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Abstract
Our perceptual system appears hardwired to exploit regularities of input features across space and time in seemingly stable 
environments. This can lead to serial dependence effects whereby recent perceptual representations bias current perception. 
Serial dependence has also been demonstrated for more abstract representations, such as perceptual confidence. Here, we ask 
whether temporal patterns in the generation of confidence judgments across trials generalize across observers and different 
cognitive domains. Data from the Confidence Database across perceptual, memory, and cognitive paradigms was reanalyzed. 
Machine learning classifiers were used to predict the confidence on the current trial based on the history of confidence judg-
ments on the previous trials. Cross-observer and cross-domain decoding results showed that a model trained to predict con-
fidence in the perceptual domain generalized across observers to predict confidence across the different cognitive domains. 
The recent history of confidence was the most critical factor. The history of accuracy or Type 1 reaction time alone, or in 
combination with confidence, did not improve the prediction of the current confidence. We also observed that confidence 
predictions generalized across correct and incorrect trials, indicating that serial dependence effects in confidence generation 
are uncoupled to metacognition (i.e., how we evaluate the precision of our own behavior). We discuss the ramifications of 
these findings for the ongoing debate on domain-generality versus domain-specificity of metacognition.
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Introduction

Perceptual judgments in the face of uncertainty are accom-
panied by metacognitive evaluations—a sense of confidence 
that tracks the probability of one's decision being correct. It 
remains, however, unclear how confidence is generated on 
a moment-to-moment basis.

Our perceptual systems appear hardwired to exploit the 
auto-correlation in perceptual input across space and time, 
leading to serial dependence effects in perception, such that 

recent prior perceptual representations bias current per-
ception (Fischer & Whitney, 2014). Serial dependence in 
perception reflects the influence that prior perceptual repre-
sentations have on ongoing perception and is a widespread 
phenomenon demonstrated for low-level features such as ori-
ented gratings (Fischer & Whitney, 2014) to more complex 
objects such as faces (Liberman et al., 2014) or ensemble 
visual representations (Manassi et al., 2017). It has also been 
argued that a mechanism based on serial dependence can 
account for different experimental results reported across 
perceptual, memory, and attention tasks (Kiyonaga et al., 
2017).

Recent research also indicates the existence of serial 
dependence for perceptual confidence (Rahnev et al., 2015; 
see also Mueller & Weidemann, 2008). Serial dependence in 
confidence judgments across two different visual tasks has 
been demonstrated even when confidence is not always rated 
(Aguilar-Lleyda et al., 2021). The current study focuses on 
understanding the role of serial dependence in confidence 
generation beyond perception, across multiple cognitive 
domains. Here, we test the hypothesis that serial dependence 
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effects in confidence generation in perceptual tasks general-
ize across observers and cognitive domains.

Here, we leverage the power of machine learning classifi-
ers and out-of-sample predictions to investigate how predict-
able confidence is, whether the moment-to-moment predict-
ability of confidence is task/domain specific, or whether the 
patterns of serial dependence during confidence generation 
in the perceptual domain generalize to predict confidence 
judgments made by different observers across different cog-
nitive domains. Machine learning classifiers were trained 
using confidence measure estimates from previous trials 
to predict the level of confidence in the current trial. The 
classifier was trained in one particular domain (i.e., percep-
tion) and then tested across different cognitive domains (i.e., 
memory), and generalization performance was quantified.

We predicted that if the dynamic representation of meta-
cognitive confidence across trials is shared across different 
cognitive domains, then the classifiers ought to generalize 
and hence predict the representation of confidence in differ-
ent observers and domains. Notably, the question addressed 
here is impossible to address using traditional statistical 
approaches, in which all data are fit at once in the same 
statistical model. This is one of the advantages of using 
machine learning to study generalization and out-of-sample 
predictions regarding human decisions, including confi-
dence ratings. For instance, a recent study showed evidence 
of serial dependence across domains in a paradigm in which 
recognition judgments were interleaved with perceptual 
judgments so that confidence in the perceptual judgment 
influenced subsequent memory confidence in the next trial 
(Kantner et al., 2019). However, this approach, in which 
all data are fitted at once within the statistical model, does 
not enable one to quantify and predict confidence in new 
examples—namely, across different observers and across 
cognitive domains.

The distribution of confidence judgments in visual tasks 
is highly stable within a particular observer when perfor-
mance is measured across different days in the same visual 
task and also across visual tasks of similar structure (Ais 
et al., 2016). Such findings suggest that serial dependence 
may also be stable within individual observers when simi-
lar visual perceptual tasks are considered but raise ques-
tions on whether it is also similar across observers. Here, we 
addressed whether the patterns of confidence across trials 
associated with serial dependence effects were similar across 
observers, by training and testing the classifiers in different 
observers. We also tested whether these confidence patterns 
are generalizable across correct and incorrect response tri-
als (see Methods). A recent meta-analysis by Rouault et al. 
(2018) found no behavioral evidence for the association of 
interindividual measures of metacognitive performance 
(i.e., how confidence tracks accuracy) across perception and 
memory domains. This observation predicts that the pattern 

of moment-to-moment estimation of confidence might be 
different and not generalizable across cognitive domains.

Methods

This study reanalyzed data from the Confidence Database 
(Rahnev et al., 2020). We selected all datasets that employed 
a 4-point confidence scale because this scale was most com-
mon in the perceptual domain, thereby providing a rich data-
set to train the classifier and assess the degree of generali-
zation across other domains (i.e., cognitive, memory, and 
mixed). This resulted in a total of 32 datasets: 16 from the 
perceptual domain, four from the cognitive domain, six from 
the memory domain, and six from a mixed domain (where 
the data came from tasks from multiple domains). Details 
about each dataset—including the name of the dataset, num-
ber of subjects, and total number of trials—are included in 
Supplementary Table S1. In total, there were 3,077 subjects 
and 925,091 trials across all 32 datasets. The data were 
downloaded in April 2020 and may not include datasets 
added later to the Confidence Database. 

Machine learning models

We used machine learning models: a random forest (RF) 
classifier and a linear vector machine (SVM) as a baseline 
model (see Table 1).

We chose the linear SVM due to its simplicity and its 
ability to perform a large number of inferences during pre-
diction; thus, the linear SVM served as a baseline classifica-
tion model. We chose the random forest classifier to perform 
the four-classes classification task because the random forest 
classifier allowed us to compute the feature importance and 
make interpretable relationships between the features and 
the target. This was the same strategy as in our prior study 
(Mei et al., 2020).

An RF classifier is an ensemble of multiple, simpler 
classifiers that are trained on a subset of the training data, 
and then the final decision is made by a voting algorithm 
of these classifiers (Breiman, 2001). The RF classifier was 
implemented using the scikit-learn Python library (Version 
0.24), which included some modifications of implementa-
tions of Breiman (2001) to avoid overfitting. We used an 
RF classifier that contained 500 decision-tree classifiers and 
the entropy loss objective function. The rest of the hyperpa-
rameters were the default. The output probabilities from the 
RF model were normalized within each ensemble tree-based 
model. The predicted class probabilities of an input sample 
were computed as the mean predicted class probabilities of 
the tree-based model in the forest. The class probability of 
a single tree is the fraction of samples of the same class in 
a leaf. The predicted class probabilities of an input sample 
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within the individual tree were summed up to one. This was 
implemented in the scikit-learn generic “predict_proba” 
function.

We used the SVM classifier as a baseline model. SVM 
is often used for binary classification tasks. In the current 
study, we used the Scikit-learn implemented SVM with the 
liblinear kernel (Fan et al., 2008; Pedregosa et al., 2011). 
L2 regularization was also added to control for overfitting. 
L2 regularization restricts the sum of the parameters in a 
regression model so that the model is forced to use simpler 
functions to model the data. This leads to the model having 
lower variance and makes it less likely to overfit (Hoerl & 
Kennard, 1970). Because the classification task in the cur-
rent study is multiclass, the strategy to handle the multiclass 
support was a one-vs.-rest scheme. In short, the data were 
reformulated into one of the four classes being class “1” 
and the rest of the classes being class “0.” Thus, the SVM 
classifier learned four one-vs.-rest binarized discriminative 
patterns. During the testing phase, for a given matrix of 
one-hot coded confidence, the SVM classifier predicted the 
probability of being one of the four classes, giving a vector 
of four values. Before comparing to the one-hot coded true 
label, the predicted probabilities were passed to a softmax 
function to make the sum of the four values equal to one.

Cross‑validation procedure

For within-perceptual-domain classifications, the classifier 
was trained on data from all subjects but one in a particular 
study, and the classifier was tested on the remaining subject. 
For across-domain generalization, the classifier was trained 
on one of the studies in the perceptual domain and then 
tested on each subject of each study of a different domain. 
The data was split into “correct” and “incorrect” exam-
ples; specifically, “correct” and “incorrect” here referred to 
whether the target trial (in which confidence was predicted) 
was correct or not, but the training examples (based on the 
previous seven trials) could contain correct and incorrect 
trials. Accordingly, we ran the classification analysis four 

times: (1) training the classifier with the instances in which 
the current (to be predicted) trial was correct and testing on 
similar left-out instances; (2) training the classifier with the 
instances in which the current trial was incorrect and test-
ing on similar left-out instances; (3) training the classifier 
with the instances in which the current trial was correct and 
testing on the instances in which the current was incorrect; 
and (4) training the classifier with the instances in which 
the current trial was incorrect and testing on the instances 
in which the current was correct.

To measure the classification performance, the classifiers 
predicted the probabilities of the levels of confidence for 
the test set. Each column of the prediction matrix corre-
sponded to each level of confidence. Thus, each column of 
the prediction matrix was compared against each column 
of the one-hot coded label matrix using the area under the 
receiver operating curve (ROC AUC). The average of the 
four ROC AUC measures represented the cross-validation 
performance of a given fold of cross-validation. The range of 
ROC AUC score is between 0 and 1, where 0.5 is referred to 
as the theoretical chance level and 1 is the perfect accuracy, 
while values below 0.5 mean that performance is worse than 
guessing.

Feature importance

In order to measure how the confidence ratings of the previ-
ous trials contribute to classifying the confidence rating of 
the current trial, we looked into the RF classifiers, comput-
ing feature importances using permutation tests (Altmann 
et al., 2010). For each fold of cross-validation, after an RF 
classifier was trained on the training data, a permutation 
test algorithm was applied to both the RF classifier and the 
testing data. During the permutation, for the testing data, the 
order of the trials of confidence ratings of one of the previ-
ous trials was shuffled while the rest remained unchanged. 
Predictions of the testing data were made using the shuffled 
data. A new ROC AUC score was computed by comparing 
the true labels and the predictions. The difference between 

Table 1   Summary of relevant properties of each the RF and SVM classifier

Model name Random forest classifier Linear SVM

Advantages 1. An ensemble model
2. One of the best models for multiclass classification
3. Interpretation of the feature importance is straightforward
4. Overfitting can be regularized by increasing the number 

ensemble tree-based models

1. A simple linear model
2. Powerful for scaling up the inference of a trained model
3. Interpretation of the feature weights is simple and directional
4. Overfitting can be regularized by L2 penalty

Disadvantages 1. It is difficult to control for the complexity of the ensemble 
treed-based models due to the large number of hyperpa-
rameters, such as the depth, resample sizes for training the 
individual tree-based models

2. Training and inference time is much longer than SVM for 
big datasets

1. Not suitable for multiclass classification
2. Feature weights are distributed in multiple trained models, 

making it difficult to integrate
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the new ROC AUC score and the true ROC AUC score rep-
resented the contribution of the confidence ratings of the 
particular previous trial that were shuffled. A positive differ-
ence meant that the feature was good for the classification, 
while zero meant that the feature was not important. Par-
ticularly, compared with the early proposed feature impor-
tance extraction algorithm (Breiman, 2001), the permutation 
feature importance algorithm could return negative feature 
importance estimates. Negative feature importance meant 
the inclusion of the feature would make the classification 
less effective.

Second‑level statistics

After cross-validation of the classifiers for within- and 
cross-domain predictions, we performed second-level sta-
tistics on the results. For the classification results within 
the perceptual domain, we averaged the ROC AUC scores 
over the cross-validation folds for each study before the 
second-level statistics. For the cross-domain classification 
results, the classifier was trained in the perceptual domain, 
and then we averaged the ROC AUC scores within each 
testing fold for each domain (i.e., cognitive, memory, and 
mixed). Therefore, each average of decoding performance 
contained 16 independent ROC AUC scores, one per study 
of the perceptual domain of the Confidence Database. Clas-
sification performance within this domain, and for each level 
of correctness, if applicable, was assessed by comparing the 
ROC AUC scores of each study to 0.5 (theoretical chance 
level for the ROC AUC metric) using a one-sample permuta-
tion test as implemented in the EnvStats R library (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​EnvSt​ats/​index.​html) but 
using custom Python scripts.

Initially, we computed the average of the ROC AUC. 
Then we subtracted the average from each experimental 
ROC AUC score and added 0.5 to get a vector that had 
a mean of 0.5 and the same variance as the original vec-
tor. We drew 16 observations with replacement from this 
vector, hence creating 16 “fake” data points, which were 
then averaged in order to get an estimate of the mean of the 
population when the ROC AUC was assumed to be 0.5. We 
repeated these steps (sampling and average) 10,000 times to 
estimate the chance-level distribution (i.e., the distribution 
of the null hypothesis). The probability of the chance level 
being greater or equal to the experimental score was used as 
the p value to determine the significance of the experimental 
score compared with 0.5. If the p value was lower than the 
critical level, we determined the ROC AUC scores were sig-
nificantly greater than 0.5. For cross-domain classification 
and each level of correctness, we performed the same statis-
tical analysis to the ROC AUC scores. For within-perceptual 
domain decoding, the p values of the permutation tests were 
corrected by the Bonferroni procedure in total, while for 

cross-domain decoding, the p values were corrected by the 
Bonferroni procedure for each of the domains.

For the analysis of the feature importance estimates of 
the random forest classifier, we performed permutation 
tests similar to those described above to compare the fea-
ture importance estimates against zero. Given a set of fea-
ture importance estimates, its mean was subtracted from the 
estimates, hence creating “fake” estimates centered at zero. 
We then drew samples with replacement from the “fake” 
estimates and we saved the average of the samples. This was 
repeated 10,000 times to get the chance-level distribution. 
The probability of the chance level being greater or equal to 
the average of the feature importance estimates was used as 
the p value to determine the significance of the experimental 
score compared with zero. For the within-perceptual domain 
decoding analyses, the p values of the permutation tests were 
corrected by the Bonferroni procedure. For the cross-domain 
decoding analyses, the p values were Bonferroni corrected 
on each of the domains.

In order to analyze the linear trend of the feature impor-
tance values as a function of the trial indices, we fitted linear 
regression models using the trial indices as the independent 
variable and the feature importance values as the dependent 
variable. The regression models were cross-validated with 
a 20-fold cross-validation procedure to estimate the perfor-
mance of the regression. Then, we performed permutation 
tests to assess the statistical significance of the regression 
models. We shuffled the correspondence between the feature 
importance values and the trial indices and then we fitted a 
new regression model and cross-validated the model using 
the same 20-fold cross-validation procedure. We repeated 
this for 1,000 times to estimate the empirical chance level 
of the regression model. The probability of the chance level 
being greater or equal to the average of the original regres-
sion performance was used as the p value to determine the 
significance of the regression coefficients compared with 
zero.

Past history versus recent history

To further investigate how the recency of confidence rat-
ings in the previous trials influenced the prediction of con-
fidence rating in the current trial, we split the confidence 
ratings in the previous trial into “past” and “recent,” where 
“past” included confidence ratings in trials of T-5, T-6, 
and T-7, while “recent” included confidence ratings in 
trials of T-1, T-2, and T-3. Confidence rating in trial T-4 
was not used in this analysis to equate the number of fea-
tures. We applied the same feature and label preparation, 
machine learning models, and cross-validation procedures 
to decode the confidence rating in the current trial using 
either the confidence on “past” or “recent” trials. After 

https://cran.r-project.org/web/packages/EnvStats/index.html
https://cran.r-project.org/web/packages/EnvStats/index.html
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cross-validation of the decoding, we applied the same 
second-level statistics to the ROC AUC results, compar-
ing the ROC AUC against 0.5.

Results

We analyzed studies on metacognition across four different 
domains from the Confidence Database. We investigated 
the generation of confidence judgments by training machine 
learning classifiers using measures of confidence from pre-
vious trials to predict the level of confidence in the current 
trial. We quantified the extent to which the representation 
of confidence generalizes across different observers across 
different cognitive domains. Two classifiers were used: a 
random forest (RF) classifier and a linear vector machine 
(SVM) as a baseline model. Testing the two classifiers 
allowed us to test the robustness of the predictions across 
the different models.

Initially, each classifier was trained in the perceptual 
domain and then tested within the same domain using a 
leave-one-subject-out cross-validation procedure for each 
study (see Methods). Importantly, the cross-validation pro-
cedure was performed separately for correct and incorrect 
trials when decoding the confidence level.

Subsequently, the classifier trained in the perceptual 
domain was tested across domains (i.e., cognitive, memory, 
and mixed domains from the Confidence Database; Rahnev 
et al., 2020).

Classification of confidence within the perceptual 
domain

We found that the level of confidence in the current trial 
could be predicted based on the history of previous trials. 
Figure 1 illustrates that classifier predictions were success-
ful regardless of whether the current trial was correct or 
incorrect. Averaging across each of the subplots in Fig. 1, 
the decoding scores were 0.64 ± 0.048 (M ± SD) for SVM 
and 0.64 ± 0.003 for RF (detailed statistics are shown in 
Supplementary Table S2). All the cross-validation with 
the split of data into correct and incorrect examples were 
significantly greater than 0.5 (p < .001, corrected by Bon-
ferroni procedure for multiple comparisons, as indicated in 
each of the figures). The results suggested that both linear 
and nonlinear models could learn the patterns of history of 
confidence ratings to predict the confidence rating of the 
current trial. Similar results were observed using the SVM 
classifier (Fig. S1).

We hypothesized that trials that were closer to the cur-
rent trial may be more important for the prediction of confi-
dence in the current trial than those that were further away 
from the current trial. To test this hypothesis, we conducted 
the same decoding analyses based on recent trials (−1, −2, 
−3 trials back) and based on past trials (−5, −6, −7 trials 
back). The results showed that confidence in the current trial 
could be predictive from both recent and also past trials; 
however, decoding from the most recent trials was better 
(see Fig. 2). Similar results were observed using the SVM 
classifier (Fig. S2).

Fig. 1   Decoding confidence levels within the perceptual domain. The 
random forest classifiers were trained and tested within each study 
dataset using a leave-one-subject-out cross-validation procedure. The 
decoding scores were averaged across the cross-validation folds for 
each study and then the distribution of these averaged scores is plot-
ted. The prediction of confidence level in the current trial based on 

the previous confidence levels was clearly above chance levels. Sta-
tistical significance was estimated by means of resampled one-sample 
tests against 0.5. Error bars show the standard errors across cross-
validation folds. The estimated significant levels were corrected by 
Bonferroni correction procedure, n.s. = not significant. *p < .05. **p 
< .01. ***p < .001
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We also analyzed the feature importance of the random 
forest classifier (see Methods) associated with each of the 
trials back. The results showed that the vast majority of the 
trials back had feature importances that were significantly 
different from zero, though the most recent trial was most 
important for predicting confidence in the current trial (see 
Fig. 3). We then fit a linear regression model, using the tri-
als as the independent variable and the feature importance 
as the dependent variable. The model fitting was conducted 
for (1) results using correct trials as the training set and 
tested with correct trials, (2) results using correct trials as 
the training set and tested with incorrect trials, (3) results 
using incorrect trials as the training set and tested with cor-
rect trials, and (4) results using incorrect trials as the train-
ing set and tested with incorrect trials. After cross-validat-
ing the linear regression model using leave-one-study-out 

procedure as described above, we derived the statistical 
significance of the slope of the regression model using 
a permutation test. During permutation, we shuffled the 
correspondence between the independent variable and the 
dependent variable, and fitted a linear regression model 
using the shuffled data. This procedure was repeated 1,000 
times to estimate the empirical chance level of the slope 
of the regression model we fitted with the unshuffled data. 
The significant level of the slope was the probability of 
the fitted slope being greater or equal than the empirical 
chance levels. The results of permutation tests for four con-
ditions were corrected using Bonferroni correction. The 
slopes were all positive over the four conditions, and they 
were all statistically significant (see Fig. 3). Therefore, the 
results suggested that the more recent trials contributed 
more to the prediction of the current confidence.

Fig. 2   Decoding of confidence within the perceptual domain based 
on recent versus past trials back. The random forest classifiers were 
trained and tested within each study dataset using a leave-one-sub-
ject-out cross-validation procedure for trials of T-7, T-6, T-5 and T-3, 
T-2, T-1 separately. The decoding scores were averaged across the 
cross-validation folds for each study and then the distribution of these 
averaged scores is plotted. Statistical significance of each unique con-

dition was estimated by means of resampled one-sample tests against 
0.5. Statistical significance of the difference between “past” and 
“recent” conditions was estimated by comparing the corresponding 
pair of “past” and “recent” conditions. Error bars show the standard 
errors across cross-validation folds. The estimated significant levels 
were corrected by Bonferroni correction procedure. n.s. = not signifi-
cant. *p < .05. **p < .01. ***p < .001

Fig. 3   Illustration of the feature importance estimates of the RF clas-
sifiers within the perceptual domain. Permutation tests were per-
formed on the estimates associated with each trial back assessing its 
significance against zero importance. The vast majority of the trials 
back had feature importances that were statistically significant after 
multiple comparison correction. The only feature importance that was 
not significant was the feature importance of the seventh trial back 
when training and testing on incorrect trials (p = .059). Error bars 

show the standard errors across cross-validation folds. The rest of the 
feature importance estimates were all significantly greater than zero 
(p < .001). The shaded areas associated with the regression lines 
were resampled standard errors of the fitted regression line. The resa-
mpling method was random sampling, differing from the cross-vali-
dation procedure, which was implemented with the algorithm of the 
Seaborn library. n.s. = not significant. *p < .05. **p < .01. ***p < 
.001



Psychonomic Bulletin & Review	

1 3

Testing the generalization of confidence 
across domains

Having demonstrated that current estimates of perceptual 
confidence are affected by prior metacognitive decisions, 
we then examined whether the construction of metacogni-
tive confidence in the perceptual domain generalizes across 
different other domains. Here, the classifier was trained on 
one of the studies in the perceptual domain (see Methods) 
and then tested on all the data of each experiment in a dif-
ferent domain (i.e., cognitive, memory, and mixed domains; 
see Fig. 4 and Supplementary Table S3). We observed that 
regardless of the training data, testing data, type of mod-
els, or domains of generalizing to, the confidence ratings 
of the previous seven trials were able to predict the confi-
dence rating in the current trial (all scores were compared 
against the 0.5 level; all ps < .001, corrected for multiple 
comparisons). Similar results were observed using the SVM 
classifier (Fig. S3).

The above results demonstrate that a classifier trained 
in the perceptual domain generalizes to predict confidence 
across different cognitive domains.

We then tested whether the trials that were closer to the 
current trial were more important for predicting confidence. 
The same decoding analyses were conducted but now using 
just the most recent trials (−1, −2, −3 trials back) or the 
past trials (−5, −6, −7 trials back). Again, we observed 
that confidence in the current trial could be predictive from 
both recent and also past trials; however, decoding from the 
most recent trials was better (see Fig. 5). Similar results were 
observed using the SVM classifier (Fig. S4).

As before, we determined the relative importance of each 
of the trials back at predicting metacognitive confidence in 
the current trial. The results showed that the vast major-
ity of the previous trials had feature importances that were 
significantly different from zero—though, again, the most 
recent trial was most important for generalizing confidence 
in the current trial across a different domain. Additionally, 
we fitted linear regression models to measure the feature 

importance as a function of trial indices, separately for dif-
ferent domains, training data, and testing data. There was a 
positive linear trend among all of these regression models. 
The results suggested that the confidence from the more 
recent trials were the most informative to predict the confi-
dence ratings at the current trial. Figure 6 illustrates these 
results.

We note here that we elected to train the classifiers in the 
perceptual domain because the amount of training examples 
was much bigger in this domain. However, it may be asked 
whether the pattern of results generalize when the classifiers 
are trained in the memory or cognitive domains.

To quantify the full generalizability of confidence decod-
ing across all domains, we tested how the decoders per-
formed when they were trained and tested within the same 
domain (i.e., memory or memory) and when they were 
tested the decoders in a different domain (i.e., from memory 
to perception or cognitive). In doing so, we also tested how 
different attributes beyond the history of confidence ratings, 
namely, the history of Type 1 reaction time, and the history 
of accuracy, contributed to predict the confidence in the cur-
rent trial.

We run the classification for each combination of the dif-
ferent attributes: confidence only, reaction time only, accu-
racy only, confidence and reaction time, confidence and 
accuracy, and confidence, reaction time, and accuracy. In 
each combination, the features of each attribute were concat-
enated horizontally. Note that for this analysis, the data were 
not split into “correct” and “incorrect” examples. When the 
classifier was cross-validated within the same domain, we 
followed the leave-one-subject-out cross-validation proce-
dure, so that the classifier was trained in all the data except 
one subject, and then tested in the left-out subject. When the 
classifier was cross-validated across different domains, we 
first trained the classifier in a given domain (i.e., Memory) 
and then tested the classifier in another domain (i.e., Cogni-
tive) for each subject.

Figure 7 shows the decoding results demonstrating that 
history of confidence alone was the most critical attribute 

Fig. 4   Cross-domain decoding scores of confidence predictions. The 
random forest classifiers were trained on the perceptual domain and 
then tested on the other three domains. The statistical significance 
was estimated by resampled one-sample tests against 0.5. Each sub-
plot shows the performance of cognitive, memory and mixed domains 

respectively. Error bars show the standard error across cross-valida-
tion folds. The estimated significant levels were corrected by Bonfer-
roni correction procedure. n.s. = not significant. *p < .05. **p < .01. 
***p < .001
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for predicting confidence in the current trial, and that the 
recent history of accuracy or Type 1 reaction times did not 
contribute to predicting the current confidence. Figure 8 
displays the feature importance of the confidence ratings in 
the previous trials. The pattern of results was similar to that 
reported in the above analyses. Across the different domains, 
the confidence rating from the previous one trial was gener-
ally the most important feature compared with the confi-
dence ratings between T-2 and T-7 trials. This pattern did 
not change when including or adding information related to 
the history of accuracy and/or reaction time (Fig. 8).1

Similar results were observed using the SVM classifier 
(Fig. S5). We then analyzed the slopes of the regression lines 
of the feature importance as a function of previous trials 
individually for different attributes (confidence, accuracy, 
and RT). We concatenated the features of all attributes from 
the previous trials to predict the confidence in the current 
trial. The results are presented in Fig. 8 (see also Table S1 
for the statistical significance measures of the models). 
The results show that confidences from the previous trials 

Fig. 5   Decoding confidence across domains based on recent vs. past 
trials. The random forest classifiers were trained on the perceptual 
domain and then tested on the other three domains for trials of T-7, 
T-6, T-5 and T-3, T-2, T1 separately. The statistical significance of 
each unique condition was estimated by means of resampled one-
sample tests against 0.5. Statistical significance of the difference 

between “past” and “recent” conditions was estimated by comparing 
the corresponding pair of “past” and “recent” conditions. Error bars 
show the standard errors across cross-validation folds. The estimated 
significant levels were corrected by Bonferroni correction procedure. 
n.s. = not significant. *p < .05. **p < .01. ***p < .001

1  We conducted a nonparametric comparison between the generaliza-
tion performance in the within- and cross-domain. We first computed 
the difference of the average generalization performance between the 
within- and cross-domain. We then created a vector by concatenating 
the generalization performance of the within- and cross-domain. This 
vector was shuffled into two new groups, and the difference between 
within- and cross-domain decoding was recomputed 10,000 times to 
estimate the distribution of the empirical chance level. Finally, we 
computed the significant level by calculating the probability of the 

absolute value of the experimental difference being greater or equal 
to the absolute distribution of the empirical chance level (two-tailed). 
The results showed that the ROC-AUC decoding scores were signifi-
cantly 0.04 higher in the cross- relative to the within-domain decod-
ing (p < .001). However it is difficult to make inferences based on 
this result because of several factors such as different amounts of 
examples for training the random forest classifier in the within- versus 
cross-domain generalization.

Footnote 1 (continued)
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contributed the most to the prediction of confidence in the 
current trial, and the most recent trials contributed more to 
the prediction than past trials. This linear trend was statisti-
cally significant within and across domains. On the other 
hand, relative to confidence, the accuracy and RT from the 
previous trials contributed little to the prediction of the cur-
rent confidence.

Finally, we note that the one-versus-rest classification 
procedure that we used does not take into account the ordi-
nal nature of confidence. We elected to use the random forest 
classifier to perform classification because it allowed us to 
compute the importance of each feature and make interpret-
able relationships between the features and the target (see 
Mei et al., 2020). Nevertheless, we re-ran the analyses using 
a random forest regression procedure, which should take 
into account the ordinal nature of confidence. The results 
showed that the random forest regression models were not 
as sensitive as the classification models, but the regression 
models performed better than chance level when the feature 
attributes included confidence from the previous trials (i.e., 
confidence only, confidence + accuracy, confidence + RT, 

and all three attributes; Supplementary Figs. 7 and 8, and 
Supplementary Table S2 illustrate the results). One potential 
reason that the regression models did not perform as good 
as the classification models may relate to the measure of the 
model performance—namely, variance explained (i.e., how 
much variance of the true confidence ratings were explained 
by the predicted confidence ratings). This measure may not 
be sensitive enough for the goal of prediction. Additionally, 
variance explained is more sensitive to extreme values in 
the predicted confidence ratings, which is not the case for 
ROC AUC.

Discussion

The goal of the present study was to determine whether 
serial dependence effects in confidence generation general-
ize across different observers and cognitive domains. In the 
perceptual domain, classification results across observers 
showed that the current level of confidence can be predicted 
by the prior confidence estimates. This result is in keeping 

Fig. 6   Illustration of the feature importance estimates of the RF clas-
sifiers trained in the perceptual domain for cross-domain decoding. 
Error bars show the standard errors across cross-validation folds. Per-
mutation tests were conducted on the feature importance estimates, 
comparing against zero for each of the trials back. The shaded areas 

associated with the regression lines were resampled standard errors 
of the fitted regression line. The resampling methods used the random 
sampling implemented with the algorithm of the Seaborn library. n.s. 
= not significant. *p < .05, **p < .01, ***p < .001, corrected for 
multiple comparisons within each domain



	 Psychonomic Bulletin & Review

1 3

with previous studies on confidence leak (Aguilar-Lleyda 
et al., 2021; Mueller & Weidemann, 2008; Rahnev et al., 
2015). We also observed that classifiers trained to predict 
confidence in the perceptual domain generalized to other 
cognitive domains. The extent to which confidence can be 
predicted is best addressed by using cross-validation with 
out-of-sample generalization. For instance, a recent study 
showed evidence of serial dependence across domains in a 
paradigm in which recognition judgments were interleaved 
with perceptual judgments so that confidence in the percep-
tual judgment influenced subsequent memory confidence in 
the next trial (Kantner et al., 2019). However, this study used 
standard statistical approaches in which all data are fitted at 
once within the same statistical model, thereby not allowing 
quantification and prediction of confidence in new exam-
ples and experimental contexts—namely, across different 
observers and across cognitive domains, as observed in the 

current study. Intriguingly, confidence predictions general-
ized across correct and incorrect trials suggesting that serial 
dependence effects in confidence generation are uncoupled 
to metacognition (i.e., how confidence tracks accuracy). 
In line with this, the results showed that the recent history 
of confidence was the most critical factor and that accu-
racy or Type 1 reaction time alone, or in combination with 
confidence, did not improve the prediction of the current 
confidence. Relatedly, previous observation indicated that 
interindividual differences in serial dependence are nega-
tively associated with metacognitive sensitivity (Rahnev 
et al., 2015). This observation highlights that serial depend-
ence may not always confer adaptive value to perception 
(Cicchini et al., 2018) and cognitive performance, but can 
under certain circumstances provide suboptimal or mala-
daptive outcomes (Kiyonaga et al., 2017). This pervasive-
ness of serial dependence may reflect the habit of human 

Fig. 7   Within- and cross-domain decoding ROC scores of confidence 
predictions. The random forest classifiers were trained on a given 
domain and then tested on the other three domains. The statistical 
significance was estimated by resampled one-sample tests against 0.5. 

Error bars show the standard error across cross-validation folds. The 
estimated significant levels were corrected by Bonferroni correction 
procedure. n.s. = not significant. *p < .05. **p < .01
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observers to experience the world in a stable, auto-correlated 
manner (Fischer & Whitney, 2014). The generalization of 
serial dependence in confidence generation across correct 
and incorrect trials is difficult to explain according to strict 
normative models of decision confidence as reflecting the 
read-out of the perceptual signal (Hebart et al., 2016; Kiani 
& Shadlen, 2009; Macmillan & Douglas Creelman, 2004), 
and it is in line with prior studies that observed dissociations 
between perceptual performance and metacognitive confi-
dence (Desender et al., 2018; Koizumi et al., 2015; Samaha 
et al., 2016, 2019).

The current results have important implications for the 
ongoing debate on the domain-generality/specificity of meta-
cognition. Evidence in favor of domain-general metacogni-
tive mechanisms comes from studies showing that observers 
can successfully assign confidence to two discriminations in 
different modalities (i.e., visual and auditory), notably, as 
efficiently as when the two discriminations involve the same 
sensory domain (de Gardelle et al., 2016). This question is 
normally addressed in behavioral studies by computing the 
correlation of individual measures of metacognition (i.e., 
meta-d′ or M-ratio) across different domains (i.e., percep-
tion and memory). Studies using this approach have found 
mixed results with some reporting significant correlations 

(Fitzgerald et al., 2017; McCurdy et al., 2013; Ruby et al., 
n.d.) but others failing to find such correlations (Baird et al., 
2015; Baird et al., 2013; Morales et al., 2018). A recent 
meta-analysis (Rouault et al., 2018) of behavioral studies 
observed mixed evidence for the association of interindivid-
ual measures of metacognitive performance across percep-
tion and memory domains (but see Mazancieux et al., 2020). 
Different factors can contribute to these mixed results: lack 
of statistical power, differences in metacognition measures 
and differences in task requirement across studies, uncer-
tainty in the estimation of the model parameters across dif-
ferent indices of metacognitive performance such as meta-d′ 
(Rouault et al., 2018), and also different sources of meta-
cognitive inefficiency dominating different tasks (Shekhar 
& Rahnev, 2021). The current results contribute to this 
debate by showing that classifier predictions of confidence 
judgments generalize across cognitive domains. However, 
we note that the domain-generality issue in metacognitive 
research typically relates to metacognitive sensitivity or effi-
ciency, rather than confidence per se. The present results 
indicate that serial dependence in confidence ratings is a 
robust phenomenon and likely not domain specific.

Psychology findings have been subject to recent scrutiny 
due to failures to replicate in new samples or replications 

Fig. 8   Feature importance of the attributes of the previous trials, con-
fidence, accuracy, and reaction time, in predicting the confidence in 
the current trial. The random forest classifiers were cross-validated 

with confidence, accuracy, and reaction time from the previous seven 
trials as concatenated features and with confidence in the current trial 
as the target (see Methods). (Color figure online)



	 Psychonomic Bulletin & Review

1 3

that do not hold up to the size of the published effects (Open 
Science Collaboration, 2015). One of the factors contrib-
uting to replication failures may be related to misuse and 
appropriateness of statistical tests, beyond the so-called p 
hacking or the selective subsampling of the data. Many stud-
ies fit a statistical model with all experimental data at once, 
which can lead to overfitting and poor generalization of the 
model with new observations that are similar but come from 
a different sample. Because of this, it has been argued that 
psychological science can greatly benefit from the field of 
machine learning in which pattern classifiers are tested in 
their ability to predict new data coming from the same or 
different participants (Yarkoni & Westfall, 2017). These 
authors have made the strong argument that psychological 
theories contribute little to predict future human behavior 
with a respectable level of precision. In the same vein, there 
has been a recent emphasis on changing current statistical 
practices and encourage the adoption of “estimation think-
ing,” namely, to provide a quantitative model of the effect 
under investigation, rather than the standard “dichotomous 
thinking” based on the traditional null hypothesis testing 
framework to reject the null (Cumming, 2014). The present 
approach using pattern classification with out-of-sample 
generalization thereby provides evidence that confidence 
generation can be reliably quantified and predicted across 
new samples and experimental contexts. The use of machine 
learning can prove very useful towards developing predic-
tive models of confidence across different populations and 
experimental contexts (see Fleming et al., 2016; Mei et al., 
2020 for a similar approach to predict prospective beliefs of 
self-performance). It is difficult to make conclusions regard-
ing the level of ROC prediction scores obtained here without 
a prior context of similar studies using different measures 
of predictive performance. However, ROC is arguable the 
best measure of predictive performance compared with other 
measures of effect size (Rice & Harris, 2005), and the cur-
rent ROC confidence prediction scores of ~0.65 for within-
domain and slightly lower for cross-domain generalization, 
indicate that confidence prediction for unobserved data is a 
robust phenomenon.
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