
subject-level factors to brain activations and that these 2 factors
are approximately equally important in our task.

Materials and methods
Subjects
Fifty-two healthy subjects were recruited for this study. Two sub-
jects were excluded because 1 had metal braces in their teeth and
1 decided to stop the experiment after the second run. All anal-
yses were thus based on the remaining 50 subjects (25 females;
mean age = 26; age range = 19–40; compensated 20,000 KRW or ∼18
USD). All subjects were screened for any history of neurological
disorders or MRI contraindications. The study was approved by
Ulsan National Institute of Science and Technology Review Board
(UNISTIRB-20-30-C) and all subjects gave written consent.

Task
Subjects had to determine which set of colored dots (red vs. blue)
was more frequent in a cloud of dots (Fig. 1A). Each trial began
with a white fixation dot presented for a variable amount of
time between 500 and 1500 ms at the center of the screen on
a black background. Then, the stimulus was shown for 500 ms,
followed by untimed decision and confidence screens. The stim-
ulus consisted of between 140 and 190 red- and blue-colored

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/cercor/bhad348


Johan Nakuci et al. | 11093

Fig. 1. Task and results of standard group analyses. A) Task. Subjects performed a simple perceptual decision-making task that required them to judge
the dominant color in a display of colored dots and rate their confidence. B) Results of standard group-level analyses for task-, RT-, and confidence-based
contrasts. The analyses showed strong increases and decreases in activation across a range of brain regions for task- (top left), RT- (top middle), and
confidence-based (top right) analyses. All maps thresholded at FDR < 0.01 corrected for display purposes.

dots (dot size = 5 pixels) dispersed randomly inside an imaginary
circle with a radius of 3◦ from the center of the screen. Four
different dot ratios were used: 80/60, 80/70, 100/80, and 100/90,
where the 2 numbers indicate the number of dots from each color.
The experiment was organized in blocks of 8 trials each, with
each dot ratio presented twice in a random order within a block.
The more frequent color was pseudo randomized so that there
were equal number of trials where red and blue were the correct
answer within a run (consisting of 16 blocks). Subjects used an
MRI-compatible button box with their right hand to indicate their
decision and confidence responses. For the decision response, the
index finger was used to indicate a “red” response and the middle
finger for a “blue” response. Confidence was given on a 4-point
scale, where 1 is the lowest and 4 is the highest, with the rating of
1 mapped to the index finger and the rating of 4 mapped to the
little finger.

Subjects performed 6 runs each consisting of 16 blocks of 8 tri-
als (for a total of 768 trials per subject). Three subjects completed
only half of the sixth run and another 3 subjects completed only
the first 5 runs because of time constraints. The remaining 44
subjects completed the full 6 runs. Subjects were given 5 s of rest
between blocks, and self-paced breaks between runs.

MRI recording
The MRI data were collected on a 64-channel head coil 3 T MRI
system (Magnetom Prisma; Siemens). Whole-brain functional
data were acquired using a T2∗-weighted multiband accelerated
imaging (FoV = 200 mm; TR = 2000 ms; TE = 35 ms; multiband
acceleration factor = 3; in-plane acceleration factor = 2; 72 inter-
leaved slices; flip angle = 90◦; voxel size = 2.0 × 2.0 × 2.0 mm3).
High-resolution anatomical MP-RAGE data were acquired using
T1-weighted imaging (FoV = 256 mm; TR = 2300 ms; TE = 2.28 ms;
192 slices; flip angle = 8◦; voxel size = 1.0 × 1.0 × 1.0 mm3).

MRI preprocessing and general linear model
fitting
MRI data were preprocessed with SPM12 (Wellcome Department
of Imaging Neuroscience, London, United Kingdom). We first con-
verted the images from DICOM to NIFTI and removed the first 3

volumes to allow for scanner equilibration. We then preprocessed
with the following steps: de-spiking, slice-timing correction,
realignment, segmentation, coregistration, normalization, and
spatial smoothing with 10 mm full width half maximum (FWHM)
Gaussian kernel. In control analyses, we used 5 and 20 mm FWHM
smoothing to investigate whether the results are because of fine-
grained differences in the activations maps between subjects,
given that local differences would be substantially reduced
by larger smoothing kernels. De-spiking was done using the
3dDespike function in AFNI. The preprocessing of the T1-weighted
structural images involved skull-removal, normalization into MNI
anatomical standard space, and segmentation into gray matter,
white matter, and cerebral spinal fluid, soft tissues, and air and
background.

We fit a general linear model that allowed us to estimate the
beta values for each voxel in the brain. The model consisted of
separate boxcar regressors for trials that had greater or smaller
than the median RT or confidence (trial onset was set to the
beginning of fixation and trial offset was set to the confidence
response), inter-block rest periods, as well as linear and squared
regressors for 6 head movement (3 translation and 3 rotation), 5
tissue-related regressors (gray matter, white matter, cerebrospinal
fluid, soft tissues, and air and background), and a constant term
per run.

Standard group-level analyses
We first performed a standard group analysis by conducting
t-tests across all subjects for each voxel. A task-based analysis
compared the obtained beta values with zero to identify regions
of activation and deactivation. Two behavior-based analyses
compared the beta values for trials with faster- vs. slower-than-
median average RT and higher- vs. lower-than-median average
confidence. Significance was assessed using P < 0.05 after FDR
correction for multiple comparisons.

Within-subject reliability analyses
We examined the within-subject reliability of the whole-brain
maps produced by the task, RT, and confidence analyses. To do so,
we first redid each analysis by only using the odd trials, as well
as by only using the even trials. We then compared the similarity
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between the maps obtained for odd and even trials using Pearson
correlation. We performed the analysis 5 times based on the top
10, 25, 50, 75, or 100% of most strongly activated voxels in the
following way. We first identified the X% most strongly activated
voxels (i.e. the voxels with highest absolute activation values)
when only examining the data from the odd trials. The activation
values used were the average beta value for task-based analyses
and the t-value (obtained by using a t-test to compare the beta
values for trials with above- vs. below-median RT or confidence)
for the RT and confidence analyses. This selection procedure
ensured that both positively and negatively activated voxels were
selected and that an equal number of voxels were selected each
time. The activations in the selected top X% of voxels from the odd
trials were then correlated with the activations in the same voxels
in the even trials, thus obtaining an “odd-to-even” correlation
value. Then, using an equivalent procedure, we identified the top
X% of most activated voxels in the even trials, and correlated
their activations with the activations in the corresponding voxels
in the odd trials, thus obtaining an “even-to-odd” correlation
value. Finally, we computed the overall within-subject reliability
as the average of the odd-to-even and even-to-odd correlation
values.

We limited our analysis to a single session because the objec-
tive was to develop a method that estimate the contribution of
subject- and group-level factors in brain activation using reliabil-
ity and similarity values. The framework developed here can be
extended to include data from multiple sessions but the benefit
of using a single session is that it will maximize within-session
reliability since the reliability between sessions could be affected
by multiple exogenous factors (Poldrack et al. 2015; Nakuci et al.
2023).

Subject-to-group similarity analyses
Critically, we examined the subject-to-group similarity in the
maps produced by each analysis. For each subject, we correlated
their individual task-, RT-, and confidence-based activation maps
with the corresponding group map obtained by averaging the
maps of the remaining 49 subjects. Similar to the within-subject
reliability analyses, we conducted these analyses separately for
the top 10, 25, 50, 75, or 100% of most activated voxels. These
voxels were selected in the same way as for the within-subject
reliability analyses using all of the data in a given subject; the
activations in the voxels identified for a given subject were then
correlated with the average activations in the same voxels for the
remaining 49 subjects.

Consistency in activation analysis
As another test of the across-subject similarity, we computed the
consistency in the sign of activation. Our main analyses relied
on taking correlations, but it is possible that just considering
the sign of activation (rather than the strength of activation)
would produce different results. To investigate this possibility,
we examined the consistency of the sign of voxel activations
(positive or negative) across subjects. To do so, we first set all
voxels values that were equal to 0 to not-a-number value. This
applied to regions that are outside the brain. We then binarized
the voxel activation values activationi such that:

binaryi =
{

1, activationi ≥ 0
0, activationi < 0

The consistency of the sign of a voxel’s activation across sub-
jects (Ci) was then calculated as percentage of subjects for which
a voxel i was positively or negatively activated using the formula:

Ci = 100 × 1
50

∑50

i=1
binaryi

As defined, Ci goes from 0 (all subjects having negative activa-
tion for that voxel) to 100 (all subjects having positive activations
for that voxel), with a value of 50 indicating that half of the
subjects had positive and half had negative activation. However,
when reporting the values of Ci, we flipped values under 50 using
the formula Ci,f lipped = 100 − Ci, so that these values represent
the percent of subjects with negative activations. The analysis
was performed separately for task-based activation maps, RT-
based activation maps, and confidence-based activation maps.
The activation values were the average beta value (for task-based
analyses) or t-value (for RT and confidence analyses).

Low across-subject similarity in these analyses would result
in most voxels having consistency, Ci, values close to 50 (corre-
sponding to the voxel activation having positive sign in half the
subjects and negative sign in the other half). However, because of
chance, the consistency values are bound to sometimes be higher.
Therefore, to enable the appropriate interpretation of the obtained
results, we computed the expected consistency values in the maps
of 50 subjects whose maps have no relationship to each other.
Specifically, we generated a random set of voxel activation values
for each of 50 sample subjects. Maximal consistency from the
random data was calculated in the same manner as the empirical
values and the procedure was repeated 1,000 times. This analysis
revealed that completely random data would produce a maximal
consistency of 80% (for both positive and negative activations)
given the number of voxels and number of subjects that we had.

Distribution of top-10% most strongly activated
voxels
As a final test of the across-subject similarity for the different
maps, we sought to identify the consistency of the location of
the most strongly activated brain regions across subjects. For
each subject, we selected the top-10% most strongly activated
voxels by considering the absolute value of either the average beta
value (for task-based analyses) or t-value (for RT and confidence
analyses). Note that this procedure selected positive and negative
activations. We then estimated, for each voxel, the percent of
subjects for which the voxel was selected as one of the top-
10% most strongly activated voxels. As before, the analysis was
performed separately for task-based activation maps, RT-based
activation maps, and confidence-based activation maps.

Low across-subject similarity in these analyses would result
in most voxels being selected about 10% of the time. However,
because of chance, some voxels are bound to be selected more
than 10% of the time. Therefore, to enable the appropriate inter-
pretation of the obtained results, we computed the expected level
of maximal overlap in the maps of 50 subjects whose maps have
no relationship to each other. Specifically, for each of the 50
subjects, we generated a random set of voxel activation values.
We then selected the top-10% of the highest absolute values
from each subject and calculated the overlap across subjects. The
expected value from random data was computed as the average
maximal overlap after 1,000 iterations. This analysis revealed that
completely random data would produce a maximal overlap of 28%
given the number of voxels and number of subjects that we had.
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Model specification
The model jointly generates behavior and brain activity maps
using minimal assumptions in a way that makes it generalizable
across different contexts. The model assumes that the activation
map for each trial is a function of 7 different factors. The first 3
are group-level factors (i.e. factors common to all subjects) for the
task itself, the influence of RT, and the influence of confidence.
The next 3 factors are subject-level factors (i.e. factors specific to
each subject) for the task itself, the influence of RT, and the influ-
ence of confidence. Finally, the seventh factor is simply Gaussian
noise. Critically, each factor is weighed by a corresponding factor
weight that determines the strength of influence of that factor to
the final voxel activation values, such that the activation strength
(β) for a given voxel on a given trial is:

β = wtaskgroup ∗ ftaskgroup + wrtgroup ∗ frtgroup ∗ RT + wconfgroup ∗ fconfgroup ∗ conf

+ wtasksubj
∗ ftasksubj

+ wrtsubj ∗ frtsubj ∗ RT + wconfsubj
∗ fconfsubj

∗ conf

+ wnoise ∗ fnoise

where RT and conf are the z-scored empirical RT and confidence
values for each trial, the w’s are the weights associated with each
factor, and the f ’s are the factors that influence the voxel activity
for a given trial. Without loss of generality, the weight of the noise
factor (wnoise) was fixed to 1. The f variables are the component
of activation that influence the voxel activity for a given trial
and f can be thought of as the latent (unobserved) component
of activation that is associated with the task, RT, confidence,
and noise. The value of each factor f was randomly sampled
from a standard normal distribution such that group-level factors
were randomly sampled for each voxel, subject-level factors were
randomly sampled for each voxel and subject, and the noise
factor was randomly sampled for each voxel, subject, and trial.
We note that the model does not predict beta values for individual
regressors. Instead, it generates beta values that already take into
account all regressors, which are then used to compute subject-
to-group similarity and within-subject reliability values.

The advantage of a model-based approach is that (i) it provides
the ratio of subject to group level contribution and (ii) it allows us
to compare the contribution of subject- and group-level factors
relative to the noise in the data. Alternatively, the ratio can be
calculated directly from the within-subject reliability and subject-
to-group similarity, but the advantage of the model is that it
allows us to compare the group- and subject-level factors to the
noise level. Therefore, a model-based approach allows for a more
thorough analysis of the contribution of subject- and group-level
factors to the brain activation.

Model fitting
We first fit the model to the empirically observed within-subject
reliability and subject-to-group similarity values. The model had
6 free parameters corresponding to the weights, w, of the group-
and subject-level factors that determined the simulated β value
for each voxel in each trial. For a given set of weights, we simulated
a complete experimental data set by generating simulated data
for 50 subjects with 768 trials per subjects. Based on these data,
we then computed the within-subject reliability and subject-to-
group similarity values in the same way as for the empirical data.
When simulating the model, we observed that the exact number
of voxels used made no systematic difference to the observed
values of the obtained within-subject reliability and subject-to-
group similarity values. Therefore, we used 10,000 voxels, which

allowed for stable values to be obtained on different iterations.
The fitting minimized the mean squared error (MSE) between
the simulated and empirically observed within-subject reliability
and subject-to-group similarity values calculated using the top-
100% most activated voxels (that is, using all voxels). Once the
fitting was completed, we also generated the predictions of the
best-fitting model for the within-subject reliability and subject-
to-group similarity values calculated using the top 10, 25, 50, and
75% most activated voxels. The fitting itself was carried out using
the Bayesian Adaptive Direct Search toolbox (Acerbi and Ma 2017).
We fit the model 10 times and report the best fitting model among
the 10 iterations. We repeated the model fitting 10x to avoid local
minima when estimating parameters, as is standard practice in
the field and our laboratory (Shekhar and Rahnev 2022; Yeon and
Rahnev 2020).

Model comparison
We have compared the Full model (Subject + Group + Noise fac-
tors) with a Subject-Only model (Subject + Noise factors) and
Group-Only model (Group + Noise factors). We simulated each
model 25x and calculated the MSE between the model-based and
empirical values for the subject-to-group similarity and within-
subject reliability values. In addition, we compared the different
models using Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC).

Data and code availability
Processed data and code are available at https://osf.io/gyw8f/.

Results
We first performed standard group fMRI analyses by conducting
t-tests across all subjects for each voxel. We found that contrasts
related to the task (Task > Background), RT (Fast RT > Slow
RT), and confidence (High confidence > Low confidence) all
produced regions of strong activation and deactivation (Fig. 1B).
We inspected the activations for task, RT, and confidence in
subjects 1–3 and found that all 3 subjects demonstrated relatively
consistent activation patterns (Fig. 2). However, there appeared
to be consistent across-subject differences in the activation
maps, which could not be attributed purely to noise as they also
appeared in maps produced by only the odd or only the even trials
for a given subject. These results hint at the idea that both group-
and subject-level factors may be contributing to the observed
activations.

To formally test these impressions, we first examined both
the within-subject reliability and subject-to-group similarity of
the whole-brain maps for the task, RT, and confidence contrasts.
We computed within-subject reliability by performing Pearson
correlations between the activations obtained when examining
only the odd or only the even trials. We computed subject-to-
group similarity by correlating each subject’s brain map with the
group map obtained by averaging the maps of the remaining 49
subjects.

As may be expected from Fig. 2, for task-based activation,
we found strong within-subject reliability (ract = 0.81 ± 0.013,
P < 0.001) and subject-to-group similarity in task activations
(ract = 0.72 ± 0.013, P < 0.001; Fig. 3A). In the same manner,
RT- and confidence-based maps exhibit strong within-subject
reliability (rrt = 0.74 ± 0.014, P < 0.001; rconf = 0.55 ± 0.028, P < 0.001;
Fig. 3B and C, top). Critically, we examined the subject-to-group
similarity for the RT and confidence maps. Echoing the qualitative
impressions from Fig. 2, we found a high degree of similarity

https://osf.io/gyw8f/
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Fig. 2. Trial-level activations for task, RT, and confidence for 3 example subjects. Trial-level activation maps for A) task, B) RT, and C) confidence contrasts
from the first 3 subjects. Small brains underneath represent the same contrasts conducted only on odd or even trials. Similar activations for all 3 subjects
appear for all trial-level contrasts.

across subjects for the RT-based maps (rrt = 0.69 ± 0.014, P < 0.001;
Fig. 3B, bottom) and confidence-based maps (rconf = 0.52 ± 0.025;
Fig. 3C, bottom).

One potential concern with these types of analyses could be
that they may be biased by voxels that are either particularly noisy
or not involved in the task in any way. Therefore, to test whether
these results are robust, we repeated them by first selecting the
top 75, 50, 25, or 10% of the most strongly activated voxels for
each subject (see Materials and Methods). These analyses showed
that selecting smaller percentages of the most highly activated
voxels generally increased both the within-subject reliability and
subject-to-group similarity, but the pattern of results remained
essentially unchanged.

To gain further intuition for the underlying effects, we con-
ducted 2 additional analyses. First, we tested the consistency
of the sign of voxel activations (whether they were positive or
negative) across subjects. We found that for the task maps, there
were large portions of the brain that showed consistently positive
or consistently negative activations (Fig. 4A, left). Indeed, the
maximal overlap across subjects was 100% for both positive and
negative activations. Furthermore, we found many areas of strong
consistency with maximal overlap of 100 and 98% for positive and
negative activations in the RT maps, and maximal overlap of 100
and 88% for positive and negative activations in the confidence
maps (Fig. 4A, middle and right). (Note that the expected values
in random data are 80% for positive and negative activations.)
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Fig. 3. Within-subject reliability and subject-to-group similarity. Within-subject reliability and subject-to-group similarity values as a function of the
percent of most activated voxels selected for A) task-, B) RT-, and C) confidence-based activation. Subject-to-group similarity is computed as the average
similarity between the maps of each person and the group map of the remaining subject. Error bars show SEM.

Fig. 4. Maps of the activation consistency and distribution of the top-10% most activated voxels across subjects. A) Maps of voxel consistency computed
as the proportion of subjects showing a positive or negative relationship between voxel activity and behavior. Task activations maps, as well as RT and
confidence maps, show a high level of consistency. B) Maps of the distribution of the top-10% most activated voxels. Task activations maps, as well as
RT and confidence maps, contain areas with a high level of consistency in occipital and parietal lobes.

Second, we examined the distribution of the locations of the
top-10% most strongly activated voxels for each subject (both
positive and negative activations were considered). The most
strongly activated voxels clustered in the occipital and parietal

lobes (Fig. 4B, left). The maximum overlap among the 10% most
activated voxels across subjects was 98%. Furthermore, there were
again areas of strong clustering of the most activated voxels
(mostly in the occipital lobe) for both RT and confidence maps
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(maximal overlap: 98 and 78%, respectively; Fig. 4B, middle and
right). Altogether, both additional analyses further underscore the
high level of consistency for task, RT, and confidence maps across
subjects. We also repeated the same analyses above with a wide
range of smoothing levels (from 5 to 20 mm) and obtained very
similar results (Figs S1 and S2).

Having quantified the within-subject reliability and subject-to-
group similarity between different types of analyses, we used this
information to quantify the contribution of group- and subject-
level factor by building a simple computational model. The critical
idea behind the model is to separately model group-level factors
(i.e. factors that are identical for all subjects) and subject-level
factors (i.e. factors that are different for each subject). The inputs
into the model are the empirical within-subject reliability and
subject-to-group similarity values, as well as the empirical RT
and confidence values. The simulation generates idealized beta
values (voxel activations) for each trial characterized by a given
RT and confidence values. Note that the activations produced by
the model are not mapped onto specific voxels in the brain and
do not form a meaningful spatial map. That is, to keep the model
simple, individual voxel activation for each group- and subject-
level factor was generated randomly by ignoring known temporal
and interregional dependencies.

Critically, the model produces the idealized beta values based
on three group-level factors (group task map, group RT map,
and group confidence map), three subject-level factors (subject-
specific task map, subject-specific RT map, and subject-specific
confidence map), and 1 noise factor (Fig. 5A). The weight of the
noise factor was fixed to 1, leaving the model with a total of six
free parameters (one for the weight of each group- and subject-
level factor). We then fit the within-subject reliability and subject-
to-group similarity produced by the model to the observed values
computed using 100% of the voxels.

Despite its simplicity, the model was able to provide excellent
fit to the data from Fig. 3 by capturing closely the observed
patterns of within-subject reliability (Fig. 5B–D, top) and subject-
to-group similarity (Fig. 5B–D, bottom) for the data with 10 mm
smoothing. We also separately fit the data with 5 and 20 mm
smoothing and obtained equally good fits.

Critically, the model allowed us to examine the weights of
the group- and subject-level factors, thus providing insight
into the relative contribution of each. We found slightly larger
contribution weights for the group- than subject-level task
factors (subject-level factor weight = 0.150, group-level factor
weight = 0.170, ratio = 0.88; Fig. 6A and B). Thus, the group-level
factors were only slightly higher than the subject-level factors,
pointing to a balance between influences that are common across
all subjects and influences that are specific to each individual.
On the other hand, we observed slightly higher relative weights
for the subject-level factors for the RT and confidence maps at
the trial level (RT: subject-level factor weight = 0.123, group-level
factor weight = 0.091, ratio = 1.35; confidence: subject-level factor
weight = 0.101, group-level factor weight = 0.061, ratio = 1.65). In
other words, our model suggests that group- and subject-level
factors have relatively similar influence on task activation maps,
which corresponds well to recent findings about group- and
subject-level influences on brain connectivity (Gratton et al.
2018). However, the relative contribution of all group- and
subject-level factors is small relative to the contribution of noise
(Fig. 6C).

To examine the robustness of the modeling results, we repeated
the model fitting on data with 5–20 mm smoothing. These two
additional analyses produced similar results: the weights ratio

between the subject- and group-level factors was between 0.8 and
1.21 for the task factors in all cases, between 0.9 and 1.4 for RT, and
between 0.9 and 1.8 for confidence (Fig. 6B).

Additionally, we compared the Full model (Subject + Group +
Noise factors) with a Subject-Only model (Subject + Noise
factors) and a Group-Only model (Group + Noise factors;
Fig. S3A–C). We simulated each model 25x and calculated the
MSE, AIC, and BIC between the model-based and empirical
within-subject reliability and subject-to-group similarity values.
The reliability and similarity values estimated from the Full
model exhibited lower MSE, AIC, and BIC values compared with
the Subject-Only or Group-Only models (paired sample t-test,
P < 10−26; Fig. S3D–F). These results indicate that there are both
subject and group components in both task- and behavior-based
brain activation maps.

Lastly, we explored whether we would obtain similar results if
we repeat these analyses at the level of blocks (of 8 trials each)
rather than trials. Similar to the trial-level analyses, we found
relatively high subject-to-group similarity and within-subject reli-
ability values for task activations. However, analyses of average RT
and confidence on the block level revealed very low subject-to-
group similarity values but reasonably high within-subject relia-
bilities, which was reflected in much higher values for subject-
compared with group-level factors in our model (Figs. S4–S8).
These results suggest that other types of analyses than the stan-
dard ones included here may result in different contributions of
subject- and group-level factors.

Discussion
A major goal of neuroscience research has been to understand the
neural correlates of behavior. Behavior is a complex phenomenon
that is often specific to a person (Eilam 2015; Forkosh et al. 2019).
Idiosyncratic behavioral responses are ubiquitous in social situ-
ations (Durlauf 2001), economic decisions (Kable and Glimcher
2007), judgments of beauty (Martinez et al. 2020), confidence
ratings (Navajas et al. 2017), response bias (Rahnev 2021), and
even low-level perception (Afraz et al. 2010). Here we develop a
method to quantify the level of idiosyncrasy in brain activations
by estimating the relative contributions of group- and subject-
level factors. By applying this method to a new data set where
subjects (n = 50) completed a perceptual decision-making task, we
find that for standard analyses at the trial level, the influence of
subject-level factors is only slightly stronger than the influence
of group-level factors.

There are at least two important conclusions that one can draw
from the current results. First, across all analyses performed here,
subject-level factors were at least as important as group-level
factors. While this effect could be at least partly driven by issues
such as misalignment across different brains, the results were
remarkably stable whether they were computed using 5-, 10-, or
20-mm smoothing. If brain misalignment were the main source
of the observed idiosyncrasy here, one would expect that larger
smoothing would produce different results. These results suggest
that idiosyncratic, subject-level factors may play a large role in
observed brain activations. Our findings thus highlight the need
for a renewed focus on investigating the brain–behavior relation-
ship at the level of single subjects (Gilmore et al. 2021; Gordon and
Nelson 2021; Naselaris et al. 2021; Song and Rosenberg 2021).

Our current results also suggest novel ways for finding robust
biomarkers for various mental disorders (Kaufmann et al. 2017;
Elliott et al. 2018; Li et al. 2020; Parkes et al. 2020). Most research
in the field has focused on biomarkers unrelated to behavior such
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Fig. 5. Model structure and model fits. A) Graphical depiction of the model at the trial level. The model generates an idealized set of beta values for an
individual trial as the confluence of 3 group-level, 3 subject-level, and 1 noise factor. The thickness of the arrows and associated numbers corresponds
to the weights obtained from fitting the model to the data. B-D) Model fits to the within-subject reliability (top) and subject-to-group similarity (bottom)
values for b) task, C) RT, and D) confidence analyses. The model was fit only to the empirical data with 10-mm smoothing where 100% of voxels were
selected. Despite its simplicity, the model is able to reproduce the empirical data for the remaining analyses with smaller percentages of selected voxels
very well.

as functional connectivity patterns at rest (Woodward and Cascio
2015; Drysdale et al. 2017). An exciting possibility is that subject-
level activations maps for disease-relevant behaviors could serve
as much more powerful biomarkers because of their high relia-
bility and clear differences among people. Focusing directly on
the relationship between one’s behavior and one’s brain activa-
tions may help to delineate the intricate relationship between
the brain and psychopathology (Gratton et al. 2020). Therefore,
subject-level effects could be crucial to diagnosing and treat-
ing different mental illnesses. Additionally, an analysis that is
focused on subject-level variability might be more informative
since between-subject analyses ignore the large degree of within-
subject variability (Fisher et al. 2018; Lebreton et al. 2019).

It is worth noting that contribution of group- and subject-
level factors might change. In some tasks, the group-level factors
might play a larger role, whereas in other tasks the subject-level
factor might play a larger role. These different tasks might be
valuable for isolating the group- and subject-level components of
cognitions. Future research should estimate the contribution of
these factors in a wider variety of tasks and contrasts.

Previous work has utilized mixed-effect modeling to estimate
the contribution of subject- and group-factors (Woolrich et al.
2004; Friston et al. 2005; Chen et al. 2013). This prior work has
relied on estimating these effects directly from the underlying
brain activation patterns associated with given condition. The
framework developed here builds upon this work to simulate



11100 | Cerebral Cortex, 2023, Vol. 33, No. 22

Fig. 6. Model weights, ratios, and proportions. A) Model weights. Subject- and group-level weights obtained from fitting the model separately to each
level of smoothing (5, 10, and 20 mm). B) Weight ratios. Relative weights of the subject-level and corresponding group-level factors from each analysis.
C) Factor proportions. The combined percent accounted for by subject, group, and noise factors contributing to the activation on an individual trial.
Subject and group factors reflect the summed task, RT, and confidence weights.

brain activation to estimate the contribution of subject- and
group-level factors. In a similar fashion to previous work, the
subject-level factors can be thought of as random effects and the
group-level factors as fixed effects.

Despite the fact that our model is able to fit the data quite
well, it is nonetheless important to highlight the model’s limi-
tations. In particular, more complex models such as hierarchical
models might perform better. However, we are not able to fit
a more complex model because we are fitting group-level data
(e.g. average subject-to-group similarity values) rather than each
individual separately. A second limitation pertains to whether the
observed subject-level effects are stable across multiple sessions.
In the current analysis, we used fMRI data from a single session,
but fMRI signals are highly variable between sessions even for
the same subject (McGonigle et al. 2000; Zandbelt et al. 2008).
Future studies should utilize multiple sessions to confirm the
stability of the subject-level effects. Third, nearby voxels are
known to be related to each other, thus resulting in substantial
spatial autocorrelations in fMRI (Shinn et al. 2023). Our analyses
do not account for such spatial autocorrelations because they
do not attempt to generate voxel-level predictions. Nonetheless,
it could be useful for future models to include such autocor-
relations. Fourth, in our analyses, we split trials based on the
median, but median split can have undesirable statistical prop-
erties. An alternative would be to use parametric modulation to
estimate the relationship between brain activation and RT and
confidence.

In conclusion, we develop a computational model to quantify
the contribution of group- and subject-level factors in activation
patterns. Our model suggests that activations related to task,
RT, and confidence in a perceptual decision-making task are
influenced equally strongly by group- and subject-level factors.
However, both group- and subject-level factors are dwarfed by a
noise factor. Taken together, our method provides a more detailed
understanding of the idiosyncrasy levels in brain activations.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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